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Abstract  29 

 30 

Humans and animals maintain accurate sound discrimination in the presence of loud sources 31 

of background noise. It is commonly assumed that this ability relies on the robustness of 32 

auditory cortex responses. However, no attempt has been made to characterize neural 33 

discrimination of sounds masked by noise at each stage of the auditory system and 34 

disentangle the sub-effects of noise, namely the distortion of temporal cues conveyed by 35 

modulations in instantaneous amplitude and frequency, and the introduction of randomness 36 

(stochastic fluctuations in amplitude). Here, we measured neural discrimination between 37 

communication sounds masked by steady noise in the cochlear nucleus, inferior colliculus, 38 

auditory thalamus, primary and secondary auditory cortex at several signal-to-noise ratios. 39 

Sound discrimination by neuronal populations markedly decreased in each auditory structure, 40 

but collicular and thalamic populations showed better performance than cortical populations 41 

at each signal-to-noise ratio. Comparison with neural responses to tone-vocoded sounds 42 

revealed that the reduction in neural discrimination caused by noise was mainly driven by the 43 

attenuation of slow amplitude modulation cues, with the exception of the cochlear nucleus 44 

that showed a dramatic drop in discrimination caused by the randomness of noise. These 45 

results shed new light on the specific contributions of subcortical structures to robust sound 46 

encoding, and demonstrate that neural discrimination in the presence of background noise is 47 

mainly determined by the distortion of the slow temporal cues conveyed by communication 48 

sounds. 49 

 50 
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 66 
Introduction  67 

 68 
Understanding the neural mechanisms used by the central auditory system to extract and 69 

represent relevant information for discriminating communication sounds in a variety of 70 

acoustic environments is a major goal of auditory neurosciences. This enterprise is motivated 71 

by the repeated observation that humans and animals successfully maintain high 72 

discrimination performance for speech and behaviorally salient calls when the latter are 73 

embedded into loud sources of background noise produced by environmental medium (such 74 

as tropical forests, underwater or urban environments)1-6.  75 

Previous studies have assumed that this perceptual robustness mainly relies on the capacity of 76 

cortical neurons to extract invariant features5,7-10. For example, in the cortical field L (the 77 

analogous of primary auditory cortex (A1) in bird), the percentage of correct neuronal 78 

discrimination between zebra-finch songs embedded in different types of acoustic maskers 79 

decreases proportionally to the target-to-masker ratio and parallels behavioral performance5. 80 

Similarly, in a secondary auditory area, neurons generate background-invariant representation 81 

of vocalizations at signal-to-noise ratios that match behavioral recognition thresholds10. More 82 

recently, between-vowels discrimination performance of neuronal populations located in A1 83 

was found to resist to a large range of acoustic alterations (including changes in fundamental 84 

frequency, spatial location, or level) and was similar to behavioral performance9.  85 

The goal of the present study was to identify the auditory brain structures responsible for 86 

these robust neural computations and clarify the effects of background noise on the neural 87 

representation of communication sounds, knowing that external noise has three disruptive 88 

sub-effects on communication sounds11,12: noise attenuates the power of their amplitude 89 

modulation cues (AM, also called “temporal-envelope”)13-15, corrupts their frequency 90 

modulation cues (FM, also called “temporal fine structure”)16,17, and introduces stochastic 91 

fluctuations in level, that is statistical variability of the AM power14. To address these issues, 92 

we investigated whether the ability of populations of auditory neurons to discriminate 93 

between communication sounds belonging to the same category (e.g. the alarm call in guinea 94 

pig) and masked by external noise increases or decreases along the auditory pathway from 95 

the first auditory relay (the cochlear nucleus) up to the primary and secondary cortical areas. 96 

An increased ability may result from the specialization of cortical responses for detecting 97 

crucial vocalization features10,18,19, whereas a decreased ability may result from the loss of 98 

spectro-temporal details promoting the identification of auditory objects20, 21. For the first 99 

time, the discrimination performance of neuronal populations recorded along the auditory 100 
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pathway, from the cochlear nucleus up to a secondary auditory cortex, was assessed for four 101 

utterances of the same vocalization presented against a stationary broadband noise using three 102 

signal-to-noise ratios (SNRs). The results were compared to the effects of an artificial signal-103 

processing scheme (a tone vocoder) that progressively degraded acoustic AM and FM cues 104 

(within 38 to 10 frequency bands) without introducing any stochastic fluctuation as in the case 105 

of background noise. AM and FM spectra of communication sounds were computed at the 106 

output of simulated cochlear filterbank for each acoustic alteration allowing us to identify 107 

masking noise and vocoder conditions matched in terms of amount of modulation reduction. 108 

We then correlated these reductions of temporal modulation cues with the discriminative 109 

neuronal performance recorded in each structure. We demonstrate that, with the noticeable 110 

exception of the cochlear nucleus, the larger the reduction of AM cues (the first sub-effect of 111 

background noise), the larger the decrease in discriminative abilities in cortical and 112 

subcortical structures. Corruption of FM cues (the second sub-effect of noise) had little 113 

observable effects if any on neural discrimination. Introduction of stochastic fluctuations (the 114 

third sub-effect of noise) impacted neural discrimination in the cochlear nucleus only. In 115 

addition, this study revealed that, for each acoustic distortion tested here, the highest level of 116 

discrimination was found in subcortical structures, either at the collicular level (in masking-117 

noise conditions) or at the thalamic level (in  vocoder conditions).  118 

  119 
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Results 120 

From a database of 2334 recordings collected in the different auditory structures, two criteria 121 

were used to include neuronal recordings in our analyses. A recording had to show a 122 

significant STRF (see Methods) and an evoked firing rate significantly above spontaneous 123 

firing rate (200 ms before each original vocalization) for at least one of the four original 124 

vocalizations. Applying these two criteria led to the inclusion of 499 recordings in CN, 386 125 

recordings in CNIC, 262 recordings in MGv, 354 recordings in A1 and 95 recordings in VRB 126 

(see supplementary Table 1). In the following sections, the neuronal responses to the original 127 

vocalizations (see Fig. 1a) presented in quiet are compared across brain structures and the 128 

discriminative abilities are described at the individual and population level. The neuronal 129 

discriminative abilities tested at the cortical and subcortical level with tone vocoded 130 

vocalizations (Fig. 1b) and vocalizations presented against different levels of masking noise 131 

(Fig. 1c) are described and compared next. 132 

 133 
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Figure 1. Acoustic stimuli and averaged modulation spectra. a. Waveforms (top) and spectrograms (bottom) of the four 134 
original whistles used in this study. b. From top to bottom, spectrograms of the four vocoded whistles using 38, 20 and 10 135 
frequency bands. c. From top to bottom, spectrograms of the four original whistles embedded in stationary noise at three 136 
SNRs (+10, 0 and -10 dB) and spectrograms of the stationary noise only (Noise only). d. Vocoding and noise effects on 137 
frequency-modulation (FM) spectra. The two plots represent the averaged modulation spectra of the four original 138 
vocalizations (in black), vocoded vocalizations (Voc38, Voc20 and Voc10: red, green and blue respectively, left panel) and 139 
vocalizations in stationary noise at three SNRs (+10, 0 and -10 dB : red, green and blue respectively, right panel) e. 140 
Vocoding and noise effects on amplitude-modulation (AM) spectra. The two plots represent the averaged modulation spectra 141 
of the four original vocalizations (in black), vocoded vocalizations (Voc38, Voc20 and Voc10: red, green and blue 142 
respectively, left panel) and vocalizations in stationary noise at three SNRs (+10, 0 and -10 dB : red, green and blue 143 
respectively, right panel). Vertical black dashed lines on AM and FM spectra correspond to the frequency range (1-20 Hz) 144 
selected for the data analysis. 145 
 146 

Discrimination of the original vocalizations in quiet culminates at the subcortical level 147 

Figure 2a displays neuronal responses of two simultaneous recordings obtained at five levels 148 

of the auditory pathway (CN, CNIC, MGv, AI and VRB). The neuronal responses were strong 149 

and sustained in the three subcortical structures whereas they were more phasic in AI and 150 

more diffuse in VRB. For most of the recordings, temporal patterns of responses were clearly 151 

reproducible from trial-to-trial, but they differed from one vocalization to another both at the 152 

cortical and subcortical level.  153 

 154 
Figure 2. Subcortical neurons discriminate better the original vocalizations than cortical neurons. a. From bottom to 155 
top, neuronal responses were recorded in CN, CNIC, MGv, A1 and VRB simultaneously under 16 electrodes but only two 156 
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are represented here, with alternated black and red colors. Each dot represents the emission of an action potential and each 157 
line corresponds to the neuronal discharges to one of four original whistles. The grey part of rasters corresponds to evoked 158 
activity. The waveforms of the four original whistles are displayed under the rasters. b-e. The panels show (b) the evoked 159 
firing rate (spikes/sec), (c) the temporal reliability quantified by the CorrCoef value (arbitrary units), (d) the neuronal 160 
discrimination assessed by the mutual information (MI) computed at the level of the individual recording (MIIndividual, bits) 161 
and (e) at the level of neuronal population (MIPopulation, bits) with populations of 9 simultaneous recordings obtained with the 162 
four original vocalizations in CN (in black), CNIC (in green), MGv (in orange), A1 (in blue) and VRB (in purple). In each 163 
structure, error bars represent the SD of the mean values and black lines represent significant differences between the mean 164 
values (unpaired t test, p<0.05). Note that the evoked firing rate decreases from the CN to VRB but both the temporal 165 
reliability (CorrCoef) and the discriminative ability (MI) values reach a maximal value in MGv. Note also that at the 166 
population level, all the subcortical structures discriminate better the original vocalizations than cortical areas. 167 
 168 

Quantifications of evoked responses to original vocalizations are presented on Figures 2b-e 169 

for each auditory structure. These analyses clearly pointed out large differences between the 170 

mean values of evoked firing rate, CorrCoef and MI quantified at the cortical vs. at the 171 

subcortical level. First, the evoked firing rate was significantly higher in the subcortical 172 

structures than in the cortex (unpaired t-test, lowest p value p<0.001). It was also higher in 173 

