
HAL Id: hal-02111867
https://hal.science/hal-02111867

Submitted on 26 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unicode, XML, TEI, Ω and Scholarly Documents
Yannis Haralambous

To cite this version:
Yannis Haralambous. Unicode, XML, TEI, Ω and Scholarly Documents. Sixteenth International
Unicode Conference, Unicode Consortium, Mar 2000, Amsterdam, Netherlands. �hal-02111867�

https://hal.science/hal-02111867
https://hal.archives-ouvertes.fr

Unicode, XML, TEI, Ω and Scholarly Documents

Yannis Haralambous
Atelier Fluxus Virus

187 rue Nationale

59800 Lille, France

yannis@fluxus-virus.com

J’en étais là de mes pensées,
lorque, sans que rien en eût

décelé les approches, le
printemps entra subitement dans

le monde. [Ara, p. 11]

1 Introduction

Scholarly documents, like bilingual parallel texts or critical editions, involving any kind of classical or
Oriental language are a challenge to computers because of their intrinsic complexity in form and struc-
ture. In this paper we will try to discuss some of the issues involved in their processing, with particular
emphasis to issues related to the Unicode encoding.

To be stored or communicated in the most efficient way, a scholarly document has to be encoded
and structured. By the former we mean the representation of the textual data in Unicode ; by the latter
we mean the markup of the document in a markup language, like the Extensible Markup Language
(XML). On diagram 1 the reader can see a schematic representation of the process :

1. data, which can be of any origin (keyboarded text, OCR, legacy data,. . .) is encoded and struc-
tured as to obtain a valid XML document, encoded in Unicode ;

2. this document, to be processed, needs a certain amount of linguistic background information
and transformations (for example : rules for upper- and lowercasing, hyphenation, sorting order,
etc. which depend on language and dialect) ;

3. finally the document can be processed in several ways : the most traditional being of course the
printed book, but other being there as well : the electronic document, a database, voice synthe-
sis, etc.

All processes involved in this diagram are clear and relatively trivial when the document contents
is plain English text and its structure is relatively simple ; but in the case of scholarly documents in-
volving classical or oriental languages there are many open questions.

The first question that arises is to what extent Unicode should be used and when one should ra-
ther use XML entities : it is clear that in French, using the Unicode character U+00E9 latin small

letter e with acute is a more elegant choice than using the entity é, but on the other
hand, entities may be a very efficient way to avoid Unicode ambiguities, like the treatment of the
Greek mute iota or the Arabic hamza.

1

Unicode, XML, TEI, Ω and Scholarly Documents

Figure 1: The various transformations of a XML document.

A second question is about how to use Unicode : should pre-combined characters or combining
diacritics be prefered ? Should the Arabic hamza be used graphically or grammatically ? Should the
accents and breathings in front of capital Greek letters be used as standalone characters or as com-

bining diacritics ?
Before we address these questions we will give a short introduction to tools we will be mentioning :

XML, TEI and Ω.

2 XML

The Extensible Markup Language XML is a document processing standard proposed by the World
Wide Web Consortium (W3C). It is actually a simplified form of the Standard Generalized Markup
Language SGML, ISO 8879.

XML uses tags to markup data. These tags can be of several forms, the most important being the
following :

1. element tags: these are of three kinds : opening tags, like <title>, closing tags like </title>,

and stand-alone tags like <pause/> ;

2. entity tags: é, &CompanyLogo;, etc. ;
3. processing instruction tags: <?tex \rule{20pt}{.5pt} ?>, etc.

An element is a part of an XML document ; it may be either a stand-alone element tag, or a part
of the document starting with an opening tag and finishing with a closing tag. Whatever is between
the opening and closing tags is called the contents of the element : this may be text or other elements,
provided they are properly nested (the last opened element must be the first closed). Elements are the

16th International Unicode Conference 2 Amsterdam, The Netherlands, March 2000

Unicode, XML, TEI, Ω and Scholarly Documents

building blocs of XML documents : the main body of the document is already an element ; it is also the
root of the hierarchical tree of nested elements of the document. The leaves of this tree are either text
blocks or empty elements (elements whose contents are empty, often —but not necessarily— denoted
by stand-alone tags).

Element tags carry additional information, which is not part of the contents of the element : this
information is given in the form of attributes and their values. For example the element

<footnote xml:lang="en" num="2" para>...</footnote>

has three attributes : xml:lang whose value is en, num whose value is 2 and finally para which has no
value.

An XML document consists of three (largely unequal in length) parts :

1. the XML declaration, which is a single tag with a certain number of arguments (one of which
is the encoding of the document) ;

2. the Document Type Definition (DTD), which is a very precise declaration of all elements and
attributes used in the document, as well as their properties : which elements can be contained
in other elements, in what order, which ones can contain text, etc.

3. the main body of the document, the elements of which must obey to the rules given in the
DTD.

A very essential property of XML documents is the fact that they can be parsed by software and
validated. A valid XML document is one whose tags are written correctly and whose elements obey
to all rules given in the DTD. Validity of a document is totally independent of its actual contents :
it is a formal property which ensures that the document will be treated correctly by XML-compliant
software.

Elements provide us with the logical structure of a document. An equally important concept,
which allows an XML document to have a very flexible physical structure is the one of entity. Like
elements, entities are also declared in the DTD ; in the main body we use entity references (whose
tags are of the form &hamza;). The idea is very simple : when a document is parsed or processed, en-
tity references are replaced by their contents as declared in the DTD. The contents of an entity can
be a text block (including other entities, as long as there is no infinite loop), an external XML file
(given by an URL) or an external file in a different format (for example an image in GIF format, or
a TEX file) in which case the processing software must know how to handle the file’s format.

Entities are often used like “macros” in the sense that something which is unclear or temporary
at the time of writing, is declared in the DTD, and the corresponding entity reference is used in the
document. A change in the entity’s declaration will then have repercussions to the whole document,
wherever the specific entity references have been used. For example let us suppose that you are edi-
ting a 16th century text in which “&c.” is sometimes used instead of “etc.” You are not certain yet if
the publisher would like to keep that spelling but you do wish to keep the information in the sour-
ce file ; in that case using an entity &etc; would be an efficient solution : in the DTD you can then
decide if &etc; should expand as “&c.” or as “etc.”

Entities are very important in the scope of this paper because they have been a natural substitute
to Unicode encoding : if you are writing an HTML document (HTML is a special case of XML : in
fact it is XML with a specific pre-defined DTD) which instead of being encoded in Unicode, is, for
example, encoded in ISO 8859-7 (Greek) and need a French ‘é’ then you have no other choice than
using the entity é. Of course once you decide to encode your document in Unicode, you have
the choice between the actual Unicode character U+00E9 latin small letter e with acute and
the entity ´.

16th International Unicode Conference 3 Amsterdam, The Netherlands, March 2000

Unicode, XML, TEI, Ω and Scholarly Documents

You have even a third (intermediate) choice : the character entity reference which is an entity re-
ference explicitly giving the code position of a character in the Unicode table ; using hexadecimal no-
tation the French ‘é’ is then written é (where & stands for “entity,” # specifies the fact that
it is a character entity, x stands for hexadecimal notation, 00E9 is the hexadecimal code of ‘é’ in the
Unicode table and ; closes the tag).

2.1 XML and Unicode

Thru the attribute encoding one can define the encoding of an XML document, in the XML decla-
ration. To specify Unicode is not enough : one must define the Unicode transformation format, for
example UTF-8 ([Uni, §2.2]). So, for example, an XML document encoded in Unicode would have
the XML declaration :1

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

It is interesting to note that according to XML specifications, Unicode happens to be the default
encoding for XML documents.

Also note that the encoding is not only used for the textual contents but also for the tag names.
When the document encoding is Unicode, then tag names can be written using any Unicode charac-
ter having the “letter property,” ([Uni, §4.5]). Under these circumstances an XML document like the
following ([Kor]) can be perfectly valid :

<τ�ιτλος �αρ�ιθµηση=" �οχι" �επ�ιπεδο="1">Πρ�ολογος</τ�ιτλος>

<π><κεφαλα�ια> � Αδαµαντ�ιου Κορα�η</κεφαλα�ια> &µεγ�αληπα�υλα; το�υ �εν τ�> περ�ι �απαν µαθ�η-

σει �αριπρεπο�υς, κα�ι περ�ι τ�ην τ�ης φιλολογ�ιας �εν γ�ενει, � Αδαµαντ�ιου, λ�εγω, το�υ Κορα�η

�η πολ�υκροτος φ�ηµη �ενηχε�ι θαυµασ�ιως ε�ις �ολων τ�ας �ακο�ας.</π>

<π>Πρ¤ωτον βιογραφικ�ον περ�ι α�υτο�υ �αρθρον κατεχωρ�ισθη �εν τ�> <γαλλικ�α>Biographie nou-

velle des contemporains. Paris 1822, tome V, pag. 52-55</γαλλικ�α></π>

Nevertheless most of nowadays available XML parsers are not able of handling such XML docu-
ments ; an interesting exception is XML Spy ([wSpy]) which claims to be fully Unicode-compliant (at
least under Windows 2000).

