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A SIMPLE CHARACTER FORMULA

SIMON RICHE AND GEORDIE WILLIAMSON

Dedicated to Jens Carsten Jantzen,
on the occasion of his 70th birthday.

Abstract. In this paper we prove a character formula expressing the classes of

simple representations in the principal block of a simply-connected semisimple
algebraic group G in terms of baby Verma modules, under the assumption

that the characteristic of the base field is bigger than 2h ´ 1, where h is the

Coxeter number of G. This provides a replacement for Lusztig’s conjecture,
valid under a reasonable assumption on the characteristic.

1. Introduction

1.1. Simple modules for reductive groups. LetG denote a connected reductive
algebraic group over an algebraically closed field k of characteristic p ą 0, with
simply connected derived subgroup. We fix a maximal torus and Borel subgroup
T Ă B Ă G. Then for every dominant weight λ we have a Weyl module ∆pλq
and its simple quotient Lpλq, both of highest weight λ. We obtain in this way a
classification of the simple algebraic G-modules. A central problem in the field is
to compute the characters of these simple modules.

Steinberg’s tensor product theorem reduces this question to the case of p-restric-
ted highest weights. For a p-restricted dominant weight λ it is known that Lpλq
stays simple upon restriction to G1, the first Frobenius kernel of G. Moreover, all
simple G1-modules occur in this way. Thus, understanding the simple G-modules
is equivalent to understanding the simple G1-modules.

Instead of working with G1-modules, it is technically more convenient to work
with G1T -modules. Simple G1T -modules stay simple upon restriction to G1, and
thus we can instead try to answer our question in terms of G1T -modules. Via
Brauer–Humphreys reciprocity, this question can be rephrased in terms of inde-
composable projective G1T -modules (see §1.2 below for details).

In 1980 Lusztig [L2] proposed a conjecture for these characters if p is not too
small (in the guise of “Jantzen’s generic decomposition patterns”). His conjecture
is in terms of the canonical basis in the periodic module for the affine Hecke algebra.
This formula is known to hold for large p, see [KL, KT, L3, AJS, F3]; however it
is also known to fail for “medium sized” p, see [W2]. In fact, at this point it is not
known precisely when this formula holds.

Our goal in this paper is to define the p-canonical basis in the periodic module
and prove that the p-analogue of Lusztig’s conjecture is true, as long as p ě 2h´ 1
where h is the Coxeter number of G. Thus we obtain a character formula for
simple G-modules in terms of p-Kazhdan-Lusztig polynomials. Our proof builds
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2 SIMON RICHE AND GEORDIE WILLIAMSON

on a character formula for tilting G-modules, proved in a joint work with P. Achar
and S. Makisumi [AMRW].1

At present, p-canonical bases are very difficult to compute; for this reason our for-
mula is certainly not the final answer to this problem. However it gives a good con-
ceptual understanding of where the difficulties lie, and provides a way to compute
characters or multiplicities which is much more efficient than classical techniques in
representation theory. For instance, unpublished intensive efforts of Jantzen were
not sufficient to completely answer the question of describing simple characters in
types B3, C3 and A4. Preliminary results of Jensen–Scheinmann indicate that
our formula will allow one to solve these cases, and maybe the case of some bigger
groups with the help of a computer. (For example, Jensen and Scheinmann obtain
a missing multiplicity in Jantzen’s work for A4 in a few lines using our results.) We
also believe these results will help answer the important question of when exactly
Lusztig’s character formula holds.

Remark 1.1. (1) A conjecture of Donkin [Do] would imply that our formula is
valid for p ą h; see Remark 1.6 below for more details.

(2) It has been known for a long time that, in theory, knowing the characters
of tilting modules is enough to determine the characters of simple modules
(see e.g. [RW1, §1.8] for details, and [Sob] for more recent advances on this
question). However, obtaining a concrete character formula for simples out
of a given character formula for tilting modules is a different story, which is
the main topic of the present paper (taking as input the character formula
from [AMRW]).

1.2. Representation theory of G1T . We continue with the notation of §1.1, and
let X :“ X˚pT q be the character lattice of T . Let also B` be the Borel subgroup
of G opposite to B with respect to T .

If as above G1T , resp. B`1 T , denotes the preimage of the Frobenius twist 9T of
T under the Frobenius morphism of G, resp. B`, then for each λ P X we have

a G1T -module pZpλq (called the baby Verma module attached to λ) obtained by
coinducing to G1T the 1-dimensional representation of B`1 T defined by λ (see §5.2

below for details). The module pZpλq has a unique simple quotient pLpλq, and the

assignment λ ÞÑ pLpλq induces a bijection between X and the set of isomorphism
classes of simple G1T -modules. For any λ, µ P X we have

pLpλ` pµq – pLpλq b k 9T pµq

(where we identify the weight lattice of 9T with X in such a way that the pullback

under the Frobenius morphism T Ñ 9T corresponds to ν ÞÑ pν, and k 9T pµq is viewed

as a G1T -module via the Frobenius morphism G1T Ñ 9T ), and for λ dominant and

p-restricted pLpλq is the restriction to G1T of the simple G-module Lpλq considered
in §1.1. In this way, understanding the simple G-modules, the simple G1-modules
or the simple G1T are equivalent problems.

1.3. Characters of G1T -modules and alcoves. Assume now that p ě h.
Let ∆ Ă X be the root system of pG,T q. Let Wf and W “ Wf ˙ Z∆ denote

the finite and affine Weyl groups, and denote their subsets of simple reflections

1One year after the first version of the present paper was made available, a different proof of
this formula was obtained by the authors in [RW2].
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(determined by B) by Sf and S respectively. The affine Weyl group acts naturally
on XbZ R, giving rise to the set of alcoves A . Let Afund denote the fundamental
alcove; then the map x ÞÑ xpAfundq gives a bijection

(1.1) W
„
ÝÑ A .

We will also consider the “dot-action” of W on X, defined by

pxtλq ¨p µ “ xpµ` pλ` ρq ´ ρ

for x P Wf , λ P Z∆ and µ P X, where ρ is the halfsum of the positive roots. Let
Rep0pG1T q denote the principal block of the category of algebraic finite-dimensional

G1T -modules, i.e. the Serre subcategory generated by the simple modules pLpλq
with λ P W ¨p 0. By construction the highest weights of simple and baby Verma
modules belonging to this block are labelled by the affine Weyl group, and hence
(via (1.1)) by alcoves. Given an alcove A, let us denote the corresponding simple and

baby Verma modules by pLA and pZA. We denote the projective cover (equivalently,

injective hull) of pLA by pQA.

Each pQA admits a baby Verma flag (that is, a finite filtration whose successive

subquotients are isomorphic to baby Verma modues). We write p pQA : pZBq for the

number of times the baby Verma module pZB occurs in such a filtration. (This
number is known to be independent of the chosen filtration.) For an alcove A P A ,
consider the element

qA :“
ÿ

BPA

p pQA : pZBqB P ZrA s.

By Brauer–Humphrey’s reciprocity [Hu], it is known that

p pQA : pZBq “ r pZB : pLAs

for any pair of alcoves pA,Bq. As the characters of the baby Verma modules are
known (and easy!), knowledge of the elements qA for all alcoves A therefore implies
knowledge of the characters of the simple G1T -modules in the principal block, and
hence of all simple G1T -modules by Jantzen’s translation principle.

1.4. Statement. Let H denote the Hecke algebra of the Coxeter system pW,Sq
(an algebra over the ring Zrv˘1s, with standard basis pHw : w P W q), and let P
denote its periodic (right) module. (We follow the notational conventions of [Soe].)
As a Zrv˘1s-module, P is free with basis given by alcoves:

P “
à

APA

Zrv˘1sA.

In [L2], Lusztig has defined a canonical basis for P; following the conventions of [Soe,
Theorem 4.3] we will denote this family of elements by tPA : A P A u. (Note that
this terminology might be misleading: tPA : A P A u is not a Zrv˘1s-basis of P,
but of a certain submodule.)

Lusztig conjectured (see the last three paragraphs of the introduction to [L2])
that the canonical basis determines the characters of indecomposable projective
modules, as follows:

qA “ pP Âqv ÞÑ1.

(Here, given R “
ř

pAA P P, Rv ÞÑ1 “
ř

pAp1qA P ZrA s denotes its specialisation

at v “ 1, and A ÞÑ Â is a simple operation on alcoves, whose definition is recalled in
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Section 2.) See also [F1, §3] for the relation with Lusztig’s original conjecture [L1]
for characters of the modules Lpλq.

In this paper, we define the p-canonical basis tpPA : A P A u in the periodic
module P, and we prove that it can be used to compute the elements qA, as follows.

Theorem 1.2. Assume p ě 2h´ 1. Then for any alcove A we have

qA “ p
pP Âqv ÞÑ1.

1.5. Spherical and antispherical modules. Theorem 1.2 will be obtained as a
consequence of a relation between the p-canonical bases in two other H-modules,
namely the (twisted) spherical and the antispherical modules. We will denote by
pHw : w P W q the Kazhdan–Lusztig basis of H, see [Soe, Theorem 2.1], and by
ppHw : w PW q its p-canonical basis (see [JW, RW1]).