CN than in the other subcortical structures (Fig. 2b). Second, the CorrCoef values were 174 

significantly higher in the subcortical structures than in AI and VRB (Fig. 2c), indicating that 175 

the trial-to-trial reliability of evoked responses was stronger at the subcortical than at the 176 

cortical level, reaching its maximum in the CNIC and MGv. CorrCoef value significantly 177 

increased from CN to CNIC (unpaired t-test, p<0.01), and then from CNIC to MGv (p<0.01; 178 

Fig. 2c). CorrCoef decreased significantly between the two cortical areas and CNIC and MGv 179 

(p<0.01); it also decreased relative to CN (p=0.09). The CorrCoef value was also significantly 180 

lower in VRB than in AI (p=0.035). Third, the MIIndividual values found at the subcortical level 181 

were significantly higher than at the cortical level (unpaired t-test, highest p<0.001 between 182 

the cortex and the other structures; Fig. 2d). At the subcortical level, the MIIndividual value was 183 

significantly higher in MGv than in CNIC and CN (unpaired t-test, p<0.01). The MIIndividual 184 

value was also significantly lower in VRB than in AI (p = 0.037). The highest mean 185 

MIIndividual value was found in MGv, suggesting that, on average, thalamic neurons 186 

discriminate better the four original whistles than the other auditory structures. Note that this 187 

high MIIndividual value is related to the higher temporal trial-to-trial reliability (indexed by the 188 

CorrCoef value) obtained at the thalamic level (see Fig. 2c).  189 

The distributions of MIIndividual value were plotted as a function of temporal precision for each 190 

structure (see supplementary Fig. 2) to investigate whether the higher mean MIIndividual values 191 

found in subcortical responses result from the fact that neurons in these structures 192 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/528653doi: bioRxiv preprint first posted online Jan. 23, 2019; 

http://dx.doi.org/10.1101/528653


 

8 

systematically conveyed more information about the stimuli than cortical neurons. With a 193 

temporal resolution of 8 ms, the proportion of neurons having a MIIndividual curve reaching a 194 

value of 1.5 bits (indicating that at least 3 stimuli can be discriminated) was similar in CN and 195 

CNIC (22% and 21% respectively, chi-square test <1; p=0.99); it was significantly higher in 196 

MGv (39%, p=0.017 and p=0.04) and lower in AI (3.5%, p=0.001 in both cases) and in VRB 197 

(2%, p=0.001). 198 

Finally, MI was also computed based on the temporal patterns obtained from two to sixteen 199 

simultaneous recordings to determine whether the discriminative abilities of neural networks 200 

confirm the results obtained at the individual (i.e., single unit) level. MIPopulation quantifies how 201 

well the four whistles can be discriminated based on temporal patterns expressed by 202 

populations distributed on the tonotopic map. Figure 2e presents the MIPopulation computed 203 

from 9 simultaneous recordings for the five structures under investigation: This figure 204 

confirms that neural populations in subcortical structures discriminate the four original 205 

whistles better than the cortical populations (unpaired t-test, highest p value p<0.002 between 206 

CN and VRB) without any statistical difference between the three subcortical structures. An 207 

examination of the evolution of the MIPopulation as a function of the number of simultaneous 208 

recordings in the different structures revealed that the growth functions rapidly reached high 209 

values in all subcortical structures, whereas there were only a few of such curves in AI and 210 

VRB whatever the number of recordings considered (see supplementary Fig. 3). 211 

 212 

 213 

Modest effects of tone vocoding 214 

 215 

Figure 3a displays rasters of recordings obtained in the five structures in response to the 216 

original and tone vocoded vocalizations. As illustrated here, at all levels, neurons still 217 

responded to the vocoded stimuli even for 10 frequency-band vocoded stimuli. However, the 218 

firing rate was decreased in each structure, and so was the precise organization of neuronal 219 

responses, especially with the 10 frequency-band vocoded stimuli.  220 
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 221 
Figure 3. Vocoding slightly alters neuronal responses at each stage of the auditory system. a. From left to right, raster 222 
plots of responses to the four original whistles (Original) and their vocoded versions generated using either 38, 20 or 10 223 
frequency bands (Voc38, Voc20 and Voc10). From bottom to top, neuronal responses were recorded in CN, CNIC, MGv, A1 224 
and VRB. b-e. The mean values (±SEM) represent (b) the evoked firing rate (spikes/sec), (c) the temporal reliability 225 
represented by the CorrCoef value (arbitrary units), (d) the neuronal discrimination assessed by the mutual information (MI) 226 
computed  at the level of the individual recordings (MIIndividual, bits) and (e) at the level of neuronal population (MIPopulation, 227 
bits) with populations of 9 simultaneous recordings obtained with original (Original) and vocoded vocalizations (Voc38, 228 
Voc20 and Voc10) in CN (in black), CNIC (in green), MGv (in orange), A1 (in blue) and VRB (in purple) (one-way ANOVA, 229 
*P < 0.05). At the population level, the discriminative abilities significantly decreased only for 10 frequency bands in 230 
subcortical structures and did not decrease in cortical areas.  231 
 232 
Figures 3b-e summarize vocoding effects on the four parameters quantifying neuronal 233 

responses. Apart from an initial increase in firing rate observed only in CN with the 38-band 234 

vocoded stimuli, the effects on evoked firing rate were modest in each structure (Fig. 2b): A 235 

significant decrease in evoked firing rate between the responses to the original and the 10-236 

band vocoded vocalizations was only found at the subcortical level (for all subcortical 237 

structures, ANOVA test: p<0.001, FCN(3,1995)=22.6; FCNIC(3,1543)=8.85; FMGv(3,1047)=6.55), 238 

whereas there was no decrease in either AI or VRB. Vocoding also decreased the mean 239 
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CorrCoef values in each structure except in VRB (Fig. 3c): this decrease was significant with 240 

the 10-band vocoded vocalizations in CN, MGv and in AI (ANOVA test, highest p value, 241 

p<0.02, FCN(3,1930)=26.48, FMGv(3,889)=7.7, FA1(3,1125)=3.42). The decrease in CorrCoef value 242 

was already significant with 20-band vocoded vocalizations in the CNIC (p<0.001, 243 

F(3,1391)=26.19). 244 

Similarly, tone vocoding decreased the MIIndividual values in each structure except in VRB 245 

(Fig. 3d). Here too, the decrease was significant with the 10-band vocoded vocalizations in 246 

CN, MGv and AI (ANOVA test, highest p value, p<0.02, FCN(3,1445)=12.23, FMGv(3,810)=3.75, 247 

FA1(3,720)=3.59) and it was already significant with 20-band vocoded vocalizations in the 248 

CNIC (p<0.001, F(3,1231)=13.17). At the population level, there was a striking difference 249 

between the subcortical and cortical structures (Fig. 3e): compared with the values obtained 250 

with original vocalizations, the MIPopulation values computed with the 10-band vocoded 251 

vocalizations were significantly lower in the subcortical structures (ANOVA test, highest p 252 

value, p<0.005, FCN(3,127)=6.46, FMGv(3,67)=4.62, FCNIC(3,115)=6.28) but not at the cortical level. 253 

The evolution of MIPopulation as a function of the number of simultaneous recordings (see 254 

supplementary Fig. 4a) indicated that in each subcortical structure, the curves rapidly reached 255 

high MIPopulation values (close to the maximal value of 2) in each vocoding conditions, whereas 256 

there were only a few of such curves in AI and VRB whatever the vocoding condition. 257 

In conclusion, for the five auditory structures under study, the neuronal responses to 10-band 258 

vocoded vocalizations were slightly weaker, temporally less accurate and less discriminative 259 

than the responses to the original vocalizations. Nonetheless, subcortical neurons still 260 

maintained the highest ability to discriminate between tone vocoded vocalizations, both at the 261 

level of individual recordings and at the population level.   262 

 263 

Pronounced effects of masking noise on neuronal discrimination 264 

 265 

The rasters presented in figure 4a show the effects produced by presenting the original 266 

vocalizations against a stationary noise at three SNRs (+10, 0 and -10 dB). Masking noise 267 

attenuated neuronal responses at each level of the auditory system. However, auditory 268 

structures were differentially affected by noise. In these rasters, the responses in the CNIC did 269 

not change up to a 0 dB SNR, decreasing only at a -10 dB SNR. This was not the case in the 270 

other auditory structures where the responses decreased either at a +10 dB SNR (MGv and 271 

CN) or at a 0 dB SNR (AI and VRB).  272 

 273 
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 274 
Figure 4. Noise strongly reduces neuronal responses in all structures but to a lesser extent in the central nucleus of the 275 
inferior colliculus. a. From left to right, raster plots of responses of four original whistles (Original) and their noisy versions 276 
in stationary noise at three SNRs: +10, 0 and -10 dB. From bottom to top, neuronal responses were recorded in CN, CNIC, 277 
MGv, A1 and VRB. The grey area corresponds to the evoked activity for each vocalization. The green dashed lines show a 278 
typical example of CNIC neuronal responses that are resistant to the noise addition. b-e. The mean values (±SEM) represent 279 
(b) the evoked firing rate (spikes/sec), (c) the temporal reliability represented by the CorrCoef value (arbitrary units), (d) the 280 
neuronal discrimination assessed by the mutual information (MI) computed at the level of the individual recordings 281 
(MIIndividual, bits) and (e) at the level of neuronal population (MIPopulation, bits) with populations of 9 simultaneous recordings 282 
obtained with original and vocalizations in stationary noise at three SNRs (+10, 0 and -10 dB SPL) in CN (in black), CNIC 283 
(in green), MGv (in orange), A1 (in blue) and VRB (in purple) (one-way ANOVA, *P < 0.05). Note that at the population 284 
level, the discriminative abilities significantly decreased in all structures when SNR decreased, with the CNIC populations 285 
still able to discriminate 2 out of 4 stimuli (MIPopulation value >1).  286 
 287 

Figures 4b-e summarize the effects of masking noise on the different parameters quantifying 288 

neuronal responses. Masking noise significantly reduced the evoked firing rate in each 289 

auditory structure as early as the +10 dB SNR (Fig. 4b, ANOVA test: p<0.001, 290 

FCN(3,1995)=309.33, FCNIC(3,1543)=220.64, FMGv(3,1047)=155.07, FA1(3,1415)=96.27), except in VRB.  291 
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Masking noise strongly reduced the CorrCoef values in CN and MGv at the highest (+10 dB) 292 