2.2 References for further reading on XML

A search on www.amazon.com returned 255 (!) books on XML. The books we would suggest are : Ro-
bert Eckstein’s XML Pocket Reference (a 4

1

4

′′

× 7′′ 100 pages booklet, very clear and well organized)
[Eck], Neil Bradley’s XML Companion (quite complete) [Bra] and Paul Spencer’s XML Design and
Implementation (the most pedagogical) [Spe].

For French language readers we also recommend the proceedings of the 1999 GUTenberg Con-
ference : Actes du colloque GUT’99, seconde partie : XML [Gut] and [wGut] (which also contains the
XML specifications in French).

The XML specifications as well as a lot of material around XML can be found on the OASIS Web
site [wOas].

1Unfortunately the XML declaration does not allow us to specify the version of the Unicode standard used, so maybe a
comment of the type

<!-- Unicode v. 2, as described in ISBN 0-201-48345-9 -->

would fill that gap.

16th International Unicode Conference 4 Amsterdam, The Netherlands, March 2000

Unicode, XML, TEI, Ω and Scholarly Documents

An interesting document on XML and Unicode is also the (for the moment, proposed draft) Uni-
code Technical Report #20 Unicode in XML and other Markup Languages by Martin Dürst, Mark
Davis, Hideki Hiura and Asmus Freytag [wUtr]. Finally we strongly recommend the (W3C working
draft) document Character Model for the World Wide Web by Martin Dürst and François Yergeau
[wCmw].

3 TEI

The Text Encoding Initiative2 (TEI) is a Document Type Definition (DTD) for SGML documents,
SGML being the ancestor of XML ; in fact there is already an XML version of TEI [wPiz]. In the
following we will not mention any fact which is exclusively SGML-related, so everything can be con-
sidered as being true for XML-TEI, even if the latter has not yet been officially released.

It should be noted that the term “encoding” in TEI name and documentation is used in the sense
of “structuring,” (and not in the sense of “character encoding” as is Unicode). TEI is a DTD spe-
cialized in documents used in the humanities, scholarly documents, etc. Here is an excerpt from the
TEI documentation [wTdc] :

[TEI is] the result of over five years’ effort by members of the research and academic community
within the framework of an international cooperative project called the Text Encoding Initiative
(TEI), established in 1987 under the joint sponsorship of the Association for Computers and the
Humanities, the Association for Computational Linguistics, and the Association for Literary and
Linguistic Computing.
The impetus for the project came from the humanities computing community, which sought a com-
mon encoding scheme for complex textual structures in order to reduce the diversity of existing en-
coding practices, simplify processing by machine, and encourage the sharing of electronic texts. It
soon became apparent that a sufficiently flexible scheme could provide solutions for text encoding
problems generally. The scope of the TEI was therefore broadened to meet the varied encoding re-
quirements of any discipline or application. Thus, the TEI became the only systematized attempt
to develop a fully general text encoding model and set of encoding conventions based upon it, sui-
table for processing and analysis of any type of text, in any language, and intended to serve the
increasing range of existing (and potential) applications and use.
What is published here is a major milestone in this effort. It provides a single, coherent framework
for all kinds of text encoding which is hardware-, software- and application-independent. Within
this framework, it specifies encoding conventions for a number of key text types and features. The
ongoing work of the TEI is to extend the scheme presented here to cover additional text types and
features, as well as to continue to refine its encoding recommendations on the basis of extensive
experience with their actual application and use.

As TEI tries to be as complete and general as possible, it has become very large : there are more
than 500 different elements defined and the printed documentation is around 1,300 pages. To mi-
nimize resources, it has a modular structure : users can include in their documents only the modules
they need ; there is also the possibility of defining new elements and entities.

The basic modules of the TEI DTD are the following :

1. the core tag set, declaring elements available in all TEI documents ;
2. the header tag set, declaring elements used in document headers : every TEI document must

have a header which describes the file, the encoding and the text profile and gives the revision
history of the document ;

3. the prose tag set : as its name says, it is the set of tags used for prose text ;
2And not “Total Employee Involvement,” as defined by Japan Human Relations Association. . .

16th International Unicode Conference 5 Amsterdam, The Netherlands, March 2000

Unicode, XML, TEI, Ω and Scholarly Documents

Figure 2: A sample critical edition ([Chr]).

16th International Unicode Conference 6 Amsterdam, The Netherlands, March 2000

Unicode, XML, TEI, Ω and Scholarly Documents

4. the verse tag set ;
5. the drama tag set ;
6. the spoken tag set, containing declarations of tags used for transcriptions of spoken texts ;
7. the dictionaries tag set, useful for printed dictionaries ;
8. the terminology tag set, useful for terminological data files ;
9. the general tag set and the mixed tag set : both allow the combined use of several tag sets from

the list above.

For example, here are some of the elements available in all TEI documents :

<p> the paragraph element ;
<foreign lang="xx"> identifies a word or phrase as belonging to some language “xx” other than that

of the surrounding text ;
<emph> for emphasis ;
<hi rend="something"> marks a word or phrase as graphically distinct from the surrounding text : the

rend attribute describes the rendition or presentation of the element contents ;
<distinct> identifies any word or phrase which is regarded as linguistically distinct, for example as

archaic, technical, dialectal, non-preferred, etc., or as forming part of a sublanguage. Attributes
include : type which specifies the sublanguage or register to which the word or phrase is being
assigned, time which specifies how the phrase is distinct diachronically, space which specifies
how the phrase is distinct diatopically and social which specifies how the phrase is distinct dia-
statically.

It is interesting to note that while a fixed markup system like HTML provides the user with only
a few, predefined, types of text highlighting, and on the other hand, while general markup systems
like XML leave the user absolute freedom, TEI chooses an intermediate solution : there is a single
element for highlighting (<hi>), but the user can specify the reason of highlighting or the presentation
of highlighted text, using the rend attribute.

Furthermore there is a distinction between emphasis, highlighting and distinction ; and again di-
stinction can be done on several levels (based on type, time, space, social characteristics).

Besides elements, TEI also defines entities. For example, here are some entities related to full
stops :

&stop.abbr; entity used for an abbreviation dot ;
&stop.sent; entity used for a sentence period ;
&stop.abse; entity used for an abbreviation dot which is also an abbreviation period ;
&stop.dec; a dot used as decimal separator ;
&comma.dec; a comma used as decimal separator ;
·.dec; a midline dot used as decimal separator ;
&stop.space; a dot used as numeric space character ;
&comma.dec; a comma used as numeric space character ;

This list somehow shows the boundary between Unicode characters and XML (in this case, TEI)
entities : in this case Unicode provides only characters with distinct glyphs : the first four entities ha-
ve the same glyph3 and hence correspond to the same Unicode character U+002E full stop ; en-
tity ·.dec; could be encoded by U+00B7 middle dot but doing this we loose the specificity
of ·.dec; of being used only as a decimal separator—on the other hand, Unicode provides

3Although in English typography there is more space left after &stop.sent; than after &stop.abbr;.

16th International Unicode Conference 7 Amsterdam, The Netherlands, March 2000

Unicode, XML, TEI, Ù and Scholarly Documents

character U+2027 hyphenation point which has the same glyph as ·.dec; but is intended
to represent possible hyphenations in dictionaries : TEI provides the element <hyph> whose rôle is to
contain a hyphenated form of a dictionary headword, or hyphenation information in some other form,

but has no special entity for displaying hyphenation points.
This example shows that often markup systems (like TEI) and encoding systems (Unicode) over-

lap, and a thorough study of both may be necessary before choosing between the methods they pro-
vide : in this case, entities or characters. Of course the safest approach is to always rely on the higher
level method (structuring) : by using customized entities one can prepare a document in a uniform
and consistent manner ; the expansion of such an ntity can then be one or more Unicode characters
(or even, in the worst case, a series of processing instruction tags which will instruct software how to
represent a given entity).

3.1 A real-life example

In the following we will describe the TEI structuring of the beginning of the critical edition displayed
on fig. ??, taken from [Chr] and typeset by Ω (see §5.4 for more details on how Ω typesets critical
editions).