The antispherical module Masph is defined as

Masph “ sgnbHf
H

where Hf is the Hecke algebra of pWf , Sfq (which is a subalgebra in H in a natural
way), and sgn is the right Hf -module defined as Zrv˘1s with Hs acting as mul-
tiplication by ´v for s P Sf . This module has a standard basis pNw : w P fW q
parametrized by the subset fW Ă W consisting of elements w which are minimal
in Wfw, where Nw :“ 1bHw. It also has a Kazhdan–Lusztig basis pNw : w P fW q
and a p-canonical basis ppNw : w P fW q, where

Nw “ 1bHw,
pNw “ 1b pHw.

The subset A ` of A corresponding to fW under the bijection (1.1) consists of
the alcoves contained in the dominant Weyl chamber C`; hence we will rather
parametrize these bases by A ` and denote them pNA : A P A `q, pNA : A P A `q

and ppNA : A P A `q.
On the other hand, for λ P X we denote by λ the unique element in AfundXpW ¨λq,

and let Wλ ĂW denote its isotropy group. This is a standard parabolic subgroup
of W isomorphic to Wf ; we denote by Sλ :“ SXWλ its subset of simple reflections,
and by Hλ Ă H the associated Hecke algebra. Let trivλ denote the “trivial” right
Hλ-module (defined as Zrv˘1s, with Hs acting as multiplication by v´1 for s P Sλ),
and set

Msph

λ
:“ trivλ bHλ

H.

Then Msph

λ
has a standard basis pMλ

w :“ 1 bHw : w P λW q parametrized by the

subset λW ĂW consisting of elements w which are minimal in Wλw.
If wλ is the longest element in Wλ, then the map 1 b h ÞÑ Hwλ

¨ h provides an

embedding

(1.2) ζλ : Msph

λ
ãÑ H.

For any w P λW , the element Hwλw
, resp. pHwλw

, belongs to the image of ζλ, and

if we denote by Mλ
w, resp. pMλ

w, its preimage in Msph

λ
, then pMλ

w : w P λW q and

ppMλ
w : w P λW q are bases of Msph

λ
, called the Kazhdan–Lusztig and the p-canonical

basis respectively.
Recall that the set A also admits a natural right action of W ; through the

identification (1.1) this action corresponds to the right multiplication of W on
itself, and will be denoted pA, xq ÞÑ A ¨x. Then the assignment w ÞÑ pλ`Afundq ¨w
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identifies λW with the subset A `
λ Ă A consisting of alcoves contained in λ` C`.

In this way the bases of Msph

λ
considered above can be labelled by A `

λ , and will be

denoted pMλ
A : A P A `

λ q and ppMλ
A : A P A `

λ q. (Note that this labelling depends

on λ, not only on λ.)

Remark 1.3. The bases pNw : w P fW q and pMλ
w : w P λW q coincide with the

bases considered in [Soe, Theorem 3.1] (for the parabolic subgroups Wf and Wλ

respectively), see [Soe, Proof of Proposition 3.4]. In case λ “ λ “ 0, we will write

Msph for Msph
0 , Mw for M0

w, Mw for M0
w, and pMw for pM0

w.

1.6. Outline of the proof of Theorem 1.2. Let λ P X be such that λ`xpAfundq

belongs to C` for all x P Wf . It is easily seen that the assignment 1 b h ÞÑ
Nλ`Afund

¨ h induces an H-module morphism

ϕλ : Msph

λ
ÑMasph.

Now we assume (for simplicity) that G is semisimple, and specialize to the case
λ “ ρ. The key step in our approach to Theorem 1.2 is the following claim.

Theorem 1.4. Assume that p is good for G. Then for any A P A `
ρ we have

ϕρp
pMρ

Aq “
pNA.

Remark 1.5. (1) In the body of the paper, we find it more convenient to work
with the extended affine Hecke algebra and its spherical/antispherical mod-
ules. This allows us to remove some of the twistings above.

(2) Our proof of Theorem 1.4 also applies to the Kazhdan–Lusztig bases, and
shows that for any A P A `

ρ we have ϕρpM
ρ
Aq “ NA. This fact could have

been stated many years ago (since it does not involve the p-canonical bases
in any way), but seems to be new. A direct combinatorial proof of this
formula (explained to us by Wolfgang Soergel) is provided in Section 6.

Theorem 1.4 is obtained as a “combinatorial trace” of a statement of categori-

cal nature. Namely, the modules Msph
ρ and Masph can be “categorified” via some

categories of parity complexes (in the sense of [JMW]) on the affine flag variety

of the Langlands dual group G_: Msph
ρ corresponds to (twisted) spherical par-

ity complexes, while Masph corresponds to Iwahori–Whittaker2 parity complexes.
The morphism ϕρ can also be categorified by a functor Φρ, given by convolution
with a certain object. We then prove that this functor is full (but not faithful); in
particular, as both categories involved are Krull-Schmidt, it must send indecom-
posable objects to indecomposable objects, and Theorem 1.4 follows. This fullness
result is deduced from a similar result in the case where the affine flag variety is
replaced by the affine Grassmannian of G_ (in which case the corresponding func-
tor is even an equivalence of categories) proved recently by the first author with R.
Bezrukavnikov, D. Gaitsgory, I. Mirković and L. Rider, see [BGMRR].

Once Theorem 1.4 is proved, we deduce Theorem 1.2 from the fact that the
p-canonical basis of Masph encodes the characters of indecomposable tilting G-
modules (as proved in joint work with P. Achar and S. Makisumi [AMRW]) and

2This construction is a “finite-dimensional” and geometric counterpart for the classical (and
very useful!) Whittaker constructions in representation theory of p-adic groups; see in particu-

lar [BBM, BY, BGMRR].
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a result of Jantzen [J1] (in the interpretation of Donkin [Do]) saying that if the
highest weight of an indecomposable tilting module is of the form pp´1qρ`µ with
µ dominant and p-restricted, then this tilting module is indecomposable as a G1T -
module. It is well known (and easy to check) that these modules are projective
over G1T ; this therefore provides a useful relation between indecomposable tilting
modules for G and indecomposable projective modules for G1T , which allows us to
deduce Theorem 1.2 from Theorem 1.4 and the results of [AMRW].

Remark 1.6. A conjecture by Donkin states that Jantzen’s result recalled above
should be true in any characteristic, which would imply that Theorem 1.2 holds as
soon as p ą h. Very recent work of Bendel–Nakano–Pillen–Sobaje [BNPS] shows
that this conjecture is not true in full generality. It is currently not known whether
the condition that p ą h is sufficient to ensure that this conjecture holds (which
would be sufficient for our purposes).

1.7. Computational complexity. Let us return briefly to our earlier claim that
our formula is potentially useful in practice. In all known algorithms to compute
a p-canonical basis element pHw, pNw, pMw etc. the computational complexity is
exponential in the length of w. For a character formula involving these data to
be computable in practice, it must therefore only involve elements whose length is
small (or at least as small as possible). In the following, we compare the lengths
involved in the computation based directly on the approach of Andersen [An] (see
also [Sob]) and our formula.

We use G “ Sp4 as a running example.3 Here are the first few dominant alcoves:

By Steinberg’s tensor product theorem, it is enough to know the characters of the
simple modules corresponding to the shaded alcoves.

As we explained above, Brauer–Humphrey’s reciprocity combined with a result
of Donkin (assuming p ě 2h ´ 2) allows us to rephrase this question in terms of
the characters of indecomposable tilting modules indexed by the following shaded

3This choice is made only so that we can draw pictures. The case of G “ Sp4 can easily be

settled by classical techniques, e.g. the Jantzen sum formula.
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alcoves:

A

D

The main theorem of [AMRW] (see also [RW2]) asserts that the character of the
indecomposable tilting module attached to an alcove A P A ` is calculated by the
element pNw for w PW such that wpAfundq “ A.

This looks innocent enough in this example, however for a general group the
smallest and largest alcoves in this set (marked A and D above) correspond to
elements of fW of lengths

(1.3) 2xρ_, ρy “
ÿ

αP∆`

htpαq and 4xρ_, ρy ´ `pwfq “ 2

˜

ÿ

αP∆`

htpαq

¸

´ `pwfq.

(Here ∆` Ă ∆ denotes the subset of positive roots, ht denotes height, ρ_ denotes
the halfsum of the positive coroots and wf denotes the longest element of Wf . This
formula is easily deduced from standard formulas for the length function in affine
Weyl groups, see [IM, Proposition 1.23].) These numbers grow fast in the rank of
the group, and soon exceed current computational capability.

The main technical result of this paper (Theorem 1.4) says that the span of the
p-canonical basis elements indexed by the following shaded alcoves

in the anti-spherical module Masph yield a submodule isomorphic to the (twisted)

spherical module Msph
ρ , and moreover that this inclusion preserves the p-canonical

basis. In other words, for the tilting characters that concern us above, it is enough
to calculate the p-canonical basis elements for the following shaded alcoves in the



8 SIMON RICHE AND GEORDIE WILLIAMSON

(twisted) spherical module:

This is computationally a much simpler prospect, because the elements involved
are shorter; the elements we have to consider range from length 0 to

(1.4) 2xρ_, ρy ´ `pwfq “

˜

ÿ

αP∆`

htpαq

¸

´ `pwfq.

(That is, we have improved (1.3) by a constant factor of 2xρ_, ρy.)