SNR tested here (Fig. 4c; ANOVA test, p<0.001, FCN(3,1884)=382.22, FMGv(3,791)=155.82) 293 

whereas in the CNIC, this reduction was significant only at the 0 dB SNR (ANOVA test, 294 

p<0.001, F(3,1357)=154.12). At the cortical level, the CorrCoef values were significantly 295 

reduced in AI at the +10 dB SNR and in VRB at the 0 dB SNR (ANOVA test, p<0.001, 296 

FA1(3,1093)=60.83, FVRB(3,335)=29.56). At the cortical level, noise significantly reduced the mean 297 

MIIndividual value in AI at the -10 dB SNR (ANOVA test, p<0.001, F(3,649)=9.49) whereas the 298 

mean MIIndividual value in VRB remained unchanged. At the subcortical level, noise reduced 299 

the MIIndividual values but again, there was a marked difference between the CNIC and the 300 

other subcortical structures: the mean MIIndividual value in CN and MGv was significantly 301 

reduced at the +10 dB SNR (Fig. 4d; ANOVA test, p<0.001, FCN(3,819)=56.75, 302 

FMGv(3,621)=63.61), whereas the MIIndividual value in the CNIC was only significantly reduced at 303 

the SNR of 0 dB (ANOVA test, p<0.001, F(3,1078)=32.08). Note, however, that at least 20% of 304 

the CN recordings maintained MIIndividual values above 1 bit, suggesting that a sub-population 305 

of CN neurons still sent information about the vocalization identity at higher brainstem 306 

centers (see Supplementary Fig. 5). This specific sub-population of CN neurons did not 307 

display parameters of their STRFs quantification that differ from the neurons exhibiting 308 

MIIndividual values below 1 bit at the +10 dB SNR. 309 

In noise conditions, MIPopulation also allowed to characterize the effects of masking noise on the 310 

network discriminative abilities (Fig. 4e). At the cortical level, there was a significant 311 

reduction of MIPopulation values only at the -10 dB SNR (ANOVA test, p<0.001, 312 

FA1(3,111)=16.63, FVRB(3,23)=11.41) whereas there was a significant decrease in CN as early as 313 

the +10 dB SNR (ANOVA test, p<0.001, F(3,127)=51.49). In MGv and CNIC, neuronal 314 

populations displayed the highest discriminative abilities although the decrease in MIPopulation 315 

value was significant at the 0 dB SNR (ANOVA test, p<0.001, FMGv(3,67)=41.59, 316 

FCNIC(3,115)=22.59). 317 

The evolution of the MIPopulation as a function of the number of simultaneous recordings in the 318 

different structures (see Supplementary Fig. 4b) revealed that whatever the number of neurons 319 

considered, noise effects were similar: the population curves in CNIC and MGv grew up 320 

relatively rapidly and reached higher values than the curves obtained in CN and in the two 321 

cortical areas whatever the SNR.  322 

To summarize, masking noise reduced similarly firing rate in each structure but impacted 323 

differently the neurons’ discriminative abilities. Although cortical neurons were the most 324 

resistant to changes in noise level, the thalamic and collicular neurons maintained higher MI 325 
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values, with the CNIC neurons displaying the highest discriminative abilities both at the 326 

individual and population level in the most challenging condition (i.e., at the -10 dB SNR). 327 

 328 

Reduction of amplitude modulation cues explains changes in neuronal discrimination 329 

 330 

Tone vocoding degraded the spectro-temporal structure (i.e., it reduced both AM and FM 331 

cues) of original vocalizations in a deterministic way. Masking noise produced spectro-332 

temporal degradations of the same nature, but it also introduced stochastic fluctuations in AM 333 

power. For each experimental condition (vocoding and noise), degradations of the spectro-334 

temporal structure of vocalizations were quantified through the computation of AM and FM 335 

spectra at the output of a simulated cochlear filterbank. Not surprisingly, figure 1d (left panel) 336 

shows that tone vocoding corrupted drastically FM cues in each vocoding condition, and that 337 

this effect was already substantial in the 38-band vocoding condition. Importantly, this 338 

degradation was much stronger in vocoding conditions than in masking noise conditions (Fig. 339 

1d). Figure 1e reveals that both tone vocoding and masking noise also attenuated the AM cues 340 

conveyed by vocalizations. There were only small AM degradations in the 38-band vocoding 341 

and in +10 dB SNR conditions; whereas important AM degradations were observed for the 0 342 

dB SNR and the -10 dB SNR conditions. As for tone vocoding, this finding is consistent with 343 

the conclusions of previous modelling studies demonstrating the interplay between so-called 344 

temporal-envelope and TFS cues at the output of cochlear filters in response to vocoded 345 

sounds16, 22. Figure 5 relates these degradations of FM (Fig. 5a) and AM (Fig. 5b) cues to 346 

neural discrimination (MIPopulation) in the five brain structures for each experimental condition. 347 

More precisely, for all adverse conditions, figure 5 shows the changes in MIPopulation for each 348 

auditory structure as a function of the attenuation of FM and AM cues (computed from 349 

modulation spectra for modulation rates between 1 and 20 Hz). Figure 5a reveals that an 350 

important attenuation of FM components caused by the 20-band vocoder was not associated 351 

with significant changes in neural discrimination in each structure, whereas a comparable 352 

attenuation caused by noise at -10 dB SNR resulted in a large drop in neural discrimination in 353 

each structure. Even more pronounced FM degradations caused by the 10-band vocoder 354 

condition produced smaller changes in MIPopulation than the -10 dB SNR condition. This 355 

suggests that neural discrimination of vocalizations in the presence of background noise is not 356 

determined by the distortion of FM cues. A different pattern of results is obtained when 357 

changes in MIPopulation for each auditory structure are represented as a function of degradations 358 

in AM cues. First, in all structures other than the CN, MIPopulation is barely affected as long as 359 
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the reduction of the AM index (Δmodulation index) remains lower than 25%; beyond this 360 

limit, the MIPopulation is markedly reduced (i.e., at -10 dB SNR). The straightforward 361 

conclusion is that the reduction of AM cues is a key factor controlling the decrease in 362 

MIPopulation at the cortical and subcortical levels. Second, in the cochlear nucleus, the impact 363 

on the MIPopulation is much larger in the noise conditions (at 10 dB SNR and 0 dB SNR) than in 364 

the vocoding conditions, suggesting that the alteration of AM cues is not the only parameter 365 

driving the MIPopulation at the most peripheral level. Noise and vocoding have in common to 366 

reduce the slow AM cues and corrupt the FM cues of vocalizations, but only background 367 

noise introduces randomness, that is stochastic fluctuations in AM power. Therefore, in the 368 

cochlear nucleus, the most likely factor responsible for the additional decrease in MIPopulation is 369 

noise stochasticity. Third, in the condition causing the most severe alterations of AM cues, 370 

namely at -10 dB SNR, the MIPopulation in CNIC is less impacted than in the other structures. 371 

Consistent with previous studies23,24, this finding suggests that inferior colliculus neurons 372 

adapt to the noise statistics while responding to the acoustic cues distinguishing between the 373 

four target stimuli.  374 

 375 
Figure 5. Reduction of AM cues determine the neuronal discriminative abilities at the subcortical and cortical levels. 376 
a. Percentage of ΔMIPopulation as a function of degradation of FM components computed for each structure from means 377 
MIPopulation or FM values obtained in all adverse conditions (noise and vocoded conditions) minus mean values in the original 378 
condition. Each dot represents neuronal data (ΔMIPopulation) in CN (in black), CNIC (in green), MGv (in orange), A1 (in blue) 379 
and VRB (in purple). b. Percentage of ΔMIPopulation as a function of Δmodulation index computed for each structure from 380 
mean MIPopulation or mean modulation-index values obtained in all adverse conditions and mean values in the original 381 
condition. Each dot represents neuronal data (ΔMIPopulation) in CN (in black), CNIC (in green), MGv (in orange), A1 (in blue) 382 
and VRB (in purple). Polynomial curves fitting all acoustic conditions have been generated for each auditory structure (color 383 
lines) except for the cochlear nucleus. Note that equivalent AM degradations (Δmodulation index) induced equivalent 384 
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decreases in MIPopulation except for the CN. Note also that there is a limit of 25% of AM reduction beyond which the 385 
ΔMIPopulation strongly decreases in cortical and subcortical structures.  386 
  387 
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Discussion 388 

 389 

Here, we demonstrate that the ability to discriminate between communication sounds is not 390 

increasing or decreasing monotonically along the auditory system: the neuronal discriminative 391 

abilities did strongly differ across auditory structures, and subcortical neurons in inferior 392 

colliculus and thalamus displayed higher discriminative abilities than cochlear nucleus and 393 

cortical neurons, both at the individual and population levels in each acoustic condition. 394 

Background noise markedly reduced the neuronal discriminative abilities in all auditory 395 

structures with larger effects in the cochlear nucleus. Amongst the three disruptive sub-effects 396 

of background noise identified in previous psychophysical investigations12, fidelity in the 397 

transmission of slow (< 20 Hz) amplitude modulation information proved to be the main 398 

factor determining the neural discrimination abilities in noise at the cortical and subcortical 399 

levels. The effects of randomness were found to be limited to the most peripheral structure of 400 

the central auditory system, namely the cochlear nucleus. 401 

 402 
The capacity to encode amplitude-modulation cues explains the better discrimination of 403 

the original stimuli by subcortical neurons  404 

 405 

To the best of our knowledge, this is the first time that a direct comparison of neural 406 

responses to the same natural stimuli has been made along the ascending auditory system. We 407 

computed MIPopulation in each structure from the cochlear nucleus to the secondary auditory 408 

cortex, and showed that on average subcortical populations discriminate the original 409 

vocalizations better than cortical populations. A much larger number of neurons exhibited 410 

high values of MI in the subcortical structures whatever the temporal precision considered 411 

(see supplementary figure 2); as a consequence, the growth of MIPopulation as a function of the 412 

number of recordings included in the population increased more rapidly in the subcortical 413 

structures (see supplementary figure 3). The higher temporal reliability of subcortical neurons 414 