Quoting [wTdc, chap. 19], scholarly editions of texts, especially texts of great antiquity or importan-

ce, often record some or all of the known variations among different witnesses to the text. Witnesses to
a text may include authorial or other manuscripts, printed editions of the work, early translations, or
quotations of a work in other texts. Information concerning variant readings of a text may be accumu-

lated in highly structured form in a critical apparatus of variants. The witnesses in our example are
denoted by capital letters ‘A,’-‘X.’ In the TEI file, they are described in a witness list, in the following
way :

<witlist>

<witness sigil=’A’>Atheniensis Bibl. nat. 211</witness>

<witness sigil=’B’>Basileensis gr. 39 (B. II. 15)</witness>

<witness sigil=’C’>Vaticanus gr. 560</witness>

<witness sigil=’E’>Atheniensis Bibl. nat 265</witness>

<witness sigil=’L’>Oxoniensis Bodl. Cromwell 20</witness>

<witness sigil=’D’>Sinaɻıticus gr. 375</witness>

<witness sigil=’G’>Laurentianus Conv. sopp. 198</witness>

<witness sigil=’O’>Vaticanus gr. 577</witness>

<witness sigil=’V’>Vaticanus gr. 1526</witness>

<witness sigil=’X’>Genuensis Bibl. Franz. Miss. urb. gr. 11</witness>

</witlist>

Once these sigla defined, they can be used in the tags of the critical apparatus.
Here are the first two lines of text :

<p>∆ι�ο παραιν¤ω φε�υγειν α�υτ¤ων τ�ην µαν�ιαν· µαν�ιαν γ�αρ �εγωγ�ε φηµι ε�ιναι �εσχ�ατην τ�ο φι-

λονεικε�ιν ε�ιδ�εναι τ�ι τ�ην ο�υσ�ιαν �εστ�ιν �ο Θε�ος...</p>

where the upper dot is encoded as U+0387 greek ano teleia.

The first apparatus entry concerns the word µαν¬αν (actually the second occurence of this word
on the first line of text). This word appears as µαν¬αv in manuscripts E, L, D, G, O, V, X (which can
be grouped as in the witness list : EL, DG, OVX). This information is written in the TEI document
as follows :

16th International Unicode Conference 8 Amsterdam, The Netherlands, March 2000

Unicode, XML, TEI, Ω and Scholarly Documents

<app from="1.1.1" to="1.1.2">

<lem>µαν�ιαν</lem>

<rdg wit="EL DG OVX">µαν�ιας</rgd>

</app>

where app stands for “critical apparatus entry,” lem for “lemma,” and rdg for “reading group.” At-
tribute values 1.1.1 and 1.1.2 are references to tags (called “anchors”) included in the XML source
code of the main text, which now looks like

<p>∆ι�ο παραιν¤ω φε�υγειν α�υτ¤ων τ�ην µαν�ιαν· <anchor id="1.1.1"/>µαν�ιαν<anchor id="1.1.2"/>

γ�αρ �εγωγ�ε φηµι ε�ιναι �εσχ�ατην τ�ο φιλονεικε�ιν ε�ιδ�εναι τ�ι τ�ην ο�υσ�ιαν �εστ�ιν �ο Θε�ος...</p>

The anchor tags are “stand-alone” tag to avoid nesting problems.
Note that on fig. ?? the word µαν¬αν has number “2” as exponent. This comes from the fact that

it is in fact the second occurence of this word on the same line. This property cannot be included in
the structure of the document for the very simple reason that it depends entirely on the output : if
the line was a few centimeters narrower the two words would be on different lines and the exponent
would not be needed.

This kind of meta-information (multiple occurences, line numbers, etc.) can only be calculated at
the very final stage of document processing ; this is done by the processing software (here, Ω) and no
extra information needs to be included in the XML document.

Let’s take a look at the third entry of the critical apparatus :

<app from="1.2.1" to="1.2.2">

<lem wit="B">φηµι</lem>

<rdg wit="E O">transp. post. �εσχ�ατης</rgd>

<rdg wit="cett.">om.</rdg>

</app>

In this case the tag lem itself takes also the wit argument, since the word φηµι as written in the text
has been taken from manuscript B. For manuscripts E and O there is a different ordering of words :
φηµι comes after �σχ�τηv, and finally in all other manuscripts (“cett.” meaning “codices ceteri”) the
word is omitted. Here we have the choice between giving the explicit list of other manuscripts, as in
the list of witnesses above, or use this elegant expression, very frequent in this context (for a complete
list of such expressions —at least in the frame of Belles Lettres editions— one can consult [Bel, p.

47]).

Using TEI one can build a so called “in-line” apparatus, in the sense that the app elements will
appear inside the main text, like this :

<p>∆ι�ο παραιν¤ω φε�υγειν α�υτ¤ων τ�ην µαν�ιαν· <anchor id="1.1.1"/>µαν�ιαν<app from="1.1.1">

<lem>µαν�ιαν</lem> <rdg wit="EL DG OVX">µαν�ιας</rgd> </app> γ�αρ �εγωγ�ε φηµι ε�ιναι

�εσχ�ατην τ�ο φιλονεικε�ιν ε�ιδ�εναι τ�ι τ�ην ο�υσ�ιαν �εστ�ιν �ο Θε�ος...</p>

(in this case only the from attribute is necessary, since the app element is placed at the end of the
lemma, in the base text).

It is also possible to build an external apparatus (in a different file), in which case one needs ope-
ning and closing anchors for each lemma in the base text.

On fig. ??, underneath and to the right of the critical apparatus, one can find two blocks of (re-
gular) footnotes, which “belong” to the translation of the text. The first block gives the references of
Biblical quotations ; the second block consists of the translator’s comments. The notes of the first block

16th International Unicode Conference 9 Amsterdam, The Netherlands, March 2000

Unicode, XML, TEI, Ω and Scholarly Documents

are numbered with lowercase letters, the ones of the second one, with Arabic numbers. To structure
these notes, TEI provides an element called note. This element takes a great number of attributes ;
in our case the following would be sufficient :

<p>... je vous le montrerai ɳa l’ɴevidence par le tɴemoignage des ɴecrivains sacrɴes<note

type="regular">Le mot προφ�ητης a des nuances... et de Paul</note> : non seulement

ceux-ci ignorent manifestement... </p>

where we call the second block of notes “regular” ones (and the first one “biblical” ones).
Notes can also be placed in a separate file : in that case the text should contain anchors at the

locations of footnote marks.
Note that in this example we have not explicitly tagged the word προφ�τηv as being Greek. This

is the advantage of using Unicode : one can consider that whenever words are formed from characters
in the Greek page of Unicode, then these words are in Greek and should be typeset accordingly (in
particular, they should be hyphenated according to Greek hyphenation rules).

This works very well for the specific example (because we have a unique correspondence between
the character set and the language) but would not work if, for example, in the same document we
had also Coptic, because in Unicode, Greek and Coptic alphabets share the same character set. One
should even distinguish between modern and ancient Greek, since these two are not hyphenated in
the same way.

In the general case, we do recommend language tagging, by which the example above would be
written as :

<p>... je vous le montrerai ɳa l’ɴevidence par le tɴemoignage des ɴecrivains sacrɴes<note

type="regular">Le mot <foreign lang="gr">προφ�ητης</foreign> a des nuances... et

de Paul</note> : non seulement ceux-ci ignorent manifestement... </p>

Finally, to close this section, here is how parallel texts are structured using TEI. There are two
possible methods : either place “anchors” in both texts, referring to each other, or delimit “segments”
of text, correponding to each other. Using the first approach, here is how the two texts look like :

<p><anchor id="gr1" corresp="fr1"/>∆ι�ο παραιν¤ω φε�υγειν α�υτ¤ων τ�ην µαν�ιαν· µαν�ιαν

γ�αρ �εγωγ�ε φηµι ε�ιναι �εσχ�ατην τ�ο φιλονεικε�ιν ε�ιδ�εναι τ�ι τ�ην ο�υσ�ιαν �εστ�ιν �ο Θε�ος. <an-

chor id="gr2" corresp="fr2"/>Κα�ι �ινα µ�αθ>ς �οτι µαν�ιας �εσχ�ατης το�υτο, �απ�ο τ¤ων προφη-

τ¤ων �υµ�ιν το�υτο ποι�ησω φανερ�ον· <anchor id="gr3" corresp="fr3"/>ο�ι γ�αρ προφ�ηται ο�υ

µ�ονον τ�ι τ�ην ο�υσ�ιαν �εστ�ιν �αγνοο�υντες φα�ινονται, �αλλ�α κα�ι περ�ι τ�ης σοφ�ιας α�υτο�υ π�οση

τ�ις �εστιν �απορο�υσι· <anchor id="gr4" corresp="fr4"/>κα�ιτοι γε ο�υχ �η ο�υσ�ια �απ�ο τ�ης

σοφ�ιας, �αλλ� �η σοφ�ια �εκ τ�ης ο�υσ�ιας...</p>

and

<p><anchor id="fr1" corresp="gr1"/>Je vous exhorte donc ɳa ɴeviter leur folie, car

c'est le comble de la folie que s'acharner ɳa connaɵıtre Dieu dans son essence. <an-

chor id="fr2" corresp="gr2"/>Et pour que vous compreniez que c'est bien en effet le

comble de la folie, je vous le montrerai ɳa l'ɴevidence par le tɴemoignage des ɴecri-

vains sacrɴes : <anchor id="fr3" corresp="gr3"/>non seulement ceux-ci ignorent ma-

nifestement ce qu'il est dans son essence, mais encore ils ne savent que dire de

l'ɴetendue de sa sagesse ; <anchor id="fr4" corresp="gr4"/>or ce n'est pas l'essence

qui dɴerive de la sagesse, mais la sagesse de l'essence.