1.8. Acknowledgements. Part of the work on this paper was done while the first
author was a member of the Freiburg Institute for Advanced Studies, as part of the
Research Focus “Cohomology in Algebraic Geometry and Representation Theory”
led by A. Huber–Klawitter, S. Kebekus and W. Soergel. We thank H. H. Ander-
sen, G. Lusztig and the referees for their helpful suggestions. A special thanks to
W. Soergel for providing the proof explained in Section 6.

2. The periodic module

2.1. Extended affine Weyl group. As in §1.2 we consider a connected reductive
algebraic group G with simply-connected derived subgroup over an algebraically
closed field k of characteristic p ą 0, with a fixed choice of maximal torus and
Borel subgroup T Ă B Ă G. We set X :“ X˚pT q, and denote by ∆ Ă X the root
system of pG,T q, by ∆` Ă ∆ the positive system consisting of the opposites of the
T -weights in the Lie algebra of B, by Σ Ă ∆ the corresponding subset of simple
roots, by Wf and W “ Wf ˙ Z∆ the Weyl group and the affine Weyl group, and
finally by Sf and S their subsets of simple roots, see e.g. [J2, Chap. 6]. (Here, “f”
stands for “finite.”)

By a result of Iwahori–Matsumoto [IM], the length function associated with the
Coxeter system pW,Sq satisfies

(2.1) `pw ¨ tλq “
ÿ

αP∆`

wpαqP∆`

|xλ, α_y| `
ÿ

αP∆`

wpαqP´∆`

|1` xλ, α_y|

for w P Wf and λ P Z∆. (Here, to avoid confusion, the image of λ P Z∆ in W is
denoted tλ.) We will also consider the extended affine Weyl group

Wext :“Wf ˙X.

The formula (2.1) defines a function ` : Wext Ñ Z, and we set Ω :“ tw P Wext |

`pwq “ 0u. Then it is known that Ω is a subgroup of Wext, and that multiplication
induces a group isomorphism

Ω˙W
„
ÝÑWext.
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More precisely, conjugation by any element of Ω defines a Coxeter group automor-
phism of W ; in other words it stabilizes S (hence preserves lengths). It is known
also that the composition

(2.2) Ω ãÑWext “W ˙X � X � X{Z∆

is a group isomorphism. (In particular, Ω is abelian.)
We consider the action of W and Wext on V :“ R bZ X as in [Soe, Section 4],

and denote by A the set of alcoves in V (i.e. the connected components of the
complement of the union of the reflection hyperplanes associated with the action
of W ) and by Afund P A the fundamental alcove, defined as

Afund “ tv P V | @α P ∆`, 0 ă xv, α_y ă 1u.

The action of Wext on V preserves alcoves, hence induces an action on A . Moreover
the assignment w ÞÑ wAfund induces a bijection W

„
ÝÑ A , see (1.1). If we denote

by A ` Ă A the subset of alcoves contained in the dominant chamber (denoted C
in [Soe]), then this bijection restricts to a bijection

(2.3) fW
„
ÝÑ A `

where fW is as in §1.5.

Remark 2.1. The subset Ω ĂWext can be characterized as consisting of the elements
w P Wext such that wpAfundq “ Afund. For any λ P X, the subset λ ` Afund is an
alcove, so that there exists xλ P W such that xλpAfundq “ λ ` Afund, see (1.1).
Then ωλ “ pxλq

´1 ¨ tλ belongs to Ω, and has image λ ` Z∆ under (2.2). This
procedure realizes the isomorphism inverse to (2.2). It also allows us to associate
to any λ P X a Coxeter group automorphism τλ of W , given by conjugation by ωλ
in Wext. With this notation, the subset Sλ of §1.5 is given by Sλ “ τλpSfq.

2.2. More about alcoves. Using again the identification (1.1) we may transport
the Bruhat order on W to obtain a partial order on A , which we also denote by
ď. We define the generic order on A by

A ď B if A`mγ ď B `mγ for all strictly dominant γ and m " 0.

Equivalently, the generic order is uniquely determined by the fact that it agrees
with the Bruhat order on A ` and is invariant under translation by X.

For any µ P X we will consider the following subsets of V :

Π̌µ :“ tv P V | xµ, α_y ´ 1 ă xv, α_y ď xµ, α_y for all α P Σu,

Π̂µ :“ tv P V | xµ, α_y ď xv, α_y ă xµ, α_y ` 1 for all α P Σu.

Note that for µ, ν P X we have

(2.4) Π̌µ “ Π̌ν ô Π̂µ “ Π̂ν ô
`

@α P ∆, xµ´ ν, α_y “ 0
˘

.

The set Π̂0 is often called the “fundamental box.” (It is denoted Π in [Soe, §4].)

The notation is intended to suggest that Π̌µ (resp. Π̂µ) is “the fundamental box
below (resp. above) µ.”

Given any alcove A P A there exists µ P X such that A Ă Π̌µ. The stabiliser of
µ in W is then tµWft´µ. We define

Â :“ ptµwft´µqpAq,

where wf is the longest element in Wf . From (2.4) we see that Â does not depend on

the choice of µ, that Â Ă Π̂µ, and that A ÞÑ Â is a bijection A
„
ÝÑ A . We denote
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its inverse by A ÞÑ Ǎ. (These operations agree with the maps denoted similarly
in [Soe], see [Soe, Comments before Lemma 4.21].)

2.3. The periodic module and its canonical basis. The periodic module P is
the right H-module (where, as in Section 1, H is the Hecke algebra of the Coxeter
system pW,Sq) defined as follows. As a Zrv˘1s-module, P is free with basis the set
of alcoves:

P :“
à

APA

Zrv˘1sA.

The structure of a right H-module on P is characterized by the following formulas
for s P S:

(2.5) A ¨Hs “

#

As` vA if A ď As;

As` v´1A if As ď A,

see [Soe, Lemma 4.1]. (Here, Hs “ Hs ` v).
The action of X on A by translations extends to an action of X on P: namely,

given R “
ř

pAA P P, set R ` µ :“
ř

pApµ ` Aq. This action does not commute
with the H-action; it rather satisfies the following relation for all h P H:

(2.6) pR ¨ hq ` µ “ pR` µq ¨ τµphq,

where we still denote by τµ the automorphism of H defined by τµpHwq “ Hτµpwq.
As in §1.4 we denote by tPA : A P A u the canonical basis of P. Then for any

µ P X we have

PA`µ “ PA ` µ(2.7)

(see [Soe, Comments before Proposition 4.18]) and

(2.8) PAfund`µ
“

ÿ

xPWf

v`pxq ¨
`

xpAfundq ` µ
˘

(see [Soe, Proof of Proposition 4.16]).
We now recall a crucial observation of Lusztig. Recall the embedding ζµ :

Msph
µ Ñ H from (1.2). By [L2, Theorem 5.2] we then have the following formula,

where we set πf :“ v´`pwf q
ř

xPWf
v`pxq.

Lemma 2.2. Let A P A , let µ P X be such that A Ă Π̂µ, and let w P W be the
unique element such that pµ`Afundq ¨ w “ A. Then we have

PA “
1

πf
PAfund`µ

¨ ζµpM
µ
wq.

Remark 2.3. The formula in Lemma 2.2 is compatible with (2.7) in view of (2.6).

2.4. The p-canonical basis of the periodic module. The usual procedure to
define a p-canonical basis of an H-module (see [JW, RW1, AR]) is to start with a
categorification of this module in terms of a C-linear category (in practice, either
via some diagrammatic category or some category of parity complexes) such that
the classes of indecomposable objects correspond to the Kazhdan–Lusztig basis,
and then to replace (in some appropriate way) the coefficients C by a field of
characteristic p. In the case of the periodic module, the known categorifications
involve semi-infinite geometry, and are beyond the authors’ present understanding
of the subject. So we will use a different strategy to define this basis: we will start

with the formula of Lemma 2.2, and replace there the canonical basis of Msph
µ by
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the p-canonical version. We expect that any reasonable categorification of P with
characteristic-p coefficients should provide the same basis as the one constructed
here.

Namely, for A P A , we choose µ P X such that A Ă Π̂µ, and let w P W be the
unique element such that pµ`Afundq ¨ w “ A. Then we set

pPA :“
1

πf
PAfund`µ

¨ ζµp
pMµ

wq.

The following properties are easy to check (using in particular (2.6) and the fact

that τµ “ τν if Π̂µ “ Π̂ν , as follows from (2.4)):

(1) for any h P Msph
µ the element PAfund`µ

¨ ζµphq belongs to πf ¨ P, so that
pPA belongs to P;

(2) the element pPA does not depend on the choice of µ;
(3) for any ν P X we have

(2.9) pPA`ν “
pPA ` ν.

It can also be shown (although this is less obvious, and will not be proved here)
that for any alcove A we have

pPA P
ÿ

BPA

Zě0rv
˘1s ¨ PB .

3. The extended affine Hecke algebra and its spherical and
antispherical modules

3.1. The spherical and antispherical modules. We continue with the notation
of Section 2, and fix a weight ς P X such that xς, α_y “ 1 for any α P Σ. (Such a
weight exists thanks to our assumption on the derived subgroup of G. However, it
might not be unique.)

As mentioned in Remark 1.5, to avoid difficulties related to the twists τλ, it
will be more convenient to work with the Hecke algebra Hext associated with the
“quasi-Coxeter” group Wext (see §2.1), i.e. the Zrv˘1s-algebra with a “standard”
basis consisting of elements pHw : w P Wextq, with multiplication characterized by
the following relations:

(1) pHs ` vq ¨ pHs ´ v
´1q “ 0 for s P S;

(2) Hx ¨Hy “ Hxy if x, y PWext and `pxyq “ `pxq ` `pyq.