(higher CorrCoef values) probably allows them to follow more precisely the stimulus 415 

temporal envelope and encode more accurately the between-stimuli differences, both at the 416 

individual and population level.  417 

To a large extent, our results corroborate those of Chechick et al. (2006)25 as we provide 418 

evidence that the neuronal discriminative abilities between communication sounds is higher in 419 

subcortical than in cortical structures. These authors showed that the MGB and AI responses 420 

contain 2-to-4 fold less information than the responses of IC neurons. Here, the neuronal 421 
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discriminative ability of the ventral division of the auditory thalamus (MGv) was closer than 422 

the ones displayed by the other subcortical structures. A potential explanation is that Chechick 423 

et al. (2006)25 recorded from all divisions of the auditory thalamus, including the medial and 424 

dorsal divisions of the auditory thalamus, whereas our thalamic recordings were limited to the 425 

MGv and exhibited tonic responses to vocalizations similar to those observed in the CNIC 426 

and in the CN (see Fig. 2a and 3a). The stimulus sets also differ, as we used four utterances of 427 

the same category (the Whistle, an alarm call)26, whereas Chechick et al. (2006)25 used three 428 

birds chirps and variants of these stimuli such as the stimuli’s echoes or the background 429 

noises (15 stimuli in total), leading potentially to an easier classification between groups of 430 

stimuli compared to the present situation.  431 

In our study, the original stimuli clearly differed in terms of AM patterns (i.e., their so-called 432 

“temporal envelope”) and, as a consequence, the most efficient way to discriminate them is 433 

probably to follow the time course of AM cues. It is well known that when progressing from 434 

the lower to the upper stages of the auditory system, the neurons’ ability to follow AM 435 

changes considerably27,28. Brainstem neurons phase-lock on the sounds’ AM pattern for AM 436 

rates up to hundreds of Hertz29,30, whereas thalamic neurons do so for a few tens of Hertz 437 

only31,32 and cortical neurons for even lower rates33-35. As a consequence, subcortical neurons 438 

are able to follow faster changes in the AM patterns of the original vocalizations, in addition 439 

to being more sensitive to spectro-temporal details. This likely explains why subcortical 440 

neurons better discriminate the original stimuli both at the individual and population level. 441 

 442 

Alterations of the slowest amplitude modulation cues explain changes in cortical and 443 

subcortical discrimination 444 

 445 

Our main hypothesis is that the remarkable resistance of neural responses to the 0 dB SNR 446 

and the 10-band vocoded conditions results from the fact that AM cues were still sufficiently 447 

preserved. Previous studies using vocoded vocalizations reported little response changes at 448 

both the cortical and subcortical levels. In several species, cortical responses were not 449 

drastically reduced even when the number of frequency bands was reduced to two 450 

(marsomet36, gerbil37, rat38, guinea pig39). Most of the studies describing the effects of 451 

background noise on neuronal responses have been performed at the AI level, and many of 452 

them have pointed out the relationships between the noise impact on the cortical and 453 

behavioral discrimination performance. For example, in bird field L (homologous to AI), 454 
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neuronal responses to song motifs were strongly reduced by three types of masking noises, 455 

and the neural discriminative ability was progressively reduced when the SNR decreased, in 456 

parallel with the behavioral performance5. Our VRB results are reminiscent of those obtained 457 

in the bird homologue of a secondary area (area NCM) where feed-forward inhibition, which 458 

potentially contributes to reduce the evoked discharges of pyramidal cells, allows the 459 

emergence of invariant neural representations of target songs in noise conditions10.  460 

In mammals, the discriminative abilities of AI responses to speech sounds presented in quiet 461 

or against background noise closely match behavioral performance40. As in here, Shetake et 462 

al. (2011)40 did not find significant reduction in neural discrimination using an index of 463 

neuronal population performance (similar to MI) at a +12-dB SNR. Recent results revealed 464 

that responses of cortical neurons to calls could be classified in four classes - named robust, 465 

balanced, insensitive and brittle - when these calls were embedded in broadband white or 466 

babble noises8. In fact, the results of Bar-Yosef and Nelken (2007)41 in the cat primary 467 

auditory cortex have already shown that some neurons are more sensitive to the noise 468 

background than to the actual target stimulus. Here, we observed that the MIIndividual and 469 

MIPopulation were only significantly reduced at a SNR of 0 dB, which indicates that on average, 470 

AI neurons were quite resistant to noise. This resistance is even higher in VRB where 471 

MIIndividual did not significant decrease and where MIPopulation significantly decreased only at a 472 

SNR of -10 dB. In the only study performed at the subcortical level, responses of IC neurons 473 

were found to be resistant to drastic spectral degradations42. Here, we show that both at the 474 

individual and population level, the temporal reliability and discriminative ability of neurons 475 

in three subcortical auditory structures (CN, CNIC and MGv) are slightly but significantly 476 

reduced in the 10-band vocoded condition. 477 

If our main hypothesis is valid, in situations where AM cues are attenuated either by vocoding 478 

or by noise, the neuronal discrimination based upon AM cues should be largely reduced. We 479 

showed that, in both conditions, the discriminative abilities decreased in each auditory 480 

structure when the AM index (Δmodulation index) was degraded by more than 25%. 481 

Therefore, these results indicate that accurate representation of slow AM cues is necessary at 482 

each level of the auditory system to discriminate efficiently communication sounds. More 483 

importantly, it appears that there is a limit to AM degradation beyond which the 484 

discriminative abilities decrease at the cortical and subcortical level. Thus, whatever the 485 

acoustic distortion used to degrade the amplitude modulations, equivalent AM alterations 486 

reduced the neuronal discrimination abilities to a similar extent. This is exactly what we 487 

observed for the Voc10 and 0 dB SNR conditions where degradations in the AM spectrum 488 
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were comparable and produced the same decrease in neuronal discrimination in each 489 

structure, except in the cochlear nucleus. In this structure, discriminative abilities were more 490 

sensitive to noise than to vocoding, suggesting that the stochastic fluctuations introduced by 491 

noise impact the responses in cochlear nucleus, but not in the upper stages of the auditory 492 

system. 493 

Only one previous study directly compared the impact of vocoding and masking noise on 494 

cortical responses to vocalizations36. This study shares several characteristics with our study. 495 

First, auditory cortex neurons were found to be robust to spectral degradations since there was 496 

little change in evoked firing rate, even in response to 2-band vocoded vocalizations. Second, 497 

broadband white noise reduced neuronal responses at 0 dB SNR. Third, temporal-envelope 498 

degradations strongly reduced the evoked firing rate and the neural synchronization to the 499 

vocalization envelope. Importantly, bandpass filtering the vocalizations between 2-30 Hz did 500 

not reduce firing rate and neural synchronization to the vocalization envelope. This is in total 501 

agreement with our results: when the AM index (Δmodulation index) - computed between 1 502 

and 20 Hz – revealed modest AM alterations, there was little effect on the neuronal 503 

discrimination, but when the AM alterations were larger than 25%, the neuronal responses 504 

and neuronal discrimination were reduced (Fig. 5b). Thus, our results confirm that at the 505 

cortical level, the key factors constraining auditory discrimination are the slowest (< 20 Hz) 506 

AM cues and, importantly, extend this conclusion to subcortical structures. 507 

Direct comparison between the consequences of acoustic degradations in different auditory 508 

structures using the same set of stimuli, anaesthetic agent and methods to quantify neural 509 

discrimination is the more straightforward way for dissecting where invariant representations 510 

are generated. When measuring how different levels of noise alter neuronal coding in the 511 

auditory system, it was found that the neural representation of natural sounds becomes 512 

progressively independent of the level of background noise from the auditory nerve till the IC 513 

and AI23. It was proposed that at the population level, this tolerance to background noise 514 

results from an adaptation to the noise statistics, which is much more pronounced at the 515 

cortical than at the subcortical level23. In agreement with this study, we found that populations 516 

of cortical neurons (AI and VRB) were more resistant to noise than subcortical ones. 517 

However, we did not observe a monotonic evolution of resistance to noise in the auditory 518 

system: at the subcortical level, the discrimination abilities of CN neuronal populations 519 

drastically dropped for a +10 dB SNR and those of thalamic ones largely decreased at a -10 520 

dB SNR, whereas populations of CNIC cells maintained relatively good discriminative 521 
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abilities, suggesting that they were the more resistant to noise, even in the most adverse 522 

conditions. In the IC, previous work showed that background noise changes the shape of the 523 

temporal modulation transfer function of individual neurons from bandpass to lowpass24. The 524 

CNIC is a massive hub receiving probably the highest diversity of inhibitory and excitatory 525 

inputs43,44 and potentially the large diversity of these inputs allows this structure to extract 526 

crucial temporal information about the stimulus’ temporal envelope, even at relatively low 527 

SNR. 528 

 529 
General conclusions 530 

The present study led to two major findings with regard to the main factors influencing 531 

auditory processing in noise, and the respective contributions of auditory structures to robust 532 

sound coding in noise. 533 

Comparison of neural data collected in response to noisy versus vocoded vocalizations 534 

clarified a long-lasting debate11;12,16,45: from a neural perspective, the main effect of 535 

(notionally) steady background noise on complex-sound discrimination corresponds to the 536 

attenuation of the gross AM (i.e., “temporal envelope”) cues conveyed by sounds. Corruption 537 

of FM cues and introduction of stochastic fluctuations in AM power have little influence if 538 

any on neural discrimination in noise (with the noticeable exception of the cochlear nucleus 539 

showing strong sensitivity to stochasticity). This is in accordance with objective measures 540 

currently used by audio engineers to predict the intelligibility and perceived quality of speech 541 

masked by noise13, 45. 542 

Inconsistent with our initial expectations, the ability of auditory neurons to discriminate 543 

between communication sounds masked by external noise neither increased nor decreased 544 

along the auditory pathway from the first auditory relay up to the primary and secondary 545 

cortical areas, but culminated at the collicular and thalamic levels. In humans, speech sounds 546 

(such as phonemes) showing similar acoustic properties trigger similar responses and are 547 

represented as a single category in the superior temporal gyrus4. Here, the use of vocalizations 548 

belonging to the same category of the communication repertoire of guinea pigs, i.e. 549 