16th International Unicode Conference 10 Amsterdam, The Netherlands, March 2000

Unicode, XML, TEI, Ω and Scholarly Documents

Of course the amount of such anchor tags depends entirely on the precision the author wishes to
attain, when displaying and processing the parallel texts. Often it is sufficient to place them at major
punctuation marks (periods, semicolons, etc.).

3.2 References for further reading on TEI

We recommend of course the TEI Guidelines, a monumental documentation (very well written and
with many examples) which can be found on the Web ([wTdc]) or ordered in printed form from the
TEI Consortium ([wTei]). The only disadvantage of these Guidelines are that they have written with
SGML in mind (before XML was even invented).

For French language readers we also recommend the Cahier GUTenberg #24: TEI : Text Enco-
ding Initiative [Gut2] and [wGut] which contains also complete (translated) documentation of a lighter
version of TEI, called “TEI Lite.”

The main Web site of the TEI Consortium is [wTei].

For readers interested in structuring of text corpora, we also recommend the Web site of the CES
project [wCes] : CES specifies a minimal encoding level that corpora must achieve to be considered
standardized in terms of descriptive representation (marking of structural and typographic informa-
tion) as well as general architecture (so as to be maximally suited for use in a text database). It also
provides encoding specifications for linguistic annotation, together with a data architecture for lingui-
stic corpora.

4 Unicode in a scholarly context

As an example of issues arising when using Unicode in a scholarly context, we will discuss some pro-
blems related to Greek and Arabic, in a scholarly context.

4.1 Greek

4.1.1 Should we use combining diacritics or precomposed characters ?

Greek letters with diacritics (accents and breathings) can be encoded in several ways :

1. vowels with acute accent can be encoded in three different ways, for example to obtain an
‘�’ one can use U+03AC greek small letter alpha with tonos or U+1F71 greek small

letter alpha with oxia or U+03B1 greek small letter alpha followed by U+0301 combining

acute accent ;4

2. most of the vowels with diacritics can be encoded in two ways : precomposed (in the range 1f00-

1ffc) or using combining diacritics ;
3. some vowels and diacritics combinations can be obtained only by using combining diacritics, like

for example ‘a’, ‘b’.

There is even a case where the same letter with diacritics can be obtained in eight (!) different
ways : iota with dieresis and acute accent ‘¼’ can be obtained

1. as a precomposed character U+0390 greek small letter iota with dialytika and tonos ;

4Historically the fact that there are two characters for the same glyph and same linguistic entity (03ac and 1f71) is due
to the (false) assumption that the accent of monotonic Greek (tónos) and the acute accent of the polytonic system (oxı́a)
are distinct.

16th International Unicode Conference 11 Amsterdam, The Netherlands, March 2000

Unicode, XML, TEI, Ω and Scholarly Documents

2. as a precomposed character U+1FD3 greek small letter iota with dialytika and oxia ;

3. as U+03B9 greek small letter iota followed by U+0344 combining greek dialytika tonos ;

4. as U+03B9 greek small letter iota followed by U+0344 combining dieresis and then
by U+0301 combining acute accent ;

5. as U+03CA greek small letter iota with dialytika followed by U+0301 combining acute

accent ;

6. as U+03AF greek small letter iota with tonos followed by U+0344 combining dieresis ;5

7. as U+1F77 greek small letter iota with oxia followed by U+0344 combining dieresis

8. as U+03B9 greek small letter iota followed by U+0301 combining acute accent and
then by U+0344 combining dieresis ;

This is of course an exceptional case, but still it shows that there is a problem in representing
Greek letters with diacritics. Normalization can of course be done automatically by software, but (a)
if this normalization is towards precomposed characters, then the software should be aware of the fact
that some combinations do not exist as precomposed characters, (b) on the other hand, if normaliza-
tion is towards decomposition, then additional rules should be specified for cases like ¼ or � where
both diacritics are in the same combining class and it is not clear which one is more “outwards” than
the other.

The most serious problem arises when encoding capital Greek letters with diacritics. The pro-
blem is the following : from a typographical point of view, accents and breathings that belong to capital
letters are placed in front of them (and not upon them). Unfortunately even historical encodings of
Greek (like the “beta encoding” of the Thesaurus Linguae Graecae) use these diacritics in a prepo-
sitive way.

In the case of Unicode, it is not clear if these letters should be decomposed

1. in the same way as lowercase letters : ‘MΕ’ should be encoded U+0395 greek capital letter

epsilon followed by U+0313 combining comma above and U+0301 combining acute accent ;

2. as a blank space with diacritic(s) followed by the letter : U+0020 space U+0313 combining

comma above U+0301 combining acute accent U+0395 greek capital letter epsilon ;

3. using spacing diacritics: U+1FCE greek psili and oxia followed by U+0395 greek capital

letter epsilon.

These approaches correspond to different philosophies : the first one is logical and linguistically
accurate : after all the fact that diacritics are written in front and not above the letter is purely a ty-
pographical convention (in earlier printings diacritics were indeed placed above or sometimes after
capital letters) ; the second and third approaches are graphical ones [the second being minimalistic
and the third using an obscure set of Unicode characters : Greek spacing diacritics6].

We recommend the first approach, not only because it is the most conformant to Greek grammar,
but also because in some cases a distinction should be made between diacritics belonging to (capital)
letters but graphically placed in front of them and diacritics belonging to suppressed letters ; the latter

5Acute accent and dieresis belong to the same Unicode combining class 230, consequently the rule that applies is that
combining marks with the same combining class are generally positioned graphically outwards from the base character they
modify [Uni, §3.9] : but in this case it is not clear weither the acute accent or the dieresis are “outward” since graphically
the acute accent is placed between the dots of dieresis.

6Obscure indeed because in the Unicode book it is said that they are used in the representation of Polytonic Greek
texts, without any former comment. If this sentence should be interpreted as “they shall be used in front of capital letters,”
then what can possible be the rôle of U+1FEF greek varia ? Every Greek capital letter is either a vowel (in which case
it necessarily takes a breathing) or a consonant (in which case it either takes a breathing or no diacritic at all) : it is not
possible to have a stand-alone grave accent in front of a capital letter.

16th International Unicode Conference 12 Amsterdam, The Netherlands, March 2000

Unicode, XML, TEI, Ω and Scholarly Documents

can be considered as “stand-alone” diacritics, and this could indeed be a nice application of some of
the Unicode Greek spacing diacritics. Here is an example :

IΟµωv κL �ναv σκËλοv, ν� ! Lβγα¬νει Lπ¬σω �πL τ¿ δρυµ¾,

This sentence starts with a capital letter with breathing and accent : U+039F greek capital letter

omicron followed by U+0312 combining reversed comma above and U+0301 combining acute

accent while in front of words βγα¬νει and π¬σω there is an special mark representing suppressed
letters : as shown in [Yhg or wYhg, §1.3.1], this mark should be treated as a breathing and not as an
apostrophe because in some cases it is indeed combined with an accent. In these cases we recommend
the use of spacing diacritics : βγα¬νει and π¬σω should be preceded by U+1FBF greek psili.

It should be noted that in this sentence there are two more marks having exactly the same shape
as the smooth breathing : the ones at the end of words κL and �πL. These are indeed apostrophes and
should be encoded as U+0027 apostrophe ; the fact that they have the same shape as U+1FBF greek

psili, is a Greek typographical convention.