The algebra Hext contains H as a subalgebra (spanned by the elements Hw with
w P W ). Inducing from Hf to Hext the modules considered in §1.5, we obtain the
right Hext-modules

Msph
ext :“ triv0 bHf

Hext and Masph
ext :“ sgnbHf

Hext,

which are called the spherical and antispherical module respectively.
We denote by fWext Ă Wext the subset consisting of elements w which are of

minimal length in the coset Wfw (in other words, of the form wω with w P fW and
ω P Ω). Then for w P fWext we set

Mw :“ 1bHw PMsph
ext , Nw :“ 1bHw PMasph

ext .

The collections pMw : w P fWextq and pNw : w P fWextq are Zrv˘1s-bases of Msph

and Masph respectively (called again the standard bases). Of course there are

natural embeddings Msph ãÑMsph
ext and Masph ãÑMasph

ext , such that the elements
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denoted Mw, resp. Nw, in §1.5 (see Remark 1.3) correspond to the elements denoted
similarly here.

Remark 3.1. Let λ P X, and consider the associated element ωλ P Ω, see Re-
mark 2.1. Then the map h ÞÑ Hω´1

λ
¨ h induces an embedding of right H-modules

Msph

λ
ãÑ Msph

ext . In this way, one can consider Msph
ext as the result of “gluing to-

gether” all the modules Msph

λ
from the introduction.

3.2. Kazhdan–Lusztig and p-canonical bases. Via the natural embeddings

H ãÑ Hext, Msph ãÑ Msph
ext and Masph ãÑ Masph

ext , the Kazhdan–Lusztig and p-

canonical bases of H, Msph and Masph define families of elements in Hext, Msph
ext

and Masph
ext . We complete these families into bases by setting, for w PW and ω P Ω,

Hwω :“ Hw ¨Hω,
pHwω :“ pHw ¨Hω,

Mwω :“Mw ¨Hω,
pMwω :“ pMw ¨Hω,

Nwω :“ Nw ¨Hω,
pNwω :“ pNw ¨Hω.

(It can be easily checked that we also have Hωw “ HωHw and pHωw “ Hω
pHw for

any ω P Ω and w PW .)
Let us recall the following well-known property of the Kazhdan–Lusztig basis.

Lemma 3.2. Let w PWext and s P S. If `pwsq ă `pwq, then

Hw ¨Hs “ pv ` v
´1q ¨Hw.

As in the setting of §1.5 we have an Hext-module morphism

ξ : Hext ÑMasph
ext

defined by ξphq “ Nid ¨ h. This morphism is clearly surjective; moreover, for w P
Wext we have

ξpHwq “

#

Nw if w P fWext;

0 otherwise,
ξppHwq “

#

pNw if w P fWext;

0 otherwise

(see [RW1] for details).
Now, let wf be the longest element in Wf . Consider the endomorphism of Hext

(as a right Hext-module) sending h to Hwf
¨ h. It follows from Lemma 3.2 that this

morphism factors through a morphism

(3.1) ζ : Msph
ext Ñ Hext.

This morphism is injective, and satisfies

(3.2) ζpMwq “ Hwfw
, ζppMwq “

pHwfw

for any w P fWext. In particular, for ω P Ω we have

(3.3) ζpMωq “ Hwf
¨Hω “

ÿ

zPWf

v`pwf q´`pzqHzω

(where the second equality uses [Soe, Proposition 2.9]).

Remark 3.3. Recall that for any w PWext, there exists Kw P Zě0 such that pHw “

Hw for any prime number p such that p ě Kw. (However, determining Kw is a

very difficult task.) A similar claim holds for the p-canonical bases in Masph
ext and

Msph
ext .
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3.3. Statement. We can now state a version of Theorem 1.4 in terms of the ex-
tended affine Hecke algebra (and for reductive groups which are not necessarily
semisimple).

The statement will involve the element considered in the following lemma. (Here
the second equality follows from [Soe, Lemma 5.7]. We will give a (geometric) proof
of both equalities in §4.2 below.)

Lemma 3.4. We have

(3.4) pN tς
“ N tς

“
ÿ

zPWf

v`pzqNtς ¨z.

Moreover, for any s P Sf we have

N tς
¨Hs “ pv ` v

´1q ¨N tς
.

Note for later use that, if ω P Ω, multiplying (3.4) on the right by Hω we obtain
that

(3.5) pN tςω
“ N tςω

“
ÿ

zPWf

v`pzqNtςzω.

Lemma 3.4 shows that the map Hext Ñ Masph
ext defined by h ÞÑ N tς

¨ h factors
through a morphism of right Hext-modules

(3.6) ϕ : Msph
ext ÑMasph

ext .

The main technical result of the paper is the following.

Theorem 3.5. Assume that p is good for G. Then for any w P fWext we have

ϕppMwq “
pN tς ¨w

.

Remark 3.6. (1) Theorem 3.5 implies in particular that ϕ is injective. (Of
course, this can also be seen more directly.)

(2) To deduce Theorem 1.4 from Theorem 3.5, one simply observes that ϕ

restricts to a morphism of right H-modules from the submodule of Msph
ext

generated by Nω´1
ς

to Masph. Now the latter submodules identifies with

Msph
ς (see Remark 3.1), so that Theorem 1.4 becomes the special case of

Theorem 3.5 when w P ω´1
ς W .

4. Proof of Theorem 3.5

4.1. Categorification and p-canonical bases. The proof of Theorem 3.5 will
use the geometric description of the p-canonical bases in terms of parity complexes,
which we now recall. For this we need to choose a field K of coefficients for the
parity complexes, which should be of characteristic p but might differ from k. In
fact, for technical reasons we will take for K a finite field. We also choose a prime
number ` ‰ p, and assume that K contains a nontrivial `-th root of unity.

We now fix an algebraically closed field F of characteristic `. Let G_ be the
connected reductive algebraic group over F which is Langlands dual to G. By
definition, this group comes with a maximal torus T_ Ă G_ whose cocharacter
lattice is X. We will denote by B_ Ă G_ the Borel subgroup containing T_ whose
T_-weights are the negative coroots of pG,T q. We set K :“ Fppzqq, O :“ Frrzss,
and denote by G_K , resp. G_O , the ind-group scheme, resp. group scheme, over F
which represents the functor R ÞÑ G_

`

Rppzqq
˘

, resp. R ÞÑ G_
`

Rrrzss
˘

. We also
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denote by I_ Ă G_K the Iwahori subgroup, i.e. the inverse image of B_ under the
evaluation morphism G_O Ñ G_. We then consider the affine flag variety

Fl :“ G_K {I
_.

Following [JMW] we can consider the category ParityI_pFl,Kq of I_-equivariant
parity (étale) K-complexes on Fl. The I_-orbits on Fl are parametrized in a
natural way by Wext; we will denote by Flw the orbit corresponding to w (so
that dimpFlwq “ `pwq). For any w P Wext, there exists a unique indecompos-

able parity complex Ew on Fl which is supported on Flw and whose restriction to
Flw is KFlw

r`pwqs. Then the assignment pw, nq ÞÑ Ewrns defines a bijection be-
tween Wext ˆ Z and the set of isomorphism classes of indecomposable objects in
ParityI_pFl,Kq.

The usual convolution construction endows ParityI_pFl,Kq with the structure of
a monoidal category. (The fact that a convolution of parity complexes is parity is
proved in [JMW, §4.1].) In particular, the split Grothendieck group

rParityI_pFl,Kqs

has a natural product; we will in fact view this ring as a Zrv˘1s-algebra, where v
acts via the automorphism induced by the cohomological shift r1s. It is well known
(see [Sp, JMW, JW]) that there exists a unique Zrv˘1s-algebra isomorphism

(4.1) Hext
„
ÝÑ rParityI_pFl,Kqs

sending Hs to rEss for any s P S and Hω to rEωs for any ω P Ω. Then for w PWext,
the element pHw is the inverse image of rEws under (4.1), see e.g. [RW1, Part 3].
Recall also that the p-Kazhdan–Lusztig polynomials are the elements pphy,wqy,wPWext

of Zrv˘1s such that
pHw “

ÿ

yPWext

phy,w ¨Hy.

In order to categorify the module Masph
ext , we consider the category of “Iwahori–

Whittaker” parity complexes ParityIWpFl,Kq on Fl. These objects are defined using
the action of the unipotent radical I_,`u of the Iwahori subgroup I_,` associated
with the Borel subgroup B_,` of G_ which is opposite to B_ with respect to T_;
see [RW1, §11] for details. (Here we use our assumption on `-th roots of unity
in K.) The I_,`u -orbits on Fl are parametrized in a natural way by Wext; but
only those corresponding to elements in fWext support nonzero Iwahori–Whittaker
local systems. Therefore the isomorphism classes of indecomposable objects in
ParityIWpFl,Kq are naturally in bijection with fWext ˆ Z; we will denote by EIW

w

the object associated with pw, 0q.
The convolution construction defines a right action of the monoidal category

ParityI_pFl,Kq on the category ParityIWpFl,Kq, and there exists a unique isomor-
phism of right Hext-modules

(4.2) Masph
ext

„
ÝÑ rParityIWpFl,Kqs

sending Nid to EIW
id . Then for w P fWext,

pNw is the inverse image of rEIW
w s under

this isomorphism, see [RW1, §11].