“whistles”, may explain both the relatively poor discriminative abilities of cortical neurons 550 

compared to subcortical ones and the robustness of cortical responses to vocoding and 551 

background noise. In these two challenging situations, our results reveal that cortical neurons 552 

resist more than the other auditory structures, potentially because cortical neurons do not code 553 

for the spectro-temporal details of the stimuli but rather respond to more abstract stimulus 554 

properties21 carried by the gross spectro-temporal envelope patterns.  555 
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In a recent study, auditory cortex responses collected in behaving ferrets were found to be 556 

sufficiently robust to preserve vowel identity across a large range of acoustic transformations, 557 

such as changes in fundamental frequency, sound location or level9. It is notable that earlier 558 

studies from the same laboratory performed in anaesthetized conditions46,47 have reached very 559 

similar conclusions for vowels varying in fundamental frequency and virtual acoustic 560 

location, indicating that the general principles allowing neuronal discrimination are 561 

observable across anesthetized and behavioral states. 562 

Our results extend these findings by showing that downstream from AI, neurons in a 563 

secondary auditory area (VRB) are even more resistant to spectral degradations than in AI. 564 

This is in line with the results of Carruthers et al. (2015)7 showing that in the secondary 565 

auditory cortex (the SRAF area), neuronal populations code invariant representations of 566 

conspecific vocalizations despite important spectro-temporal degradations. As already 567 

proposed21 by Chechick and Nelken (2012)21, auditory cortex neurons extract abstract 568 

auditory entities rather than detailed spectro-temporal features. This suggests that even when 569 

the four vocalizations were vocoded, the mere fact that gross spectro-temporal envelope cues 570 

were preserved in a limited number of frequency bands was sufficient for auditory cortex 571 

neurons to classify these stimuli as belonging to the alarm-call category.  572 

Neurons in subcortical structures were able to discriminate better the stimuli than the neurons 573 

in cortical areas when temporal envelope cues were degraded even in the most severe 574 

condition (>25% of alterations in the -10 dB SNR condition). Indeed, the most accurate 575 

representations of target stimuli (and of their differences) were found at the collicular and 576 

thalamic levels, not at the cortical level. In each condition, the identification of an auditory 577 

object necessarily involves both subcortical and cortical processing. We therefore suggest that 578 

in challenging conditions, cortical representations co-exist with more detailed representations 579 

of the stimuli in one, or several, subcortical structures. In fact, in the most adverse noise 580 

condition (at a -10 dB SNR) where temporal envelope cues were strongly degraded, CNIC 581 

neurons still exhibited discrimination abilities whereas the other subcortical and cortical 582 

neurons did not (a value of 1 for the MIPopulation indicates that 2 out of 4 stimuli could still be 583 

discriminated). Further studies are required to determine to what extent these incomplete 584 

subcortical representations influence auditory abilities in animals and humans. 585 

  586 
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Materials and Methods 759 

Subjects 760 

These experiments were performed under the national license A-91-557 (project 2014-25, 761 

authorization 05202.02) and using the procedures N° 32-2011 and 34-2012 validated by the 762 

Ethic committee N°59 (CEEA Paris Centre et Sud). All surgical procedures were performed 763 

in accordance with the guidelines established by the European Communities Council 764 

Directive (2010/63/EU Council Directive Decree). 765 

Extracellular recordings were obtained from 47 adult pigmented guinea pigs (aged 3 to 16 766 

months) at five different levels of the auditory system: the cochlear nucleus (CN), the inferior 767 

colliculus (IC), the medial geniculate body (MGB), the primary (AI) and secondary (area 768 

VRB) auditory cortex. Animals weighting from 515 to 1100 g (mean 856 g) came from our 769 

own colony housed in a humidity (50-55%) and temperature (22-24°C)-controlled facility on 770 

a 12 h/12 h light/dark cycle (light on at 7:30 A.M.) with free access to food and water.  771 

Two to three days before each experiment, the animal’s pure-tone audiogram was determined 772 

by testing auditory brainstem responses (ABR) under isoflurane anaesthesia (2.5 %) as 773 

described in Gourévitch et al. (2009)48. The ABR was obtained by differential recordings 774 

between two subdermal electrodes (SC25-NeuroService) placed at the vertex and behind the 775 

mastoid bone. A software (RTLab, Echodia, Clermont-Ferrand, France) allowed averaging 776 

500 responses during the presentation of nine pure-tone frequencies (between 0.5 and 32 kHz) 777 

delivered by a speaker (Knowles Electronics) placed in the animal right ear. The auditory 778 

threshold of each ABR was the lowest intensity where a small ABR wave can still be detected 779 

(usually wave III). For each frequency, the threshold was determined by gradually decreasing 780 

the sound intensity (from 80 dB down to -10 dB SPL). All animals used in this study had 781 

normal pure-tone audiograms39,48,49. 782 

Surgical procedures 783 

All animals were anesthetized by an initial injection of urethane (1.2 g/kg, i.p.) supplemented 784 

by additional doses of urethane (0.5 g/kg, i.p.) when reflex movements were observed after 785 

pinching the hind paw (usually 2-4 times during the recording session). A single dose of 786 

atropine sulphate (0.06mg/kg, s.c.) was given to reduce bronchial secretions and a small dose 787 

of buprenorphine was administrated (0.05mg/kg, s.c.) as urethane has no antalgic properties.  788 
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After placing the animal in a stereotaxic frame, a craniotomy was performed and a local 789 

anesthetic (Xylocain 2%) was liberally injected in the wound.  790 

For auditory cortex recordings (area A1 and VRB), a craniotomy was performed above the 791 

left temporal cortex. The opening was 8 mm wide starting at the intersection point between 792 

parietal and temporal bones and 8-10 mm height. The dura above the auditory cortex was 793 

removed under binocular control and the cerebrospinal fluid was drained through the cisterna 794 

to prevent the occurrence of oedema.  795 

For the recordings in MGB, a craniotomy was performed the most posterior part of the MGB 796 

(8mm posterior to Bregma) to reach the left auditory thalamus at a location where the MGB is 797 

mainly composed of its ventral, tonotopic, part50-52.  798 

For IC recordings, a craniotomy was performed above the IC and portions of the cortex were 799 

aspirated to expose the surface of the left IC. For CN recordings, after opening the skull above 800 

the right cerebellum, portions of the cerebellum were aspirated to expose the surface of the 801 

right CN53.  802 

After all surgery, a pedestal in dental acrylic cement was built to allow an atraumatic fixation 803 

of the animal’s head during the recording session. The stereotaxic frame supporting the 804 

animal was placed in a sound-attenuating chamber (IAC, model AC1). At the end of the 805 

recording session, a lethal dose of Exagon (pentobarbital >200 mg/kg, i.p.) was administered 806 

to the animal. 807 

Recording procedures 808 

Data were from multi-unit recordings collected in 5 auditory structures, the non-primary 809 

cortical area VRB, the primary cortical area A1, the medial geniculate body (MGB), the 810 

inferior colliculus (IC) and the cochlear nucleus (CN). Cortical extracellular recordings were 811 

obtained from arrays of 16 tungsten electrodes (ø: 33 µm, <1 MΩ) composed of two rows of 8 812 

electrodes separated by 1000 µm (350 µm between electrodes of the same row). A silver wire, 813 

used as ground, was inserted between the temporal bone and the dura matter on the 814 

contralateral side. The location of the primary auditory cortex was estimated based on the 815 

pattern of vasculature observed in previous studies54-57. The non-primary cortical area VRB 816 

was located ventral to A1 and distinguished because of its long latencies to pure tones58,59. For 817 

each experiment, the position of the electrode array was set in such a way that the two rows of 818 

eight electrodes sample neurons responding from low to high frequency when progressing in 819 
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the rostro-caudal direction [see examples of tonotopic gradients recorded with such arrays in 820 

figure 1 of Gaucher et al. (2012)60 and in figure 6A of Occelli et al. (2016)61.  821 

All the remaining extracellular recordings (in MGB, IC and CN) were obtained using 16 822 

channel multi-electrode arrays (NeuroNexus) composed of one shank (10 mm) of 16 823 

electrodes spaced by 110 µm and with conductive site areas of 177µm2. The electrodes were 824 

advanced vertically (for MGB and IC) or with a 40° angle (for CN) until evoked responses to 825 

pure tones could be detected on at least 10 electrodes. 826 

All thalamic recordings were from the ventral part of MGB (see above surgical procedures) 827 

and all displayed latencies < 9ms. At the collicular level, we distinguished the lemniscal and 828 

non-lemniscal divisions of IC based on depth and on the latencies of pure tone responses. We 829 

excluded the most superficial recordings (until a depth of 1500µm) and those exhibiting 830 

latency >= 20ms in an attempt to select recordings from the central nucleus of IC (CNIC). At 831 

the level of the cochlear nucleus, the recordings were collected from both the dorsal and 832 

ventral divisions.  833 

The raw signal was amplified 10,000 times (TDT Medusa). It was then processed by an RX5 834 

multichannel data acquisition system (TDT). The signal collected from each electrode was 835 

filtered (610-10000 Hz) to extract multi-unit activity (MUA). The trigger level was set for 836 

each electrode to select the largest action potentials from the signal. On-line and off-line 837 

examination of the waveforms suggests that the MUA collected here was made of action 838 

potentials generated by 2 to 6 neurons in the vicinity of the electrode. 839 

Acoustic stimuli 840 

Acoustic stimuli were generated using MatLab, transferred to a RP2.1-based sound delivery 841 

system (TDT) and sent to a Fostex speaker (FE87E). The speaker was placed at 2 cm from the 842 

guinea pig’s right ear, a distance at which the speaker produced a flat spectrum (± 3 dB) 843 

between 140 Hz and 36 kHz. Calibration of the speaker was made using noise and pure tones 844 

recorded by a Bruel & Kjaer microphone 4133 coupled to a preamplifier B&K 2169 and a 845 

digital recorder Marantz PMD671.  846 

Spectro-temporal receptive fields (STRFs) were first determined using 97 or 129 pure-tones 847 

frequencies scaled with a gamma function, covering six (0.14-9 kHz or 0.28-18 kHz or 0.56-848 

36 kHz) or eight (0.14-36 kHz) octaves respectively, and presented at 75 dB SPL. At a given 849 

level, each frequency was repeated eight times at a rate of 2.35 Hz in pseudorandom order. 850 
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The duration of these tones over half-peak amplitude was 15 ms and the total duration of the 851 

tone was 50 ms, so there was no overlap between tones.  852 

A set of four conspecific vocalizations was used to assess the neuronal responses to 853 

communication sounds. These vocalizations were recorded from animals of our colony. Pairs 854 

of animals were placed in the acoustic chamber and their vocalizations were recorded by a 855 

Bruel & Kjaer microphone 4133 coupled to a preamplifier B&K 2169 and a digital recorder 856 