4.1.2 Levels of diacritization

Decomposing precomposed characters into regular characters and combining diacritics has another
advantage : software can more easily treat strata of text representing different levels of diacritization.
Indeed we can divide Greek diacritics into four categories :

1. accents : acute U+0301 combining acute accent, grave U+0300 combining grave accent,

circumflex U+0342 combining greek perispomeni ;

2. breathings : rough U+0314 combining reversed comma above and smooth U+0313 combining

comma above ;

3. dieresis U+0308 combining diaeresis ;

4. syllable length : macron U+0304 combining macron, brevis U+0306 combining breve.

Decomposing characters means obtaining regular characters followed by one, two or three combining
diacritics, each one in a different category. Software could be instructed to consider or to ignore anyo-
ne of these categories : one could search, index, or compare words taking all categories under conside-
ration (Åροv boundary 6= Ãροv mountain 6= Àρ¾v serum), or ignoring breathings (Åροv = Ãροv 6= Àρ¾v),

or ignoring accents (Åροv 6= Ãροv = Àρ¾v), or ignoring both accents and breathings (Åροv = Ãροv =

Àρ¾v), etc.

4.1.3 The mute iota

Unicode provides a combining diacritic U+0345 combining greek ypogegrammeni, a spacing dia-
critic U+1FBE greek prosgegrammeni and a certain number of vowels with a subscript iota, like �’

U+1FB3 greek small letter alpha with ypogegrammeni. In fact all of these are results of a sin-
gle grammatical phenomenon : the mute iota. This is a iota which is generally not pronounced : τG
ΘεG is pronounced tó theó and not tói theói.

There are different ways of representing the same phenomenon : in Anglosaxon typography of
Greek texts a mute iota is represented by a regular size iota ; in Greek or French typography of Greek
texts, the mute iota can be represented as a subscript, or something even more special : in a all-caps
context it can be found in lowercase, or as a small cap, or in very small size, etc.

Encoding of a Greek text should be independent of typographical conventions ! Therefore we re-
commend the use of an entity &muteiota; which, according to the context, could be expanded as

16th International Unicode Conference 13 Amsterdam, The Netherlands, March 2000

Unicode, XML, TEI, Ω and Scholarly Documents

a regular iota U+03B9 greek small letter iota or as a combining diacritic U+0345 combining

greek ypogegrammeni, or something else, at the author’s discretion.
To close this section on mute iota, we would like to remind the reader (see [Yhg or wYhg, §1.3.7])

that the “subscript iota” typographical construct has been used also for other purposes than the mute
iota : in Osmanli Turksih it is combined with letter iota to represent a specific sound.

4.2 Arabic

In Unicode, Arabic letters and diacritics are clearly and unambiguously represented. Nevertheless, in
a scholarly context, there may be alternative ways to encode Arabic texts.

The problem is that the way Arabic letters are encoded in Unicode does not always corresponds
to Arabic grammar. We will examine a few cases of this phenomenon.

4.2.1 The letter hamza

Unicode provides five characters : U+0621 arabic letter hamza, U+0623 arabic letter alef

with hamza above, U+0624 arabic letter waw with hamza, U+0625 arabic letter alef with

hamza below and U+0626 arabic letter yeh with hamza above, which in fact are simply va-
riant graphical representations of the same letter hamza.7

There are very strict rules determining which form this letter should take :8

1. at word begin :

(a) if the short vowel following the hamza is kasra, then the form U+0625 arabic letter

alef with hamza below is used ;

(b) otherwise, the form U+0623 arabic letter alef with hamza above is used ;

2. inside a word :

(a) if the hamza is preceded or followed by a kasra then it takes the form U+0626 arabic

letter yeh with hamza above ;

(b) if the hamza is preceded by a damma and followed by damma, fath.a or sukun, then it takes
the form U+0624 arabic letter waw with hamza ;

(c) if the hamza is followed by a damma and preceded by damma, fath.a or sukun, then it takes
the form U+0624 arabic letter waw with hamza ;

(d) if the hamza is preceded by a fath.a and followed by fath.a or sukun, then it takes the form
U+0623 arabic letter alef with hamza above ;

(e) if the hamza is followed by a fath.a and preceded by fath.a or sukun, then it takes the form
U+0623 arabic letter alef with hamza above ;

(f) if the hamza is preceded and followed by sukun, then it takes the form U+0621 arabic

letter hamza ;

3. at then end of a word :

(a) if hamza is preceded by a fath.a, then it takes the form U+0623 arabic letter alef

with hamza above ;

7Grammarians are divided weither hamza is, or is not, a letter of the Arabic alphabet. We will consider that the former
is indeed the case.

8In these rules, by fath.a, kasra, damma and sukun we mean respectively U+064E arabic fatha, U+0650 arabic

kasra, U+064F arabic damma and U+0652 arabic sukun.

16th International Unicode Conference 14 Amsterdam, The Netherlands, March 2000

Unicode, XML, TEI, Ω and Scholarly Documents

(b) if hamza is preceded by a kasra, then it takes the form U+0626 arabic letter yeh with

hamza above ;

(c) if hamza is preceded by a damma, then it takes the form U+0624 arabic letter waw

with hamza ;

(d) if hamza is preceded by a sukun, then it takes the form U+0621 arabic letter hamza.

Using these rules, software like Ω or ArabTEX ([wLag]) can unambiguously determine the graphical
representation of letter hamza. This can be quite interesting in a scholarly context, where grammati-
cal identity is more important than graphical representation. Under these conditions, we recommend
the use of an entity &hamza; for letter hamza that can be graphically represented in different ways
according to the context.

But to use such an entity (and hence greatly simplify Arabic keyboarding and processing) two con-
ditions have to respected : (a) text has to be vocalized and (b) word prefixes must be marked as such.

Indeed, in Arabic, short vowels are not always written : there is a “least effort” principle that im-

plies that short vowels are only written when necessary to avoid ambiguities, and often even that prin-
ciple is not followed and vowels are simply omitted. Without the information on vowels, the correct
form of letter hamza cannot be calculated by software.9 On the other hand, one could very well ima-
gine vowels included in the data, but not displayed : this would allow the calculation of hamza and
still keep the non-vocalized output.

The second condition deals with prefixes : in Arabic, prepositions (like a “and,” � “with,” R “to,
for” etc.) as well as the definite article are attached to the word. In the hamza rules we gaved above,
“word begin” actually refers to the word without prefix. But software is not able to identify a prefix
as such (without intensive morphological, syntactical and semantical analysis). Hence, to be able to
calculate the hamza form correctly, one has to mark up word limits, so that prefixes can clearly be
recognized. For example there is Unicode character U+200D zero width joiner that could be used
for this purpose [although this is not explicitly stated in the Unicode book [Uni]]. It is well understood
that this additional character should not break the contextual analysis of the word.

This may seem extra work, but in fact can be very useful in the processing of Arabic text.

4.2.2 The definite article

The definite article in Arabic �R has a special property : at the beginning of a sentence the letter alef is
pronounced, while inside a sentence it is assimilated with the last letter of the previous word : �RO��� §�RO�¡ is pronounced alkitaabulkabiir and not alkitaabu alkabiir. To point out the assimilation of the
alef, a special diacritic is used, called wasla. In Unicode, instead of using a combining diacritic, the
wasla has been precombined with the underlying alef, as U+0671 arabic letter alef wasla.

On the other hand, when the alef is indeed pronounced, one uses no diacritic (or sometimes a
fath.a short vowel). The same definite ‘article + word’ cluster will be written with or without a wasla
depending on its position in the sentence.

Another problem arising because of the definite article is (as in the previous section) the fact that
since it is attached to the word, software cannot easily distinguish the article from the word, for sor-
ting, indexing, searching, and processing in general.

For these reasons, in a scholarly context, it could be useful to either insert a special character
between the definite article and the word, as suggested in the previous section, or use an entity &al;

to encode it.

9Unless of course this software has also a post-vocalisation module ; this is not a simple task since it requires heavy mor-
phological, syntactical and semantical analysis.

16th International Unicode Conference 15 Amsterdam, The Netherlands, March 2000

Unicode, XML, TEI, Ω and Scholarly Documents

It should be noted that other words than the definite article also take a wasla : this phenomenon
is called the “unstable hamza.”