Finally, we explain the categorification of Msph
ext . We consider the “opposite affine

Grassmannian”

Grop :“ G_OzG
_
K .
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This variety admits an action of I_ induced by right multiplication on G_K , and
we can consider the corresponding category of parity complexes ParityI_pGr

op,Kq.
The I_-orbits on Grop are parametrized by fWext; therefore the indecomposable
objects in ParityI_pGr

op,Kq are parametrized in a natural way by fWext ˆ Z. The
object associated with pw, 0q (for w P fWext) will be denoted Fw.

Again, the convolution construction defines a right action of the monoidal cat-
egory ParityI_pFl,Kq on the category ParityI_pGr

op,Kq, and there exists a unique
isomorphism of right Hext-modules

Msph
ext

„
ÝÑ rParityI_pGr

op,Kqs
sending Mid to Fid. Using [ACR, Lemma A.5] and the construction of the p-

canonical basis in Msph
ext , one can check that, for w P fWext,

pMw is the inverse
image of rFws under this isomorphism.

4.2. Parity complexes on affine Grassmannians. From now on we assume
that p is good for G.

Consider the “usual” affine Grassmannian

Gr :“ G_K {G
_
O ,

and the G_O-equivariant constructible derived category Db
G_O
pGr,Kq. This category

possesses a natural perverse t-structure, whose heart will be denoted PervG_O pGr,Kq.
Under our assumptions that p is good for G (equivalently, for G_) and that G

has a simply-connected derived subgroup (so that the quotient of X˚pT_q by the
coroot lattice of G is torsion-free), it is known that the equivariant cohomology
H‚G_ppt;Kq “ H‚G_O

ppt;Kq vanishes in odd degrees; see e.g. [JMW, §2.6] or [MR,

§3.2] for references. Therefore, the theory developed in [JMW] applies in this
context, and we will denote by ParityG_O pGr,Kq the corresponding category of parity

complexes.
For λ P X, we set Lλ :“ zλ ¨G_O P Gr. Then the assignment λ ÞÑ G_O ¨Lλ induces

a bijection between X` and the set of G_O-orbits on Gr. Therefore, the isomorphism
classes of indecomposable objects in ParityG_O pGr,Kq are parametrized in a natural

way by X`ˆZ; for λ P X` we will denote by Esph
λ the object associated with pλ, 0q.

The following result is proved in [JMW2] under some technical assumptions, and
in [MR, Corollary 1.6] in the present generality. (This claim is known to be false if
we remove the assumption that p is good for G, see [JMW2].)

Theorem 4.1. For any λ P X`, the object Esph
λ is perverse.

Remark 4.2. From the combinatorial point of view, this theorem says that if w P
Wext is maximal in WfwWf , then pHw belongs to

À

y Z ¨Hy.

The other result which we will need is the main result of [BGMRR]. Here
we consider the Iwahori–Whittaker derived category of sheaves on Gr, denoted
Db

IWpGr,Kq. This category is endowed with the perverse t-structure, whose heart
will be denoted PervIWpGr,Kq. This abelian category admits a natural structure
of highest weight category (in the sense considered e.g. in [Ri, §7]), and moreover
the realization functor provides an equivalence of triangulated categories

DbPervIWpGr,Kq
„
ÝÑ Db

IWpGr,Kq.
The I_,`u -orbits on Gr are parametrized by X, and those which support a nonzero

Iwahori–Whittaker local system are the ones parametrized by elements in ς `X`
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(i.e. by strictly dominant weights). In particular, no orbit in the boundary of the
orbit associated with ς supports such a local system; therefore the corresponding
standard perverse sheaf is simple, and isomorphic to the associated costandard
perverse sheaf (see [BGMRR, Equation (3.2)]). Hence this object is also parity,
and will be denoted FIW

ς .
The following result is proved in [BGMRR]. (The first claim holds without any

assumption on p; however for the second assertion we need the restriction that p is
good.) Here we denote by ‹G

_
O the natural convolution bifunctor

Db
IWpGr,Kq ˆDb

G_O
pGr,Kq Ñ Db

IWpGr,Kq

(see [BGMRR] for details).

Theorem 4.3. The functor

Ψ : Db
G_O
pGr,Kq Ñ Db

IWpGr,Kq

defined by ΨpFq “ FIW
ς ‹G

_
O F is t-exact for the perverse t-structures, and restricts

to an equivalence of categories PervG_O pGr,Kq
„
ÝÑ PervIWpGr,Kq. Moreover, for

any λ P X, the object ΨpEsph
λ q is a tilting perverse sheaf.

The consequence of Theorems 4.1 and 4.3 that we will use below is the following.

Corollary 4.4. For any G,G1 in ParityG_O pGr,Kq, the morphism

HomDb
G_

O
pGr,KqpG,G1q Ñ HomDb

IWpGr,KqpΨpGq,ΨpG
1qq

induced by Ψ is surjective.

Proof. Any object of ParityG_O pGr,Kq is a direct sum of cohomological shifts of

objects of the form Esph
λ (with λ P X`); therefore to prove the corollary it suffices

to prove that for any λ, µ P X` and n P Z the functor Ψ induces a surjection

(4.3) HomDb
G_

O
pGr,KqpE

sph
λ , Esph

µ rnsq Ñ HomDb
IWpGr,KqpΨpE

sph
λ q,ΨpEsph

µ qrnsq.

Now, by Theorem 4.3 the objects ΨpEsph
λ q and ΨpEsph

µ q are tilting perverse sheaves;

therefore the right-hand side vanishes unless n “ 0. And if n “ 0, since Esph
λ and

Esph
µ are perverse, and since Ψ restricts to an equivalence on perverse sheaves, the

map (4.3) is an isomorphism in this case. �

We can now give the proof of Lemma 3.4.

Proof of Lemma 3.4. One can easily check using (2.1) (and the fact that `pxq “
`px´1q for any x PWext) that tς is of maximal length in tς ¨Wf . Therefore, the I_,`u -
orbit in Fl associated with tς is the inverse image under the projection π : FlÑ Gr of
the orbit of Lς . Using [ACR, Lemma A.5] we deduce that EIW

tς “ π˚pFIW
ς qr`pwfqs.

It follows that pN tς
“
ř

zPWf
v`pzqNtς ¨z, and that for any s P Sf we have pN tς

¨Hs “

pv ` v´1q ¨ pN tς
. The claims about N tς

follow, taking p " 0 (see Remark 3.3). �
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4.3. Fullness. To prove Theorem 3.5 we will consider a categorification of ϕ. For
this, we work with the G_O-equivariant derived category Db

G_O
pFl,Kq. This cate-

gory admits a right action of the I_-equivariant derived category Db
I_pFl,Kq (by

convolution, as usual), and it is clear that there exists a canonical equivalence of
triangulated categories

ı : Db
I_pGr

op,Kq „ÝÑ Db
G_O
pFl,Kq

sending Fid to KG_O{I_r`pwfqs (where Grop is as in §4.1) and commuting with the

right actions of Db
I_pFl,Kq on both sides. Moreover, the theory of parity com-

plexes from [JMW] applies in Db
G_O
pFl,Kq also, and ı restricts to an equivalence of

categories

ıPar : ParityI_pGr
op,Kq „ÝÑ ParityG_O pFl,Kq,

where in the right-hand side ParityG_O pFl,Kq means the full subcategory of parity

complexes in Db
G_O
pFl,Kq. In particular, the indecomposable objects in the category

ParityG_O pFl,Kq are the objects ıpFwqrns for w P fWext and n P Z, and we have a

canonical isomorphism

Msph
ext

„
ÝÑ rParityG_O pFl,Kqs

sending pMw to rıpFwqs for any w P fWext.
We now consider the functor

Φ : Db
G_O
pFl,Kq Ñ Db

IWpFl,Kq

defined by

ΦpFq “ FIW
ς ‹G

_
O F ,

where ‹G
_
O now denotes the natural convolution bifunctor

Db
IWpGr,Kq ˆDb

G_O
pFl,Kq Ñ Db

IWpFl,Kq.

Lemma 4.5. The functor Φ sends parity complexes to parity complexes. Moreover,
the map on split Grothendieck groups induced by the restriction

ΦPar : ParityG_O pFl,Kq Ñ ParityIWpFl,Kq

is ϕ.

Proof. The proof of the first claim is similar to that of [BGMRR, Lemma 4.14]. For
the second claim, we observe that the map induced by ΦPar is clearly a morphism of

right Hext-modules. Since Msph
ext is a cyclic module, this reduces the proof to check-

ing that the image of rKG_O{I_r`pwfqss corresponds to ϕpMeq “ N tς
under (4.2).

However we have

Φ
`

KG_O{I_r`pwfqs
˘

“ π˚pFIW
ς qr`pwfqs,

where π : Fl Ñ Gr is the projection. As observed in the proof of Lemma 3.4, the
right-hand side is EIW

tς , whose class in the Grothendieck group corresponds to pN tς
by definition. The claim follows, using the first equality in Lemma 3.4. �

The key step in our proof of Theorem 3.5 is the following claim.