Marantz PMD671. A large set of whistle calls was loaded in the Audition software (Adobe 857 

Audition 3) and four representative examples of whistle were selected. As shown in figure 1a 858 

(lower panels), despite the fact the maximal energy of the four selected whistle was in the 859 

same frequency range (typically between 4 and 26 kHz), these calls displayed slight 860 

differences in their spectrograms. In addition, their temporal (amplitude) envelopes clearly 861 

differed as shown by their waveforms (Fig. 1a, upper panels). The four selected whistles were 862 

processed by three tone vocoders62,63. In the following figures, the unprocessed whistles will 863 

be referred to as the original versions, and the vocoded versions as Voc38 (Voc20, Voc10 864 

respectively) for the 38-band (20-band, 10-band, respectively) vocoded whistles. In contrast 865 

to previous studies that used noise-excited vocoders36-38, a tone vocoder was used here, 866 

because noise vocoders were found to introduce random (i.e., non-informative) intrinsic 867 

temporal-envelope fluctuations distorting the crucial spectro-temporal modulation features of 868 

communication sounds16, 22,64. 869 

Figure 1b displays the spectrograms of the 38-band vocoded (first row), the 20-band vocoded 870 

(second row) and the 10-band vocoded (third row) of the four whistles. The three vocoders 871 

differed only in terms of the number of frequency bands (i.e., analysis filters) used to 872 

decompose the whistles (38, 20 or 10 bands). The 38-band vocoding process is briefly 873 

described below, but the same principles apply to the 20-band or the 10-band vocoders. Each 874 

digitized signal was passed through a bank of 38 fourth-order Gammatone filters65 with center 875 

frequencies uniformly spaced along a guinea-pig adapted ERB (Equivalent Rectangular 876 

Bandwidth) scale66 ranging from 50 to 35505 Hz. In each frequency band, the temporal 877 

envelope was extracted using full-wave rectification and lowpass filtering at 64 Hz with a 878 

zero-phase, sixth-order Butterworth filter. The resulting envelopes were used to amplitude 879 

modulate sine-wave carriers with frequencies at the center frequency of the Gammatone 880 

filters, and with random starting phase. Impulse responses were peak-aligned for the envelope 881 

(using a group delay of 16 ms) and the acoustic temporal fine structure across frequency 882 

channels67. The modulated signals were finally weighted and summed over the 38 frequency 883 

bands. The weighting compensated for imperfect superposition of the bands’ impulse 884 
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responses at the desired group delay. The weights were optimized numerically to achieve a 885 

flat frequency response. Amplitude-modulation (AM) spectra were computed for the original 886 

and vocoded versions of each vocalization and the averaged modulation spectra are displayed 887 

in figure 1d (left panel). AM spectra were computed17 by decomposing each sound using a 888 

bank of 50 (spanning the range 0.1-50 kHz), 1 ERB-wide Gammatone filters and then 889 

analyzing the temporal envelope in each frequency band through a bank of AM filters (1/3-890 

octave wide first-order Butterworth bandpass filters overlapping at -3 dB, with center 891 

frequencies between 0.1 Hz and 410 Hz). The root-mean-square amplitude of the filtered 892 

output was multiplied by a factor of 1.414. For each AM filter, a modulation index was 893 

calculated by dividing the output by the mean amplitude of the AM component for the 894 

vocalization sample in a given Gammatone filter. Finally, the 50 AM spectra were averaged 895 

to generate a single AM spectrum per stimulus. All vocalizations were presented at 75dB 896 

SPL. 897 

The four whistles were also presented in a frozen stationary background noise ranging from 898 

100-30000 Hz. The first three rows of figure 1c display the spectrograms of the four whistles 899 

in the stationary noise with a SNR of +10 dB SPL, 0 dB SPL, -10 dB SPL and the last row 900 

shows the masking noise only. The alterations of the AM spectra produced by masking noise 901 

on the original vocalizations are displayed in figure 1d (right panel). To quantify the 902 

alterations of the temporal envelope induced either by the noise addition or by the vocoding, 903 

we calculated the mean percentage of variation of the modulation index (Δmodulation index, 904 

computed from 1-20 Hz) between each acoustic condition (noise or vocoded condition) and 905 

the original condition (Fig. 5b). 906 

Experimental protocol 907 

As inserting an array of 16 electrodes in a brain structure almost systematically induces a 908 

deformation of this structure, a 30-minutes recovering time lapse was allowed for the 909 

structure to return to its initial shape, then the array was slowly lowered. Tests based on 910 

measures of spectro-temporal receptive fields (STRFs) were used to assess the quality of our 911 

recordings and to adjust electrodes’ depth. For auditory cortex recordings (AI and VRB), the 912 

recording depth was 500-1000 µm, which corresponds to layer III and the upper part of layer 913 

IV according to Wallace and Palmer (2008)68. For thalamic recordings, the NeuroNexus probe 914 

was lowered of about 7mm below pia before the first responses to pure tones were detected. 915 
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When a clear frequency tuning was obtained for at least 10 of the 16 electrodes, the stability 916 

of the tuning was assessed: we required that the recorded neurons displayed at least three 917 

successive similar STRFs (each lasting 6 minutes) before starting the protocol. When the 918 

stability was satisfactory, the protocol was started by presenting the acoustic stimuli in the 919 

following order: We first presented the 4 whistles at 75 dB SPL in their natural versions, 920 

followed by the vocoded versions with 38, 20 and 10 bands. The same set of original whistles 921 

was then presented in the stationary noise presented at 65, 75 and 85 dB SPL. In each case, 922 

each vocalization was repeated 20 times. Presentation of this entire stimulus set lasted 45 923 

minutes. The protocol was re-started either after moving the electrode arrays on the cortical 924 

map or after lowering the electrode at least by 300 µm for subcortical structures. 925 

Data analysis 926 

Quantification of responses to pure tones  927 

The STRFs derived from MUA were obtained by constructing post-stimulus time histograms 928 

for each frequency with 1 ms time bins. The firing rate evoked by each frequency was 929 

quantified by summing all the action potentials from the tone onset up to 100 ms after this 930 

onset. Thus, STRFs are matrices of 100 bins in abscissa (time) multiplied by 97 or 129 bins in 931 

ordinate (frequency). All STRFs were smoothed with a uniform 5x5 bin window.  932 

For each STRF, the Best Frequency (BF) was defined as the frequency at which the highest 933 

firing rate was recorded. Peaks of significant response were automatically identified using the 934 

following procedure: A positive peak in the MU-based STRF was defined as a contour of 935 

firing rate above the average level of the baseline activity (estimated from the ten first 936 

milliseconds of STRFs at all intensity levels) plus six times the standard deviation of the 937 

baseline activity.  938 

Quantification of responses evoked by vocalizations 939 

The responses to vocalizations were quantified using two parameters: (i) The firing rate of the 940 

evoked response, which corresponds to the total number of action potentials occurring during 941 

the presentation of the stimulus minus spontaneous activity; (ii) the spike-timing reliability 942 

coefficient (CorrCoef) which quantifies the trial-to-trial reliability of the response. This index 943 

was computed for each vocalization: it corresponds to the normalized covariance between 944 

each pair of spike trains recorded at presentation of this vocalization and was calculated as 945 

follows:  946 
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 947 

where N is the number of trials and σxixj is the normalized covariance at zero lag between 948 

spike trains xi and xj where i and j are the trial numbers. Spike trains xi and xj were previously 949 

convolved with a 10-msec width Gaussian window. Based upon computer simulations, we 950 

have previously shown that this CorrCoef index is not a function of the neurons’ firing rate69. 951 

We have computed the CorrCoef index with a Gaussian window ranging from 1 to 50 ms to 952 

determine if the selection of a particular value for the Gaussian window influences the 953 

difference in CorrCoef mean values obtained in the different auditory structures. As a general 954 

rule, the largest the Gaussian window, the largest the CorrCoef value whatever the structure 955 

was. Based upon the responses to the original vocalizations, supplementary Figure S1A shows 956 

that the relative ranking between auditory structures remained unchanged whatever the size of 957 

the Gaussian window was. Therefore, we kept the value of 10 ms for the Gaussian window 958 

(dashed line in figure S1) as it was used in several previous studies39, 69-71. 959 

Quantification of mutual information from the responses to vocalizations 960 

The method developed by Schnupp et al. (2006)72 was used to quantify the amount of 961 

information (Shannon 1948) contained in the responses to vocalizations obtained with natural 962 

vocoded and noise stimuli. This method allows quantifying how well the vocalization’s 963 

identity can be inferred from neuronal responses. Here, “neuronal responses” refer either to (i) 964 

the spike trains obtained from a small group of neurons below one electrode (for the 965 

computation of the individual Mutual Information, MIIndividual), or to (ii) a concatenation of 966 

spike trains simultaneously recorded under several electrodes (for the computation of the 967 

population, MIPopulation). In both cases, the following computation steps were the same. 968 

Neuronal responses were represented using different time scales ranging from the duration of 969 

the whole response (firing rate) to a 1-ms precision (precise temporal patterns), which allows 970 

analyzing how much the spike timing contributes to the information. As this method is 971 

exhaustively described in Schnupp et al. (2006)72 and in Gaucher et al. (2013a)69, we only 972 

present below the main principles. 973 

The method relies on a pattern-recognition algorithm that is designed to “guess which 974 

stimulus evoked a particular response pattern”72 by going through the following steps: From 975 

all the responses of a cortical site to the different stimuli, a single response (test pattern) is 976 
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extracted and represented as a PSTH with a given bin size (different sizes were considered as 977 

discussed further below). Then, a mean response pattern is computed from the remaining 978 

responses (training set) for each stimulus class. The test pattern is then assigned to the 979 

stimulus class of the closest mean response pattern. This operation is repeated for all the 980 

responses, generating a confusion matrix where each response is assigned to a given stimulus 981 

class. From this confusion matrix, the Mutual Information (MI) is given by Shannon’s 982 

formula:   983 
 984 

where x and y are the rows and columns of the confusion matrix, or in other words, the values 985 

taken by the random variables “presented stimulus class” and “assigned stimulus class”. 986 

In our case, we used responses to the 4 whistles and selected the first 264 ms of these 987 

responses to work on spike trains of exactly the same duration (the shortest whistle being 988 