4.2.3 Nounation

The three combining diacritics U+064B arabic fathatan, U+064D arabic kasratan and U+064C

arabic dammatan are marks of a grammatical phenomenon called nounation. The fact is that while
the last two are simply diacritics placed on the last letter of a word, fath.atan produces also a letter
U+0627 arabic letter alef (except when the word finishes with a U+0629 arabic teh marbuta,

a U+0627 arabic letter alef followed by U+0621 arabic letter hamza, or a U+0623 arabic

letter alef with hamza), for example :

a �R �� + fath.atan → a �R �� �� but N §" �� + fath.atan → N §" �� �.
The problem is that there is a typographical convention which consists in placing the fath.atan be-

fore the mute alef (as in a �R �� ��) but this convention is by no means followed by all Arabic writers : very

often one also sees the fath.atan placed upon the alef (as in a �R ��� �). Since Unicode encodes the gra-
phical image and not the grammatical substance, these two would be encoded differently, which is
absurd since the whole difference is only due to a typographical convention.

For this reason we recommend the use of an entity &fathatan; which would stand for both the
combining diacritic U+064B arabic fathatan and the mute U+0627 arabic letter alef, whene-
ver necessary.

4.2.4 Conclusion: a different way of encoding Arabic

By adopting the above suggestions as a whole, we obtain a new way of encoding the Arabic langua-
ge.10 In fact this goes even farther : if we decide to encode short and long vowels as grammatical ob-
jects, for example by using XML entities, then we would have the following representations of these
entities in Unicode : &short_a; would be U+064E arabic fatha, while &long_a; would be U+064E

arabic fatha followed by U+0627 arabic letter alef ; &short_i;, would be U+0650 arabic

kasra while &long_i; would be U+0650 arabic kasra followed by U+064A arabic letter yeh ;

and finally &short_u; would be U+064F arabic damma while &long_u; would be U+064F arabic

damma followed by U+064A arabic letter waw.

In this case, U+064A arabic letter yeh and U+064A arabic letter waw represent long vo-
wels, so they can never take short vowels themselves. A distinction has to be made between these and
the semi-consonants represented by the same Unicode characters U+064A arabic letter yeh and
U+064A arabic letter waw : these can take short vowels and play different grammatical rôles than
the long vowels. One could imagine entities &semi_consonant_yeh; and &semi_consonant_waw; for
these semi-consonants.

This way of encoding Arabic is much closer to the grammar of the language and hence makes
any kind of processing easier. The necessity of vocalization makes this method more appropriate to
scholarly contexts and probably unsuitable for everyday unvocalized modern Arabic text. This encoding
method has been firstly implemented in ArabTEX ([wLag]) and is used by ArabTEX users all around
the world (Arabic being keyboarded in a 7-bit transcription). Recently it has been implemented also
in the Ω system : in this case Arabic can be keyboarded in 7-bit transcription or in Unicode.

10Note the above is true only for the Arabic language and not for other languages using the Arabic writing system.

16th International Unicode Conference 16 Amsterdam, The Netherlands, March 2000

Unicode, XML, TEI, Ω and Scholarly Documents

Figure 3: Schematic diagram of the Ω system.

5 Ω

The Ω system, developped by John Plaice and the author aims to produce typeset documents out of
Unicode-encoded structured data (structured weither in XML or in the LATEX markup system). Being
an extension of TEX, Ω inherits its long list of typographical capabilities. The main innovation of Ω,
with respect to TEX, is the notion of Ω Translation Process (ΩTP). These are filters which transform
text as it is read by Ω. ΩTPs can be arbitrarily combined to form filtering sequences. These sequences
can be activated or de-activated dynamically, according to processing instructions inserted in the text.

On fig. 3 the reader can see an overview of the Ω system. A first sequence of ΩTPs (§5.1) converts
the text input into Unicode. The goal here is to attain the highest possible conformance to Unicode ;
if the input is already in Unicode then this step is skipped. Entities or processing instructions refer-
ring to characters not in Unicode are send to code points in the private area. Once in Unicode, a
second sequence of ΩTPs (§5.2) applies all necessary linguistic transformations, while staying in Uni-
code, if necessary using the private zone. Finally, depending on the fonts used, a third sequence of
ΩTPs (§5.3) sends the (eventually transformed) Unicode data to the font (or to adequate PostScript
instructions).

Ω produces PostScript files which can be used for phototypesetting, or converted to PDF files.
There is also the possibility of inserting special PostScript instructions in the output file, which will
be used by Acrobat Distiller to insert hypertext links (and other meta-material provided by the PDF
file format) into the PDF file : thru this method, Ω is able to produce online electronic documents
with links, bookmarks, etc.

5.1 ΩTPs for text input

These ΩTPs convert text encoded in an arbitrary encoding into Unicode. At first sight, this step may
seem useless since nowadays there are sufficiently powerful Unicode-compliant text editors which al-
low direct Unicode keyboarding of text. This is certainly true for ordinary text, but once again, in a
scholarly context, these editors may still not be powerful enough. Let us suppose that you need to
keyboard Arabic text, where some letters carry a special combining diacritic, for example a circumflex
accent. This is perfectly valid in Unicode, and Ω is perfectly capable of typesetting such a construc-
tion, but text editors (even Unicode-compliant ones) will most probably break the contextual analysis
of Arabic text. In such cases it is probably easier to work with a transcription, which will not cause
any special problem to the text editor.

16th International Unicode Conference 17 Amsterdam, The Netherlands, March 2000

Unicode, XML, TEI, Ω and Scholarly Documents

Also on some platforms (like the Macintosh) there are no Unicode-compliant text editors yet. In
that case one must fight with encodings (as in the darks ages of 8-bit computing) and ΩTPs can be
used to internally convert the text into Unicode, even if various parts of the text are written in diffe-
rent encodings : for example a file prepared on a word processor like Nisus Writer (on the Macintosh),
using Latin, Arabic and Hebrew fonts, and saved as ordinary text, will contain binary data in the three
encodings MacRoman, MacHebrew and MacArabic. If the user has properly tagged languages (using,
for example, the xml:lang argument of XML elements) then the appropriate ΩTPs for each encoding
will be automatically activated and de-activated.

Another very important use of this first sequence of ΩTPs is the conversion of typewriter conven-

tions to abstract data. For example, in France there is a convention of leaving a blank space before
double punctuation ; this convention originates from the typewriter tradition and has its typographi-
cal counterpart : an interword space before a colon and a thin space before other double punctuation
marks. This convention has no semantical value ; it is even geographically restrained to metropolitan
France and Belgium (neither in Canada, nor in Switzerland are these blank spaces used). For this rea-
son it is more efficient, when structuring French text, to use XML entities for double punctuation.
But this is not always the case (after all, text is more readable without entities) ; in a French con-
text, Ω will detect blank spaces before double punctuation, swallow them, and replace punctuation
marks by processing instructions (which can then be configured according to metropolitan French or
Canadian standards, etc.).

A more sophisticated use of these ΩTPs is obtained when converting text written in “grammatically
encoded Arabic,” (see §4.2.4) into Unicode : four quite complicated ΩTPs had to be written, applying
all the necessary rules of Arabic grammar (form of hamza, nounation, short vowels in front of long
ones, wasla upon alif on the definite article, etc.).

Finally, these ΩTPs can be very useful for processing text in writing systems not yet provided by
Unicode, like Egyptian hieroglyphics. The Centre for Computer-aided Egyptological Research (Utre-
cht University, [wCer]) distributes special WYSISYG editors (for Windows and Macintosh) which allow
easy keyboarding of about 5,500 hieroglyphs (single, or combined in horizontal or vertical clusters,
cartouches, etc.). These editors save the data in ASCII text files, where hieroglyphs are coded in a 7-

bit transcription scheme. Ω can read these files, internally process the data in Unicode’s private zone,
and typeset the result using high quality fonts (also provided by the Center).

5.2 ΩTPs for internal processing

These correspond to various linguistic transformations, as already shown on fig. 1. They can be of
different kinds :

5.2.1 Change of case

Between the world’s writing systems there are seven (Latin, Greek, Coptic, Cyrillic, Glagolitic, Arme-
nian, Georgian Khutsuri) whose letters have the “case” property (see [Uni, §4.2]). Unicode mentions
three cases : upper case, lower case and title case (also called “all caps”). These are the three cases that
may need different glyphs, and hence different Unicode characters. But when structuring document
one may need other, more subtle, cases.

For example one could use two kinds of upper case : contextual and mandatory : in the sentence

Last week I saw John.

the ‘L’ of ‘Last’ is set in upper case because it is the first word of the sentence : this is contextual upper
case ; the word ‘I’ and the letter ‘J’ in ‘John’ are mandatory upper cases : they will be uppercase in all

16th International Unicode Conference 18 Amsterdam, The Netherlands, March 2000

Unicode, XML, TEI, Ω and Scholarly Documents

contexts.
Another possible case is the antithetic one : in the German word ‘StudentInnen’ the ‘I’ is repre-

sented by an upper case glyphs because the surrounding letters are lowercase ; the same word, in title
case would be written ‘STUDENTiNNEN’ : the letter ‘I’ must always be the opposite case as its sur-
rounding.