Proposition 4.6. The functor ΦPar from Lemma 4.5 is full.
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Proof. It is easily seen that any object in ParityG_O pFl,Kq is a direct sum of direct

summands of objects of the form KG_O{I_ ‹
I_ E with E in ParityI_pFl,Kq, where

‹I
_

is the natural convolution bifunctor

ParityG_O pFl,Kq ˆ ParityI_pFl,Kq Ñ ParityG_O pFl,Kq.

Now any functor of the form p´q ‹I
_ E (with E in ParityI_pFl,Kq) admits a left

adjoint of the form p´q ‹I
_ E 1 with E 1 in ParityI_pFl,Kq, hence this remark reduces

the proof of fullness of ΦPar to proving that for any F in ParityG_O pFl,Kq the map

Hom‚Db
G_

O
pFl,KqpG,KG_O{I_q Ñ Hom‚Db

IWpFl,Kq
pΦpGq,ΦpKG_O{I_qq

induced by Φ is surjective. If π is as in the proof of Lemma 3.4 (or of Lemma 4.5),
then we have

KG_O{I_ “ π˚Esph
0 , ΦpKG_O{I_q “ π˚pFIW

ς q.

Since π˚ – π!r´2`pwfqs, using adjunction we deduce isomorphisms

Hom‚Db
G_

O
pFl,KqpG,KG_O{I_q – Hom

‚´2`pwf q

Db
G_

O
pGr,Kqpπ!pGq, Esph

0 q,

Hom‚Db
IWpFl,Kq

pΦpGq,ΦpKG_O{I_qq – Hom
‚´2`pwf q

Db
IWpGr,Kq

pπ!ΦpGq,FIW
ς q.

Now we have π!ΦpGq – Ψpπ!Gq, where Ψ is as in Theorem 4.3; hence we are reduced
to proving that the morphism

Hom‚Db
G_

O
pGr,Kqpπ!pGq, Esph

0 q Ñ Hom‚Db
IWpGr,Kq

pΨpπ!Gq,FIW
ς q

induced by Ψ is surjective. However, π!G is parity, so that the claim follows from
Corollary 4.4. �

4.4. Proof of Theorem 3.5. Since the functor Φ is a full functor between Krull-
Schmidt categories, it must send indecomposable objects to indecomposable ob-
jects. Indeed, this follows from the observation that any quotient of a local ring
is local. Using support considerations it is not difficult to deduce that for any
w P fWext we have

ΦpıpFwqq – EIW
tςw .

Passing to classes in the split Grothendieck group we deduce the formula of Theo-
rem 3.5.

5. Application: a character formula for simple G-modules

In this section we return to the setting of Sections 1–3; in particular, G is a
connected reductive algebraic group with simply connected derived subgroup over
an algebraically closed field k of characteristic p. We will assume that p ą h, where
h is the Coxeter number of G. (In particular, this condition implies that p is good
for G, so that Theorem 3.5 is applicable.)
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5.1. The tilting character formula. We set

Masph
ext :“ ZbZrv˘1sMasph

ext ,

where Z is considered as a Zrv˘1s-module via v ÞÑ 1. This Z-module is a right
module over

ZbZrv˘1s Hext “ ZrWexts.

We will denote by ReppGq the abelian category of finite-dimensional algebraic
G-modules. The simple objects in this category are labelled in a natural way by
the subset X` Ă X of dominant weights; as in §1.1 we will denote by Lpλq the
simple G-module of highest weight λ P X`.

We consider the dilated and shifted action of W on X defined by

w ¨p λ “ wpλ` ςq ´ ς, tµ ¨p λ “ λ` pµ

for w P Wf and λ, µ P X. (It is a classical fact that this action does not depend
on the choice of ς.) We then denote by Rep∅pGq the “extended principal block” of
ReppGq, i.e. the Serre subcategory generated by the simple objects Lpw ¨p 0q with
w P fWext. (Here, under our assumptions, for w P Wext we have w ¨p 0 P X` iff
w P fWext.)

For λ P X` we also denote by ∆pλq, ∇pλq and Tpλq the Weyl, induced, and
indecomposable tilting G-modules of highest weight λ (see [RW1, §3.1]). If λ “ w¨p0
for some w P fWext, then these objects belong to Rep∅pGq.

In the following lemma, T νµ is the translation functor from the µ-block to the
ν-block of ReppGq, see [J2, Chapter II.7]. See also Remark 2.1 for the definition of
ως .

Lemma 5.1. For any ω P Ω we have

Tppς ` ω ¨p 0q – T
ωςω¨p0

ως ¨pp´ςq

`

Lppp´ 1qςq
˘

.

Moreover, for any λ P X` we have

pTppς ` ω ¨p 0q : ∇pλqq “

#

1 if λ “ tςxω ¨p 0 for some x PWf ;

0 otherwise.

Proof. We have pς`ω ¨p 0 “ tςω
´1
ς ¨p pωςω ¨p 0q, and pp´ 1qς “ tςω

´1
ς ¨p pως ¨p p´ςqq.

Moreover, pς`ω ¨p 0 is maximal among the elements of the form tςω
´1
ς ¨p pωςxω ¨p 0q

with x PWf . Hence by [J2, Proposition E.11] we have

Tppς ` ω ¨p 0q – T
ωςω¨p0

ως ¨pp´ςq

`

Tppp´ 1qςq
˘

.

Now by [J2, Remark in §II.3.19], the Steinberg module Lppp´ 1qςq is isomorphic to
∆ppp´ 1qςq and to ∇ppp´ 1qςq, hence is tilting. It is also clearly indecomposable,
so that Tppp´ 1qςq “ Lppp´ 1qςq. The first claim follows.

The second claim follows from the first one (and the fact that Lppp ´ 1qςq “
∇ppp´ 1qςq) in view of [J2, Proposition II.7.13]. �

For any s P S we choose a weight µs as in [RW1, §3.1] (i.e. a “generic” weight on
the s-wall of the fundamental alcove for the dilated and shifted action) and consider
the exact selfadjoint endofunctor

Θs :“
à

ωPΩ

T
ω¨p0
ω¨pµsT

ω¨pµs
ω¨p0
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of Rep∅pGq. (Here the sum might be infinite but, for each object V of Rep∅pGq,
only finitely many of these functors applied to V do not vanish; so the functor Θs

is well defined.) If we denote by rRep∅pGqs the Grothendieck group of the abelian
category Rep∅pGq, and by rM s the class of an object M , then it is well known (see
e.g. [RW1, §1.2]) that the assignment 1bNw ÞÑ r∆pw ¨p 0qs “ r∇pw ¨p 0qs induces
an isomorphism of abelian groups

(5.1) Masph
ext

„
ÝÑ rRep∅pGqs.

Using [J2, Propositions II.7.11 and II.7.12] one can check that, under this identifi-
cation, the endomorphism of the right-hand side induced by Θs corresponds to the
action of p1` sq on the left-hand side.

The following statement was conjectured in [RW1] (see in particular [RW1, Corol-
lary 1.4.1]) and proved in [AMRW].

Theorem 5.2. Under the isomorphism (5.1), 1 b pNw is sent to rTpw ¨p 0qs for
any w P fWext.

Remark 5.3. In [RW1, AMRW] we work with W instead of Wext; but the extension
is immediate (see e.g. [AR]).

5.2. G1T -modules. Let 9G be the Frobenius twist of G, and let Fr : GÑ 9G be the
Frobenius morphism. We denote by G1 the kernel of Fr (a normal finite subgroup

scheme of G) and by G1T , resp. G1B
`, the inverse image of the Frobenius twist 9T

of T , resp. 9B` of B`, under Fr. (Here, B` is the Borel subgroup of G opposite to

B with respect to T .) We will identify the characters of 9T with X, in such a way

that the composition of the Frobenius morphism T Ñ 9T with the character λ of 9T
is the character pλ of T . We use similar conventions for 9B`.

We will denote by ReppG1T q the category of finite-dimensional algebraic G1T -
modules. As explained in [J2, Proposition II.9.6], the simple objects in ReppG1T q
are in a canonical bijection with X; the simple module corresponding to λ will be

denoted pLpλq. If λ is dominant and restricted then pLpλq is the restriction of Lpλq
to G1T , and if λ, µ P X we have

(5.2) pLpλ` pµq – pLpλq b k 9T pµq,

where k 9T pµq is seen as a G1T -module via the surjection G1T Ñ 9T . In particular,
these simple objects are completely determined by the objects pLpλq : λ P X`q.

The category ReppG1T q also contains the baby Verma modules

pZpλq “ CoindG1B
`

B`

`

kB`pλq
˘

for λ P X. With these conventions, we have a surjection of G1T -modules pZpλq �
pLpλq, see [J2, Proposition 9.6(d)]. We also have canonical isomorphisms

(5.3) pZpλ` pµq – pZpλq b k 9T pµq

for λ, µ P X.
The category ReppG1T q admits a “block” decomposition similar to that of

ReppGq; see e.g. [J2, §II.9.19]. Hence we can consider Rep∅pG1T q, the “extended
block” of the weight 0, i.e. the Serre subcategory generated by the simple objets
pLpλq with λ PWext ¨p 0. If λ PWext ¨p 0 then pZpλq also belongs to Rep∅pG1T q. It is
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clear from the Steinberg tensor product formula [J2, Proposition II.3.16] that the
restriction functor ReppGq Ñ ReppG1T q restricts to a functor

(5.4) Rep∅pGq Ñ Rep∅pG1T q.