280msec long). In a scenario where the responses do not carry information, the assignments 989 

of each response to a mean response pattern is equivalent to chance level (here 0.25 because 990 

we used 4 different stimuli and each stimulus was presented the same number of times) and 991 

the MI would be close to zero. In the opposite case, when responses are very different 992 

between stimulus classes and very similar within a stimulus class, the confusion matrix would 993 

be diagonal and the mutual information would tend to log2(4) =2 bits. 994 

This algorithm was applied with different bin sizes ranging from 1 to 280 ms. Supplementary 995 

figure S1B presents the evolution of MI as a function of temporal precision ranging from 1 to 996 

40ms with the responses to the original vocalizations. At the cortical level, we previously 997 

showed that an optimal bin size for obtaining a maximal value of MI was on average 8ms69,72. 998 

However, it has never been demonstrated that the same bin size value was optimal at the 999 

thalamic and brainstem levels. In our experimental conditions, and with our set of acoustic 1000 

stimuli, the 8-ms temporal precision was found to be optimal for all auditory structures 1001 

(dashed line in supplementary Fig. 1b). The MI value obtained for a temporal precision of 1002 

8ms was subsequently used in our analysis. 1003 

The MI estimates are subject to non-negligible positive sampling biases. Therefore, as in 1004 

Schnupp et al. (2006)72, we estimated the expected size of this bias by calculating MI values 1005 

for “shuffled” data, in which the response patterns were randomly reassigned to stimulus 1006 

classes. The shuffling was repeated 100 times, resulting in 100 MI estimates of the bias 1007 
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(MIbias). These MIbias estimates are then used as estimators for the computation of the 1008 

statistical significance of the MI estimate for the real (unshuffled) datasets: the real estimate is 1009 

considered as significant if its value is statistically different from the distribution of MIbias 1010 

shuffled estimates. Significant MI estimates were computed for MI calculated from neuronal 1011 

responses under one electrode. 1012 

The information carried by a group of recording was estimated by the population MI 1013 

(MIPopulation), using the same method described above: responses of several simultaneous 1014 

recordings were grouped together and considered as a single pattern. To assess the influence 1015 

of the group size of simultaneous recordings on the information carried by that group 1016 

(MIPopulation), the number of sites used for computing MIPopulation varied from 2 to the maximal 1017 

possible size (which is equal to 16 minus the non-responsive sites). As the number of possible 1018 

combinations could be extremely large (Cn
k, where k is the group size and n the number of 1019 

responsive sites in a recording session), a threshold was fixed to save computation time: when 1020 

the number of possible combinations exceeded one hundred, 100 combinations were 1021 

randomly chosen, and the mean of all combinations was taken as the MIPopulation for this group 1022 

size. 1023 

Statistics 1024 

To assess the significance of the multiple comparisons (Vocoding process: four levels; 1025 

Masking noise conditions: three levels; Brain structure: five levels), we used an analysis of 1026 

variance (ANOVA) for multiple factors to analyze the whole data set. Follow-up tests were 1027 

corrected for multiple comparisons using Bonferroni corrections and were considered as 1028 

significant if their p value was below 0.05. All data are presented as mean values ± standard 1029 

error (s.e.m.).  1030 
 1031 
  1032 



 

35 

Figure legends 1033 
 1034 
Figure 1. Acoustic stimuli and averaged modulation spectra. a. Waveforms (top) and 1035 
spectrograms (bottom) of the four original whistles used in this study. b. From top to bottom, 1036 
spectrograms of the four vocoded whistles using 38, 20 and 10 frequency bands. c. From top 1037 
to bottom, spectrograms of the four original whistles embedded in stationary noise at three 1038 
SNRs (+10, 0 and -10 dB) and spectrograms of the stationary noise only (Noise only). d. 1039 
Vocoding and noise effects on frequency-modulation (FM) spectra. The two plots represent 1040 
the averaged modulation spectra of the four original vocalizations (in black), vocoded 1041 
vocalizations (Voc38, Voc20 and Voc10: red, green and blue respectively, left panel) and 1042 
vocalizations in stationary noise at three SNRs (+10, 0 and -10 dB : red, green and blue 1043 
respectively, right panel) e. Vocoding and noise effects on amplitude-modulation (AM) 1044 
spectra. The two plots represent the averaged modulation spectra of the four original 1045 
vocalizations (in black), vocoded vocalizations (Voc38, Voc20 and Voc10: red, green and 1046 
blue respectively, left panel) and vocalizations in stationary noise at three SNRs (+10, 0 and -1047 
10 dB : red, green and blue respectively, right panel). Vertical black dashed lines on AM and 1048 
FM spectra correspond to the frequency range (1-20 Hz) selected for the data analysis. 1049 

 1050 

Figure 2. Subcortical neurons discriminate better the original vocalizations than cortical 1051 
neurons. a. From bottom to top, neuronal responses were recorded in CN, CNIC, MGv, A1 1052 
and VRB simultaneously under 16 electrodes but only two are represented here, with 1053 
alternated black and red colors. Each dot represents the emission of an action potential and 1054 
each line corresponds to the neuronal discharges to one of four original whistles. The grey 1055 
part of rasters corresponds to evoked activity. The waveforms of the four original whistles are 1056 
displayed under the rasters. b-e. The panels show (b) the evoked firing rate (spikes/sec), (c) 1057 
the temporal reliability quantified by the CorrCoef value (arbitrary units), (d) the neuronal 1058 
discrimination assessed by the mutual information (MI) computed at the level of the 1059 
individual recording (MIIndividual, bits) and (e) at the level of neuronal population (MIPopulation, 1060 
bits) with populations of 9 simultaneous recordings obtained with the four original 1061 
vocalizations in CN (in black), CNIC (in green), MGv (in orange), A1 (in blue) and VRB (in 1062 
purple). In each structure, error bars represent the SD of the mean values and black lines 1063 
represent significant differences between the mean values (unpaired t test, p<0.05). Note that 1064 
the evoked firing rate decreases from the CN to VRB but both the temporal reliability 1065 
(CorrCoef) and the discriminative ability (MI) values reach a maximal value in MGv. Note 1066 
also that at the population level, all the subcortical structures discriminate better the original 1067 
vocalizations than cortical areas. 1068 

 1069 

Figure 3. Vocoding slightly alters neuronal responses at each stage of the auditory 1070 
system. a. From left to right, raster plots of responses to the four original whistles (Original) 1071 
and their vocoded versions generated using either 38, 20 or 10 frequency bands (Voc38, 1072 
Voc20 and Voc10). From bottom to top, neuronal responses were recorded in CN, CNIC, 1073 
MGv, A1 and VRB. b-e. The mean values (±SEM) represent (b) the evoked firing rate 1074 
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(spikes/sec), (c) the temporal reliability represented by the CorrCoef value (arbitrary units), 1075 
(d) the neuronal discrimination assessed by the mutual information (MI) computed  at the 1076 
level of the individual recordings (MIIndividual, bits) and (e) at the level of neuronal population 1077 
(MIPopulation, bits) with populations of 9 simultaneous recordings obtained with original 1078 
(Original) and vocoded vocalizations (Voc38, Voc20 and Voc10) in CN (in black), CNIC (in 1079 
green), MGv (in orange), A1 (in blue) and VRB (in purple) (one-way ANOVA, *P < 0.05). At 1080 
the population level, the discriminative abilities significantly decreased only for 10 frequency 1081 
bands in subcortical structures and did not decrease in cortical areas.  1082 

 1083 

Figure 4. Noise strongly reduces neuronal responses in all structures but to a lesser 1084 
extent in the central nucleus of the inferior colliculus. a. From left to right, raster plots of 1085 
responses of four original whistles (Original) and their noisy versions in stationary noise at 1086 
three SNRs: +10, 0 and -10 dB. From bottom to top, neuronal responses were recorded in CN, 1087 
CNIC, MGv, A1 and VRB. The grey area corresponds to the evoked activity for each 1088 
vocalization. The green dashed lines show a typical example of CNIC neuronal responses that 1089 
are resistant to the noise addition. b-e. The mean values (±SEM) represent (b) the evoked 1090 
firing rate (spikes/sec), (c) the temporal reliability represented by the CorrCoef value 1091 
(arbitrary units), (d) the neuronal discrimination assessed by the mutual information (MI) 1092 
computed at the level of the individual recordings (MIIndividual, bits) and (e) at the level of 1093 
neuronal population (MIPopulation, bits) with populations of 9 simultaneous recordings obtained 1094 
with original and vocalizations in stationary noise at three SNRs (+10, 0 and -10 dB SPL) in 1095 
CN (in black), CNIC (in green), MGv (in orange), A1 (in blue) and VRB (in purple) (one-1096 
way ANOVA, *P < 0.05). Note that at the population level, the discriminative abilities 1097 
significantly decreased in all structures when SNR decreased, with the CNIC populations still 1098 
able to discriminate 2 out of 4 stimuli (MIPopulation value >1). 1099 

 1100 

Figure 5. Reduction of AM cues determine the neuronal discriminative abilities at the 1101 
subcortical and cortical levels. a. Percentage of ΔMIPopulation as a function of degradation of 1102 
FM components computed for each structure from means MIPopulation or FM values obtained in 1103 
all adverse conditions (noise and vocoded conditions) minus mean values in the original 1104 
condition. Each dot represents neuronal data (ΔMIPopulation) in CN (in black), CNIC (in green), 1105 
MGv (in orange), A1 (in blue) and VRB (in purple). b. Percentage of ΔMIPopulation as a 1106 
function of Δmodulation index computed for each structure from mean MIPopulation or mean 1107 
modulation-index values obtained in all adverse conditions and mean values in the original 1108 
condition. Each dot represents neuronal data (ΔMIPopulation) in CN (in black), CNIC (in green), 1109 
MGv (in orange), A1 (in blue) and VRB (in purple). Polynomial curves fitting all acoustic 1110 
conditions have been generated for each auditory structure (color lines) except for the 1111 
cochlear nucleus. Note that equivalent AM degradations (Δmodulation index) induced 1112 
equivalent decreases in MIPopulation except for the CN. Note also that there is a limit of 25% of 1113 
AM reduction beyond which the ΔMIPopulation strongly decreases in cortical and subcortical 1114 
structures.  1115 