Changing case is not always a simple match between Unicode characters : the Unicode book states
the Turkish example ‘i → İ’ and ‘ı → I’ ; there are more complicated examples in Greek : while nor-
mally ‘�’ is sent to ‘A’ and ‘ι’ to ‘I’, the couple ‘�ι’ will be sent to ‘ΑΪ’ (because in fact ‘�ι’ denotes ‘�ϊ’
and the dieresis is not written because the accent on the previous letter indicates that the diphthong
is broken). Another example : in German, although ‘ß’ is normally capitalized as ‘SS’ in some cases it
is capitalized as ‘SZ’ (for example ‘Masse → MASSE’ while ‘Maße → MASZE.’

Ω has casing algorithms which depend on the writing system, the language and the context of the
word or of the letter, as illustrated by the examples.

5.2.2 Basic micro-typography

Every language has its own typographical conventions, weither these are precisely described in
(more-or-less) official manuals, or are part of the typographer’s unwritten knowledge and craft-
manship. Most of these rules are related to punctuation and spacing. Unicode, although being an
(abstract) information exchange encoding, provides many characters which are of purely typogra-
phical nature and can quite efficiently represent at least the basic typographical conventions of
most languages. For example the concept of opening and closing double quotes (which, struc-
turally, could correspond to TEI tags <quote> and </quote>) will be represented by characters
U+201C left double quotation mark and U+201D right double quotation mark in English,
or U+201E double low-9 quotation mark and U+201C left double quotation mark in Ger-
man, or U+00AB left pointing double angle quotation mark and U+00BB right pointing

double angle quotation mark in Canadian French. While in most languages double punctuation
is attached to the preceding word, in French a thin space (U+2009 thin space) is placed between
a word and either a semicolon, exclamation mark or question mark.

These transformations are characterized by two facts : (a) they are strictly Unicode-internal, and
(b) they are font-independent. Ω uses ΩTPs to perform these transformations, depending on the cur-
rently active language.

5.2.3 Hyphenation

In a forthcoming version of Ω, hyphenation will be handled by one or more ΩTPs at the Unicode
level. There are many contradicting facts which make hyphenation more complicated than any other
linguistic transformation. First of all hyphenation is neither input-encoding- nor font-dependent, so
logically it should be done at this level, where data is in pure Unicode. The transformation would
consist in adding special characters (for example U+200B zero width space or some other inter-
nal character) at places where hyphenation is allowed. But these inserted characters should no affect
other transformations, weither these are linguistic or typographical : for example, contextual properties
should remain the same, if not hyphenated, letters should retain their natural kerning, etc.

In fact hyphenation goes farther than that : it happens in several languages that words change when
hyphenated. For example, in German, “backen” will be hyphenated “bak-ken,” in Greek, “Μα¼ου”
will be hyphenated “Μα-¬ου” and in Armenian, “gtnouil” will be hyphenated “gtnr-uil.” Ω has to
perform these changes, without affecting the visual image of the word when it is not hyphenated.

16th International Unicode Conference 19 Amsterdam, The Netherlands, March 2000

Unicode, XML, TEI, Ω and Scholarly Documents

Finally another important issue when hyphenating is the choice of the best hyphenation for a given
word : for example in the German word ‘Herausforderung’ we can classify possible hyphenations as
following : ‘He−1raus2for1de1rung’ where ‘2’ means the ideal hyphenation (between components of
the composite word), the ‘1’s mean allowed but less preferable hyphenations, and ‘−1’ stands for a
hyphenation normally not allowed, but still exceptionally possible. Hyphenation algorithms should be
subtle enough to ponderate their choices using such a scale.

5.2.4 Morphological analysis

For about five centuries the German language was printed in broken scripts : Fraktur, Schwabacher,
etc. These have been abolished by the Nazis in 1943, and ever since no German authority ever came
back to the Nazi decision. Today many broken script typefaces are available for the computer (see
for example [wFra]). But in fact typesetting German in a broken script requires more than just chan-
ging the output font. Broken scripts have two variant of letter ‘s’ : the final/isolated one ‘+’ (which
corresponds to the Latin ‘s’ as used today) and the initial/medial one ‘s’ which is encoded by Unicode
character U+017F latin small letter long s. The problem is that the choice between the two
‘s’ letters is purely linguistic : the word ‘Eisen’ will be written with a long ‘s’ because it is a simple
word, while ‘Ei+berg’ will be written with a short one because it comes from the composition of ‘Ei+’
and ‘Berg’. In some case components cannot be directly identifiable : ‘I+land’ will be written with a
short ‘s’ although there is no word ‘I+’ (with the meaning of “ice,” as in ‘Iceland’).

Another similar phenomenon (which this time is valid for German typeset both in broken or Ro-
man script) is the breaking of ligatures (for example the ‘fl’ ligature being written as two letters ‘fl’)
between components of a composite word : compare ‘Auflage’ and ‘Querflöte.’ Once again the de-
cision weither a ligature should be broken or not depends on morphology of the German language.

The author has developped a tool to perform these transformations (long/short ‘s’ and ligatures),
based on work by Oliver Lorenz who has developped DMM : a morphological analyzer of the German
language, with a Perl API [wDmm]. For the moment this system has a success rate of about 95-97%
and this is why the author uses it rather as a pre-processor than as an ΩTP (to be able to check and
manually correct the result, before typesetting).

Well understood the most elegant solution would be to include this kind of information already in
the XML file, using either Unicode characters U+017F latin small letter long s and U+200C

zero width non-joiner, or XML entities &longs; and &nolig; which could be expanded differen-
tly weither the text is to be displayed in broken or Roman script.

5.2.5 Contextual analysis

Writing systems like the Arabic, Syriac and Mongolian one, have contextual analysis mechanisms : let-
ters change forms according to their context in the word, or according to semantic criteria. Unicode
encodes the linguistic units and not their forms. In the Unicode book, the so-called isolated forms of
letters are displayed, but each Unicode character in fact stands for all forms of the same letter. In
some cases one sees the same glyph for different Unicode characters : this happens because the iso-
lated forms are the same, but the contextual behaviour is different (in other words, some other, non-
displayed, forms differ). This is the case, for example, for characters U+0649 arabic letter alef

maksura and U+06CC arabic letter farsi yeh (the former has only two distinct forms while the
latter, which is used in Persian, has four distinct forms).

Sometimes rules of contextual analysis are transgressed for semantical reasons. For example, in
Arabic the letter U+0647 arabic letter heh whose isolated form is], is sometimes written in ini-

16th International Unicode Conference 20 Amsterdam, The Netherlands, March 2000

Unicode, XML, TEI, Ω and Scholarly Documents

tial form ^ as an abbreviation for �"c = a.h. (the Muslim year). To encode such exceptions, Unico-
de has two special characters : U+200C zero width non-joiner and U+200D zero width joiner.

Combining character U+0647 arabic letter heh with the latter produces the initial form of the
letter.

Contextual rules for these languages are not hard to implement : the only difficulty lies in the fact
that combining characters, in any quantity, are not supposed to break the contexual behaviour of let-
ters. Ω uses ΩTPs to calculate the forms of characters. This is not really a Unicode-internal transfor-
mation since Ω uses the private zone as a temporary recipient for Unicode characters with contextual
information. Nevertheless we classify this kind of ΩTPs in this section because they are strictly script-
and language-dependent : contextual analysis does not depend neither on the input encoding, nor on
the font.

5.3 Font-dependent ΩTPs

Fonts can have different encodings : these ΩTPs will remap characters from Unicode to their posi-
tions in font encodings. The fact that ΩTPs can be dynamically activated and de-activated allows us
to use fonts with different encodings in the same document. Often character representations have to
be constructed by combining several glyphs (for example, in the case of accented letters). Sometimes
there are extra ligatures in fonts ; we call them esthetic ligatures, because they are not mandatory on
a grammatical level, but rather typographical enhancements.

One encounters the most important case of such ligatures in a certain number of Arabic fonts :
while there is only one mandatory Arabic ligature (i) and one semi-mandatory (= God), such fonts
can have thousands of additional esthetic ligatures. A few of these can be seen in the “Arabic Pre-
sentation Forms-A” Unicode zone ; nevertheless we discourage the use of this zone because the set
of such ligatures available in a font is very variable and because we believe that these characters do
not comply to the Unicode design principles.