The image of a G-module M under this functor will sometimes be denoted M|G1T .
As explained in [J2, §II.9.22], the translation functors can be canonically “lifted”

to the category ReppG1T q. In particular, this means that there exists an exact
selfadjoint endofunctor of Rep∅pG1T q, which for simplicity will also be denoted
Θs, and such that the following diagram commutes:

Rep∅pGq

(5.4)

��

Θs // Rep∅pGq

(5.4)

��
Rep∅pG1T q

Θs // Rep∅pG1T q.

Lemma 5.4. For any w P Wext and any s P S, in the Grothendieck group of
Rep∅pG1T q we have

rΘsp pZpw ¨p 0qqs “ r pZpw ¨p 0qs ` r pZpws ¨p 0qs.

Proof. This follows from [J2, Equations (2) and (3) in §II.9.22]. �

Remark 5.5. The formula in Lemma 5.4 suggests that the Grothendieck group
rRep∅pG1T qs is closely related with the right ZrW s-module ZbZrv˘1s P. However,
two important remarks are in order. First, since A is in bijection with W rather
than Wext, to make this precise we would have to work with the “true” principal
block Rep0pG1T q in ReppG1T q, i.e. the Serre subcategory generated by simple

modules pLpw ¨p 0q with w P W . But even then a difficulty would remain, since
the classes of baby Verma modules do not form a basis of the Grothendieck group
rRep0pG1T qs. We will not try to address this problem here.

5.3. Injective/projective G1T -modules. For λ P X, we will denote by pQpλq

the injective hull of pLpλq as a G1T -module, see [J2, §II.11.3]. As explained in [J2,

Equation (3) in §II.11.5], pQpλq is also the projective cover of pLpλq in this category.
As for simple and baby Verma modules, for λ, µ P X we have

(5.5) pQpλ` pµq – pQpλq b k 9T pµq.

If λ P Wext ¨p 0 then pQpλq belongs to Rep∅pG1T q. By [J2, Proposition II.11.4],

this module admits a filtration with subquotients of the form pZpµq with µ PWext¨p0;

moreover the number of occurrences of pZpµq does not depend on the choice of such

a filtration, and is equal to the multiplicity r pZpµq : pLpλqs. More generally, any

projective object pQ in Rep∅pG1T q admits a filtration with subquotients of the

form pZpµq with µ P Wext ¨p 0, and the number of occurrences of pZpµq does not

depend on the choice of filtration; this number will be denoted p pQ : pZpµqq.

Lemma 5.6. For any ω P Ω, the projective G1T -module pQptςwfω ¨p 0q is the image
under (5.4) of Tppς ` ω ¨p 0q. Moreover, for any µ in X we have

p pQptςwfω ¨p 0q : pZpµqq “

#

1 if µ “ tςxω ¨p 0 for some x PWf ;

0 otherwise.
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Proof. The element tςwfω ¨p 0 “ ptςwfω
´1
ς q ¨p pωςω ¨p 0q belongs to the unique

alcove which contains pp ´ 1qς “ ptςwfω
´1
ς q ¨p pως ¨p p´ςqq in its upper closure.

Therefore, by [J2, §II.11.10], the indecomposable projective G1T -module pQptςwfω ¨p
0q is obtained by translating from ως ¨p p´ςq to ωςω ¨p0 the G1T -module pQppp´1qςq.

Moreover, by [J2, §II.9.16 and equation (1) in §II.11.9] we have pQppp ´ 1qςq –
pLppp ´ 1qςq – pZppp ´ 1qςq. Then the description of p pQptςwfω ¨p 0q : pZpµqq follows
from the considerations surrounding Equations (2)–(3) in [J2, §II.9.22].

The first claim follows from the considerations above and Lemma 5.1. �

The following result is an easy consequence of [J1, Corollar 4.5] (see also [J2,
§11.11]); see [Do] or [J2, §E.9] for details.

Theorem 5.7. Assume that p ě 2h´ 2. Then for any restricted dominant weight
λ we have

pQpλq – Tp2pp´ 1qρ` wfλq|G1T .

We will say that an element w PWext is restricted if w¨p0 is a restricted dominant
weight. Note that this condition does not depend on p, and that restricted elements
belong to fWext.

In terms of the orbit Wext ¨p 0, since wfpςq “ ς ´ 2ρ, Theorem 5.7 implies in
particular that (if p ě 2h´ 2) for any w PWext such that tςw is restricted, we have

(5.6) pQptςw ¨p 0q – Tptςwfw ¨p 0q|G1T .

5.4. Characters of tilting modules as G1T -modules. Now we set

Msph
ext :“ ZbZrv˘1sMsph

ext ,

and still denote by ϕ : Msph
ext Ñ Masph

ext and ζ : Msph
ext Ñ ZrWexts the (injective)

morphisms induced by (3.6) and (3.1) respectively. We then consider the maps

Msph
ext

ζ

��

ϕ // Masph
ext

(5.1)

„
// rRep∅pGqs // rRep∅pG1T qs

ZrWexts

where the rightmost arrow is induced by the restriction functor (5.4).

Proposition 5.8. Let M be a tilting module in Rep∅pGq, all of whose direct sum-

mands are of the form Tptςw ¨p 0q with w P fWext. Then M|G1T is a projective
G1T -module. Moreover, the inverse image a of rM s under (5.1) belongs to the
image of ϕ, and the image under ζ of the preimage of a is equal to

ÿ

wPWext

`

M|G1T : pZpw ¨p 0` pςq
˘

¨ w.

Proof. As explained in [J2, Lemma E.8], an indecomposable tilting module Tpλq
(with λ P X`) is projective as a G1T -module iff λ´pp´1qς P X`. This implies the
first claim in the proposition, and also that the G-modules M as in the statement
are all isomorphic to direct sums of direct summands of modules of the form

Θs1Θs2 ¨ ¨ ¨ΘsnpTppς ` ω ¨p 0qq

with s1, ¨ ¨ ¨ , sn in S and ω P Ω. This reduces the proof of the proposition to the
case of modules of this form. We will prove this case by induction on n.
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First we treat the case n “ 0. By (3.5) and Lemma 5.1 we have

rTppς ` ω ¨p 0qs “ 1bN tςω
“ ϕp1bMωq.

(Of course, this equality is also a special case of Theorem 5.2.) Using (3.3), we
deduce that the image under ζ of the preimage of rTppς ` ω ¨p 0qs is

ÿ

xPWf

1bHxω.

On the other hand, by Lemma 5.6 we know that Tppς`ω ¨p 0q|G1T “
pQptςwfω ¨p 0q,

and we know the multiplicities of baby Verma modules in this projective module.
Comparing with the formula above, we deduce the desired claim.

To prove the induction step, we will prove that if the claim is true for a module
M , then it is true also for ΘspMq for any s P S. As explained just after (5.1),
if we denote by a the inverse image of rM s, then the inverse image of rΘspMqs is
a ¨ pid ` sq. Hence if a “ ϕpbq, then this inverse image is ϕpa ¨ pid ` sqq. Now by
Lemma 5.4, for any w PWext we have

pΘspM|G1T q : pZppς`w ¨p 0qq “ pM|G1T : pZppς`w ¨p 0qq` pM|G1T : pZppς`ws ¨p 0qq,

and the desired claim follows. �

5.5. The simple character formula. Our main application of Theorem 3.5 is
the following claim.

Theorem 5.9. Assume that p ě 2h ´ 2. If w P Wext is such that tςw belongs to
fWext and is restricted, then for any y PWext we have

´

pQpw ¨p 0q : pZpy ¨p 0q
¯

“ phy,wp1q.

Proof. By (5.6), we have

Tptςwfw ¨p 0q|G1T –
pQppς ` w ¨p 0q.

By Theorem 5.2, the class rTptςwfw ¨p 0qs in rRep0pGqs is the image of 1b pN tςwfw

under (5.1). Now by Theorem 3.5 we have

1b pN tςwfw
“ ϕp1b pMwfw

q.

Using (3.2) and Proposition 5.8 we deduce that
ÿ

xPWext

´

pQppς ` w ¨p 0q : pZppς ` x ¨p 0q
¯

¨ x “ 1b pHw.