 1116 
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Supplementary figure 1. Evolution of the CorrCoef and MI mean values as a function of 1117 
temporal precision in each structure. a. CorrCoef values were calculated from responses to 1118 
original vocalisations with a Gaussian window varying in width from 1 to 50 ms in CN (in 1119 
black), CNIC (in green), MGv (in orange), A1 (in blue) and VRB (in purple). In our study, a 1120 
10-ms width Gaussian window (dashed black line) was selected for the data analysis in each 1121 
structure. b. Mutual information (in bits) was calculated from neuronal responses to original 1122 
vocalizations with a bin size varying from 1 to 40 ms in CN (in black), CNIC (in green), MGv 1123 
(in orange), A1 (in blue) and VRB (in purple). In this study, the value of 8 ms was selected 1124 
for the data analysis because in each structure, the MI value was maximal (dashed black line). 1125 

 1126 

Supplementary figure 2. Large diversity of neuronal discrimination performance in 1127 
response to original vocalizations in each auditory structure. Waterfall plots show the 1128 
mutual information (MI, bits) as a function of temporal resolution (1 to 256 ms) for the 1129 
selected recordings in CN, CNIC, MGv, A1 and VRB. In each structure, the units are ranked 1130 
by the MI value obtained with a bin size of 8ms (dark rainbow colors). Note that there was a 1131 
larger proportion of neurons with high values of MI (close from the maximal value of 2) in 1132 
MGv, CNIC and CN (red curves) compared to a much lower proportion in the cortical areas 1133 
AI and VRB. 1134 

 1135 

Supplementary figure 3. Population information quickly reaches high values with 1136 
simultaneous recordings at the subcortical but not cortical level. For each auditory 1137 
structure, each thin line represents a particular case of simultaneous recordings with a 1138 
maximum number of electrodes varying from 2 to 12 or 16, and each thick line represents the 1139 
mean value of MIPopulation  in CN (in black), CNIC (in green), MGv (in orange), A1 (in blue) 1140 
and VRB (in purple). Note that the mean MIPopulation value quickly reaches high values close 1141 
from the maximum value of 2 bits in the subcortical structures (CN, CNIC and MGv) 1142 
compared to the two cortical areas (A1 and VRB).   1143 

 1144 

 1145 

Supplementary figure 4. Effects of vocoding and noise on the MIPopulation growth 1146 
functions in each auditory structure. a. Vocoding effects. The graphics display the average 1147 
growth functions of the MIPopulation for each structure in each vocoding condition (indicated by 1148 
a gradient colors). In each structure, the vocoding slightly reduced the MIPopulation values. At 1149 
the cortical level, the reduction induced by vocoding was similar at 38 and 20 bands, then a 1150 
stronger reduction was observed at 10 bands. At the thalamic level, there was almost no 1151 
change in the growth function of the MIPopulation with 38 and 20 bands vocalizations, but there 1152 
was a large decrease in MIPopulation with the 10 bands vocoded stimuli. In the CNIC, there was 1153 
almost no change in the growth function of the MIPopulation with 38-bands vocalizations, and a 1154 
progressive reduction of MIPopulation with 20 and 10-bands vocalizations. A similar scenario 1155 
was observed at the CN level.  1156 
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b. Noise effects. The graphics display the effects noise on the growth functions of the 1157 
MIPopulation for each structure and at each SNR. In general, background noise largely altered 1158 
the growth functions of the MIPopulation in each structure (but to a lesser extent in the CNIC). In 1159 
the cortex, SNR affected the growth functions of the MIPopulation : the lower the SNR, the lower 1160 
the curves of the MIPopulation. In the MGv, stationary noise progressively lowered the curves of 1161 
the MIPopulation. In the CNIC, stationary noise induced SNR-dependent reduction in the 1162 
MIPopulation values, the reduction being modest at a +10 and 0 dB SNR but more important at a 1163 
-10 dB SNR. In the CN, stationary noise induced a stronger reduction of the MIPopulation which 1164 
was clearly a function of SNR.  1165 

 1166 

Supplementary figure 5. A subpopulation of CN neurons maintains good neuronal 1167 
discrimination performance at a +10 dB SNR. Waterfall plots show the mutual information 1168 
(MIIndividual, bits) as a function of temporal resolution (1 to 256 ms) for the CN recordings at a 1169 
+10 dB SNR. The recordings are ranked by the MI value obtained with a bin size of 8 ms 1170 
(dark rainbow colors). Note that at this particular SNR, 20% of the CN recordings (n=39) 1171 
maintained MIIndividual values above 1 bit, indicating that some CN neurons still send 1172 
information about the vocalization identity at higher brainstem centers such as the CNIC. 1173 

  1174 
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a	 CorrCoef	 Mutual	informa/on	

Supplementary figure 1. Evolution of the CorrCoef and MI mean values as a function of temporal 
precision in each structure. a. CorrCoef values were calculated from responses to original 
vocalisations with a Gaussian window varying in width from 1 to 50 ms in CN (in black), CNIC (in 
green), MGv (in orange), A1 (in blue) and VRB (in purple). In our study, a 10-ms width Gaussian 
window (dashed black line) was selected for the data analysis in each structure. b. Mutual information 
(in bits) was calculated from neuronal responses to original vocalizations with a bin size varying from 1 
to 40 ms in CN (in black), CNIC (in green), MGv (in orange), A1 (in blue) and VRB (in purple). In this 
study, the value of 8 ms was selected for the data analysis because in each structure, the MI value was 
maximal (dashed black line). 

b	



 

40 

 1178 

 1179 
  1180 

 1181 

 1182 

 1183 

A1	

VRB	

MGv	

CNIC	

CN	

Supplementary figure 2. Large diversity 
of neuronal discrimination performance 
in response to original vocalizations in 
each auditory structure. Waterfall plots 
show the mutual information (MI, bits) as 
a function of temporal resolution (1 to 256 
ms) for the selected recordings in CN, 
CNIC, MGv, A1 and VRB. In each 
structure, the units are ranked by the MI 
value obtained with a bin size of 8ms 
(dark rainbow colors). Note that there was 
a larger proportion of neurons with high 
values of MI (close from the maximal 
value of 2) in MGv, CNIC and CN (red 
curves) compared to a much lower 
proportion in the cortical areas AI and 
VRB. 
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Supplementary figure 3. Population information 
quickly reaches high values with simultaneous 
recordings at the subcortical but not cortical level. 
For each auditory structure, each thin line represents a 
particular case of simultaneous recordings with a 
maximum number of electrodes varying from 2 to 12 
or 16, and each thick line represents the mean value 
of MIPopulation  in CN (in black), CNIC (in green), 
MGv (in orange), A1 (in blue) and VRB (in purple). 
Note that the mean MIPopulation value quickly reaches 
high values close from the maximum value of 2 bits 
in the subcortical structures (CN, CNIC and MGv) 
compared to the two cortical areas (A1 and VRB).   



 

42 

 1189 
 1190 

 1191 

  1192 

Nb	of	rec.	in	popula0on	

bi
ts
	

A1	

MGv	

CNIC	

CN	

VRB	

Vocoding	effect	 Noise	effect	 Supplementary figure 4. Effects of 
vocoding and noise on the MIPopulation 
growth functions in each auditory 
structure. a. Vocoding effects. The 
graphics display the average growth 
functions of the MIPopulation for each structure 
in each vocoding condition (indicated by a 
gradient colors). In each structure, the 
vocoding slightly reduced the MIPopulation 

values. At the cortical level, the reduction 
induced by vocoding was similar at 38 and 
20 bands, then a stronger reduction was 
observed at 10 bands. At the thalamic level, 
there was almost no change in the growth 
function of the MIPopulation with 38 and 20 
bands vocalizations, but there was a large 
decrease in MIPopulation with the 10 bands 
vocoded stimuli. In the CNIC, there was 
almost no change in the growth function of 
the MIPopulation with 38-bands vocalizations, 
and a progressive reduction of MIPopulation 
with 20 and 10-bands vocalizations. A 
similar scenario was observed at the CN 
level.  

b. Noise effects. The graphics display the 
effects noise on the growth functions of the 
MIPopulation for each structure and at each 
SNR. In general, background noise largely 
altered the growth functions of the MIPopulation 
in each structure (but to a lesser extent in the 
CNIC). In the cortex, SNR affected the 
growth functions of the MIPopulation : the 
lower the SNR, the lower the curves of the 
MIPopulation. In the MGv, stationary noise 
progressively lowered the curves of the 
MIPopulation. In the CNIC, stationary noise 
induced SNR-dependent reduction in the 
MIPopulation values, the reduction being 
modest at a +10 and 0 dB SNR but more 
important at a -10 dB SNR. In the CN, 
stationary noise induced a stronger reduction 
of the MIPopulation which was clearly a 
function of SNR.  

a	 b	
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CN	SNR	=	+10	dB	

Supplementary figure 5. A subpopulation of CN neurons maintains good neuronal discrimination 
performance at a +10 dB SNR. Waterfall plots show the mutual information (MIIndividual, bits) as a 
function of temporal resolution (1 to 256 ms) for the CN recordings at a +10 dB SNR. The 
recordings are ranked by the MI value obtained with a bin size of 8 ms (dark rainbow colors). Note 
that at this particular SNR, 20% of the CN recordings (n=39) maintained MIIndividual values above 1 
bit, indicating that some CN neurons still send information about the vocalization identity at higher 
brainstem centers such as the CNIC. 
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Lemniscal	pathway	 Non-lemniscal		
pathway	

CNIC	 MGv	 A1		 VRB	
	Number	of	animals	 10	 11	 10	 11	 5	
	Number	tested	 672	 478	 448	 544	 192	
	STRF	only	 560	 421	 285	 455	 126	
	Selec7on	criteria	:	STRF	&		response		
	to	at	least	one	vocaliza7on	 499	 386	 262	 354	 95	

STRF	quan9fica9ons	
	BF	range	(kHz)	:	min-max	 0.18	-	18	 0.34	-	36	 0.33	-	33.01	 0.14	-	36	 0.67	-	36	
	Mean	bandwidth	(octave)	 3.91	 2.88	 4.16	 2.07	 1.79	
	Mean	response	dura7on	(ms)	 26.83	 35.37	 17.31	 43.73	 44.83	
	Response	strength	(spikes/sec)	 77.23	 82.25	 41.61	 37.69	 19.97	

Supplementary Table 1. Summary of the number of animals, number of selected recordings and 
STRFs quantifications in each structure. 