5.3.1 “Last moment” ΩTPs

The rôle of these ΩTPs is to introduce changes after all linguistic, typographical and font-dependent
transformations have been done. For example, let us take the case of an Arabic grammar book where
roots of words are set in black and the various prefixes, suffixes and infixes are set in some other colour
(for example, blue) so that grammatical transformations are easier to understand. To change colour,
one uses low-level PostScript code which must be inserted between letters after all other transforma-
tions (input and font remapping, contextual analysis, etc.) have been performed.

5.4 Using Ω as a batch program to typeset parallel texts and critical editions

Like TEX, Ω typesets by transforming the source file in a file containing the description of the printed
page (weither in DVI, which is a file-format specific to TEX and Ω, or in PostScript or PDF). In an
environment like Unix a script can launch Ω, extract information from the resultsing file and slightly
modify the source file before launching Ω again. By this iterative process one is able to typeset do-
cument containing several flows of interrelated text, like the critical edition on fig. ?? where (a) the
Greek text has to be kept parallel to the French translation, (b) the Greek text, as it advances, pro-
duces critical apparatus entries, (c) the French text, as it advances produces two bodies of footnotes,
(d) Greek is on the left side, French on the right side, critical apparatus and footnotes fill the space
underneath and on both sides and the last footnote can continue on the next page.

16th International Unicode Conference 21 Amsterdam, The Netherlands, March 2000

Unicode, XML, TEI, Ω and Scholarly Documents

Using such a method (instead of a wysiwyg system) has the advantage of offering total control
upon the management of parallel text : in some cases, because of page constraints, it is more efficient
to slightly override parallelism. The system measures the blank space between the main text and criti-
cal apparati/footnotes as well as the precision of parallelism (which of course depends on the number
and accuracy of the anchor elements placed in both texts) and chooses the optimal solution through
a rating system. It is even possible to instruct the system to convert some footnotes into endnotes
(numbered differently) if this is going to improve considerably the result.

Whenever a critical apparatus entry is to be typeset, Ω (or rather this supra-Ω script) has to check
if there is another occurence of the same text string as the lemma on the same line. For this, first of
all, one has to define precisely what is meant by “same text string” : indeed, depending on the publi-
sher’s specifications, strings with different capitalizations or different accentuations can be considered
to be the same or not : in other words, if we consider the various transformations of text described
above, the strings are the same modulo one or more of these transformations ; also, if we consider
accentuation to be one of the different strata of the document, then strings can be equal if one or
more of these strata are ignored. The script has to check if two occurences of the same string occur
on the same line : this can happen only after the second iteration of Ω, when the exact contents of
each line (and words belonging to a pair of lines) are known ; the check has to be re-iterated as well
because any intermediate modification in the source code can change the whole paragraph.

A future version of Ω will perform these iterations internally ; for the moment one needs a po-
werful machine to run Ω several times for each page of the critical edition.

5.5 References for further reading on XML

Ω is an extension of TEX. If the reader is not familiar with TEX, then we recommend the “TEX Bible,”
namely Donald Knuth’s The TEXbook [Knu] as a start. There have been articles written on Ω, we would
suggest the following : [Pla], [Yht] and [Yhn], all of them available also on the [wYhg] Web site.

Greek language readers may find some interest in reading [Yha], which presents Ω in the general
framework of Greek typography.

6 Conclusion

Preparing scholarly documents using tools like XML, TEI, Ω —all of them involving Unicode— can
be a complex process. In this paper we have attempted to give a general introduction to these tools
and to mention a certain number of (at first sight mutually unrelated) issues arising in this process.
Most of our examples were taken from Greek and Arabic : two languages with an unusually high de-
gree of complexity and frequently used in scholarly documents. We hope that this paper will incite
readers to use these tools and help them in efficiently producing high standard scholarly documents.

Bibliographical References

[Arm] Feydit, Frédéric Manuel de langue arménienne, Éditions Klincksieck, Paris, 1969.
[Bel] Règles et recommandations pour les éditions critiques (Série grecque), Les belles lettres, Paris,

1972.

[Bra] Bradley, Neil The XML Companion, Addison-Wesley, Reading, 1998.
[Eck] Eckstein, Robert XML Pocket Reference, O’Reilly, Sebastopol, 1999.
[Gut] Actes du colloque GUT’99, seconde partie : XML, Cahiers GUTenberg 33–34, Paris, 1999.

16th International Unicode Conference 22 Amsterdam, The Netherlands, March 2000

Unicode, XML, TEI, Ω and Scholarly Documents

[Gut2] Actes du colloque GUT’99, seconde partie : XML, Cahiers GUTenberg 33–34, Paris, 1999.
[Knu] Knuth, Donald E. The TEXbook, Computer and Typesetting, vol. A, Addison-Wesley, Reading,

1984.

[Pla] Plaice, John and Yannis Haralambous The Design and Use of a Multiple-Alphabet Font with
Omega, Proceedings of the Electronic Publishing Conference, Springer Lecture Notes in Com-

puter Science 1375, 1998.

[Spe] Spencer, Paul XML Design and Implementation, Wrox Press Ltd., Birmingham, 1999.

[Uni] The Unicode Consortium, The Unicode Standard, Version 2.0, Addison-Wesley, Reading, 1996.
[Yha] Χαραλ�µπουv, Γι�ννηv HΟ σËγχρονοv τυπογρ�φοv, ΗΥΦΕΝ, τ¾µοv 2, Θεσσαλον¬κη, 1999.

[Yhg] Haralambous, Yannis From Unicode to Typography, a Case Study: Greek, Proceedings of the
14th Unicode Conference, Boston, 1999.

[Yhn] Haralambous, Yannis, John Plaice and Johannes Braams Never again active characters, TUGboat
16 (4), 1995.

[Yht] Haralambous, Yannis and John Plaice Typesetting with Omega, a Case Study: Arabic Procee-
dings of the International Symposium on Multilingual Information Processing, Tsukuba (Japan),
1997.

References of Examples

[Ara] Aragon, Le paysan de Paris, folio Gallimard, Paris, 1972.
[Chr] Jean Chrysostome, Sur l’incompréhensibilité de Dieu (Περ �καταλ�πτου), Sources chrétiennes,

Le Cerf, Paris, 1970.
[Kor] LΑδαµαντ¬ου Κορα� τ� µετ� θ�νατον εÍρεθ�ντα συγγραµ�τια, βουλ© µ�ν κα δαπ�ν| τ�v �ν

Μασσαλ¬{ κεντρικ�v �πιτροπ�v Κορα� �πιµ�λει{ δ� LΑνδρ�ου Ζ. ΜαµοËκα συλλεγ�ντα τε κα

�κδιδ¾µενα, ΤυπογραφεEον LΑδ. ΠερρC, �ν LΑθ�ναιv, 1881 (reprinted by Μορφωτικ¿ν IΙδρυµα
LΕθνικCv Τραπ�ζηv, LΑθ�να, 1989).

References on the World Wide Web

[wAte] http://www.fluxus-virus.com

[wCer] http://www.ccer.ggl.ruu.nl/ccer/

[wCes] http://www.cs.vassar.edu/CES/

[wCmw] http://www.w3.org/TR/charmod

[wDmm] http://faui8l.informatik.uni-erlangen.de/IMMD8/Services/lt/

datacollections/dmm-malagalexiconandmorphologicalrules.html

[wFra] http://www.fraktur.com

[wGut] http://www.gutenberg.eu.org/pub/GUTenberg/publications/

[wLag] http://www.informatik.uni-stuttgart.de/ifi/bs/lagally/arabrep/1.html

[wOas] http://www.oasis-open.org/cover

[wOme] http://www.ens.fr/omega

[wPiz] http://www.uic.edu/orgs/tei/pizza.html

[wSpy] http://www.icon-is.com

[wTei] http://www.tei-c.org

[wTdc] http://www.hcu.ox.ac.uk/TEI/Guidelines

[wUtr] http://www.unicode.org/unicode/reports/tr20

[wYhg] http://www.fluxus-virus.com/en/research.html

16th International Unicode Conference 23 Amsterdam, The Netherlands, March 2000

Unicode, XML, TEI, Ω and Scholarly Documents

Colophon

This article has been typeset at the Atelier Fluxus Virus [wAte] using the Ω system (by John Plaice
and the author) [wOme] on a Red Hat Linux system. The fonts used are Adobe New Caledonia for
the Latin text, Bitstream Unicode Monospace for the source code, Monotype Naskh for the Arabic
text and Monotype Greek 90, 91 and 92 for the Greek text.

16th International Unicode Conference 24 Amsterdam, The Netherlands, March 2000