Since p pQppς ` w ¨p 0q : pZppς ` x ¨p 0qq “ p pQpw ¨p 0q : pZpx ¨p 0qq for any x P Wext

(see (5.3) and (5.5)), this implies the desired equality. �

Remark 5.10. (1) Let wmax P W be the unique element such that wmax ¨p 0
belongs to the (shifted and dilated) alcove of ´pς. The main result of [F2]
(see in particular [F2, Theorems 7.8 and 8.6]) states that if pHx “ Hx

for any x P W such that x ď wmax in the Bruhat order, then we have

r pZpy ¨p 0q : pLpw ¨p 0qs “ hy,wp1q for any w, y P W such that tςw belongs to
fWext and is restricted (and hence Lusztig’s conjecture holds). Of course,
this claim also follows from Theorem 5.9.
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(2) Once the multiplicities p pQpw ¨p 0q : pZpy ¨p 0qq are known for any w, y as in
Theorem 5.9, using (5.3) and (5.5) we can deduce these multiplicities for
any w, y PW . Then, using the reciprocity formula

p pQpw ¨p 0q : pZpy ¨p 0qq “ r pZpy ¨p 0q : pLpw ¨p 0qs

(see §5.3) one can deduce the multiplicities on the right-hand side of this
equality. And this information allows to compute the characters of the

modules pLpw ¨p 0q for any w PWext. In fact, using (5.2) it suffices to do so

when w is restricted. In this case pLpw ¨p 0q is the restriction of a G-module;
hence its weights (and their multiplicities) are stable under Wf . As a con-
sequence, to determine them it suffices to compute the dominant weights

appearing in pLpw ¨p 0q and their multiplicities. Using the determination

of the multiplicities r pZpy ¨p 0q : pLpw ¨p 0qs and the “triangularity” of these
numbers (see [J2, Corollary 9.15(a)]) one can write

(5.7) rpLpw ¨p 0qs “
ÿ

xPW
p1q
ext

ax ¨ r pZpx ¨p 0qs `
ÿ

yPW
p2q
ext

by ¨ rpLpy ¨p 0qs

with W
p1q
ext ,W

p2q
ext subsets of Wext, in such a way that pLpy ¨p 0q does not ad-

mit any dominant weight for y P W
p2q
ext . The characters of the baby Verma

modules are easy to compute, see e.g. [F1, §3.1]. Hence from (5.7) one can

compute the dominant weights appearing in pLpw ¨p 0q and their multiplici-
ties. (See also [Sob, §4] for a different presentation of this procedure.)

(3) Our assumptions on p in Theorem 5.9 are that p ě 2h´ 2 and p ą h. It is
easily seen that these two conditions are equivalent to the condition that
p ě 2h´ 1.

5.6. Proof of Theorem 1.2. We conclude the paper by explaining how Theo-
rem 5.9 implies Theorem 1.2 from the introduction. As in §1.4, for m in P we
denote by rmsv ÞÑ1 its image in Z bZrv˘1s P – ZrA s. Recall that W acts on A
on the right, see §1.5. This induces in the natural way a structure of right ZrW s-
module on ZrA s, and it is clear from (2.5) that this action coincides with the one
induced by the H-action on P (via the canonical isomorphism ZbZrv˘1sH – ZrW s).

Proof of Theorem 1.2. Since both qA and pP Â are invariant under the replacement
of A by µ ` A for µ P X (see (5.5) and (2.9) respectively), we can assume that

A Ă Π̌0, so that Â “ wfpAq P Π̂0. Then

pP Â “
1

πf
PAfund

¨ ζppMwq,

where w P W is the unique element such that wfpAq “ Afund ¨ w “ wpAfundq,
i.e. such that A “ wfwpAfundq. By construction we have

ζppMwq “
pHwfw

“
ÿ

yPW

phy,wfw ¨Hy,
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hence using (2.8) we obtain that

rpP Âsv ÞÑ1 “
1

|Wf |

˜

ÿ

xPWf

xpAfundq

¸

¨

˜

ÿ

yPW

phy,wfwp1q ¨ y

¸

“
1

|Wf |

¨

˚

˝

ÿ

xPWf
yPW

phy,wfwp1q ¨ xypAfundq

˛

‹

‚

“
ÿ

zPW

1

|Wf |

˜

ÿ

xPWf

phx´1z,wfwp1q

¸

¨ zpAfundq.

Now since w P fW , the element wfw is maximal in Wf ¨ wfw, so that the parity
complex Ewfw (see §4.1) is constructible with respect to the stratification by G_O-
orbits, which implies that phx´1z,wfwp1q “

phz,wfwp1q for any x P Wf . We deduce
that

rpP Âsv ÞÑ1 “
ÿ

zPW

phz,wfwp1q ¨ zpAfundq.

Comparing with Theorem 5.9 and the definition of qA, we obtain the desired for-
mula. �

6. A combinatorial proof of Theorem 1.4 in the case of
Kazhdan–Lusztig bases

In this section we provide an alternative proof of the version of Theorem 1.4
for “standard” Kazhdan–Lusztig bases, see Remark 1.5(2). This proof is based on
the results of [Soe],4 (and is therefore “combinatorial”) and was explained to us by
Soergel.

In this section we assume that G is semisimple (and simply connected). As
in §1.4 we consider the “periodic module” P for H. As explained in [Soe, §4] the
family pPA : A P A q forms a Zrv˘1s-basis of a certain H-submodule P˝ Ă P.
By [Soe, Lemma 4.9], the action of X on P considered in §2.3 extends to a Zrv˘1s-
linear action of the extended affine Weyl group Wext on P˝, for which the action of
w P Wext is denoted xwy : P˝ Ñ P˝. It follows from (2.6) that this action satisfies
the following formula: for ω P Ω and w PW we have

xωwypP ¨ hq “ pxωwyP q ¨ pHωhH
´1
ω q

for P P P˝ and h P H. (Here the element Hω belongs to the larger algebra Hext

introduced in §3.1; conjugation by this element stabilizes H.)
We next consider the map

alt : P˝ Ñ P˝

defined by the formula

altpP q “
ÿ

wPWf

p´1q`pwqxwyP.

We will also consider the Zrv˘1s-linear map

res : P ÑMasph

4Some of the results of [Soe] on which this proof is based are not originally due to Soergel, but
are restatements of results due to Lusztig and to Kato. We refer to [Soe] for a discussion of the

original references.
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determined by

respAq “

#

NA if A P A `;

0 otherwise.

This morphism is not H-linear; but it follows from [Soe, Proposition 5.2] that the
composition res ˝ alt is H-linear. Moreover, [Soe, Theorem 5.3(1)] says that for
A P A `

ρ we have

(6.1) res ˝ altpPAq “ NA.

On the other hand, let us consider the morphism of right H-modules

Alt :“ xt´ρy ˝ alt ˝ xtρy : P˝ Ñ P˝.

In [Soe, §6] Soergel introduces the Zrv˘1s-module P̂ consisting of certain formal

linear combinations
ř

A fAA, and the map η : P̂ Ñ P̂. The module P̂ contains P
as a submodule in the natural way. We also have a map

Res : P̂ ÑMsph

sending
ř

A fAA to
ř

APA` fAMA. (Here the linear combination
ř

APA` fAMA is

finite due to the form of the combinations authorized in P̂.) Then [Soe, Corol-
lary 6.9] states that for any A P A ` we have

(6.2) MA “ Res ˝ η ˝AltpPAq.

By [Soe, Proposition 6.6], the map Res ˝ η ˝Alt is H-linear; it follows that Res ˝ η :
AltpP˝q ÑMsph is H-linear as well. One can check that the elements pAltpPAq :
A P A `q form a Zrv˘1s-basis of the sub-H-module AltpP˝q Ă P˝; therefore this
formula implies that Res ˝ η induces an isomorphism of H-modules from AltpP˝q
to Msph.

By (2.7) we have xtρypPAq “ P ρ`A for any A P A ; hence the formula (6.2) can
be written as

MA “ Res ˝ η ˝ xt´ρy ˝ altpP ρ`Aq

for any A P A `.
Fix now A P A `, and choose h P H such that MA “MAfund

¨ h. Then we have

Res ˝ η ˝ xt´ρy ˝ altpP ρ`Aq “MA “MAfund
¨ h

“
`

Res˝η ˝ xt´ρy ˝altpP ρ`Afund
q
˘

¨h “ Res˝η ˝ xt´ρy ˝altpP ρ`Afund
¨HωρhH

´1
ωρ q.

By injectivity of Res ˝ η on AltpP˝q we deduce that

xt´ρy ˝ altpP ρ`Aq “ xt´ρy ˝ altpP ρ`Afund
¨HωρhH

´1
ωρ q,

and then that

altpP ρ`Aq “ altpP ρ`Afund
¨HωρhH

´1
ωρ q.

Applying res and using (6.1), we deduce that

(6.3) Nρ`A “ res ˝ altpP ρ`Aq “ res ˝ altpP ρ`Afund
¨HωρhH

´1
ωρ q

“
`

res ˝ altpP ρ`Afund
q
˘

¨HωρhH
´1
ωρ “ Nρ`Afund

¨HωρhH
´1
ωρ .

Now we have Sρ “ τρpSfq “ ωρSfωρ, see Remark 2.1. Hence there exists an
isomorphism of Zrv˘1s-modules

Msph „
ÝÑMsph

ρ
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which sends Mid ¨h to Mρ
id ¨HωρhH

´1
ωρ for any h P H. In terms of the parametrization

by alcoves, this morphism sends MB to Mρ
ρ`B for any B P A `. (In fact, if B “

wpAfundq with w P fW , then MB “MAfund
¨Hw is sent to Mρ

ρ`Afund
¨HωρHwH

´1
ωρ “

Mρ

pρ`Afundq¨ωρwω
´1
ρ
“ Mρ

xρωρwω
´1
ρ pAfundq

“ Mρ
ρ`B .) This morphism also commutes

with the appropriate Kazhdan–Lusztig involutions, hence sends MB to Mρ
ρ`B for

any B P A `. It follows that

Mρ
ρ`Afund

¨HωρhH
´1
ωρ “Mρ

ρ`A,

which proves that

Nρ`Afund
¨HωρhH

´1
ωρ “ ϕρpM

ρ
ρ`Aq.

Comparing with (6.3) we finally obtain that Nρ`A “ ϕρpM
ρ
ρ`Aq, which finishes the

proof.
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