Songchao Chen 
email: songchao.chen@inra.fr
  
Vera Leatitia Mulder 
  
Manuel M Martin 
email: a.manuel.martin@inra.fr
  
Christian Walter 
email: b.christian.walter@agrocampus-ouest.fr
  
Marine Lacoste 
  
Anne C Richer-De-Forges 
email: anne.richer-de-forges@inra.fr
  
Nicolas P A Saby 
email: nicolas.saby@inra.fr
  
Thomas Loiseau 
email: a.thomas.loiseau@inra.fr
  
Bifeng Hu 
email: e.bifeng.hu@inra.fr
  
Dominique Arrouays 
  
Manuel P Martin 
  
Anne C Richer 
  
  
  
  
  
Probability mapping of soil thickness by random survival forest at a national scale

Keywords: Soil thickness modelling, Right censored data, Random Survival Forest

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Abstract:

Soil thickness (ST) is a crucial factor in earth surface modelling and soil storage capacity calculations (e.g., available water capacity and carbon stocks). However, the observed depths recorded in soil information systems for some profiles are often less than the actual ST (i.e., right censored data). The use of such data will negatively affect model and map accuracy, yet few studies have been done to resolve this issue or propose methods to correct for right censored data. Therefore, this work demonstrates how right censored data can be accounted for in the ST modelling of mainland France. We propose the use of Random Survival Forest (RSF) for ST probability mapping within a Digital Soil Mapping framework. Among 2109 sites of the French Soil Monitoring Network, 1089 observed STs were defined as being right censored. Using RSF, the probability of exceeding a given depth was modelled using freely available spatial data representing the main soil-forming factors. Subsequently, the models were extrapolated to the full spatial extent of mainland France. As examples, we produced maps showing the probability of exceeding the thickness of each GlobalSoilMap standard depth: 5, 15, 30, 60, 100, and 200 cm. In addition, a bootstrapping approach was used to assess the 90% confidence intervals. Our results showed that RSF was able to correct for right censored data entries occurring within a given dataset. RSF was more reliable for thin (0.3 m) and thick soils (1 to 2 m), as they performed better (overall accuracy from 0.793 to 0.989) than soils with a thickness between 0.3 and 1 m. This study provides a new approach for modelling right censored soil information. Moreover, RSF can produce probability maps at any depth less than the maximum depth of the calibration data, which is of great value for designing additional sampling campaigns and decision making in geotechnical engineering.

GlobalSoilMap; Probability mapping.

Introduction

Soils are of great importance in supporting, provisioning, and regulating ecosystem services, such as food production and climate change mitigation [START_REF] Clothier | Soil ecosystem services: sustaining returns on investment into natural capital[END_REF][START_REF] Keesstra | The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals[END_REF]Millennium Ecosystems Assessment, 2005). As stated by recent studies (e.g., [START_REF] Bouma | The challenge of soil science meeting society's demands in a "posttruth","fact free[END_REF][START_REF] Groshans | Accounting for soil inorganic carbon in the ecosystem services framework for United Nations sustainable development goals[END_REF][START_REF] Marx | Climate Change as Driver for Ecosystem Services Risk and Opportunities[END_REF], there is a rising demand for up-to-date and ecosystem service relevant soil information. Therefore, substantial effort is needed to communicate soil information among diverse audiences and produce fine resolution soil maps to support practical land management. In this study, we use the GlobalSoilMap project specifications.

These specifications focus on delivering consistently produced high-resolution soil property information throughout the world by predicting mean values and their prediction intervals (PIs) (Arrouays et al., 2014a;Arrouays et al., 2014b;[START_REF] Sanchez | Digital soil map of the world[END_REF]. Among the twelve soil properties to be predicted following the recommendations of GlobalSoilMap, soil thickness (ST) is a key property. In this study, in line with GlobalSoilMap, ST is defined as 'the depth (cm) from the soil surface to the lithic or a paralithic contact' (Soil Survey Division Staff, 1993). The ST is highly relevant for soil hydro-mechanical modelling [START_REF] Tesfa | Modeling soil depth from topographic and land cover attributes[END_REF][START_REF] Wang | Power function decay of hydraulic conductivity for a TOPMODEL-based infiltration routine[END_REF], soil erosion impact, landscape evolution, vegetation growth [START_REF] Heimsath | Stochastic processes of soil production and transport: Erosion rates, topographic variation and cosmogenic nuclides in the Oregon Coast Range[END_REF][START_REF] Meyer | Influence of soil thickness on stand characteristics in a Sierra Nevada mixed-conifer forest[END_REF], and for calculating soil functions (e.g., available water capacity [START_REF] Leenaars | Mapping rootable depth and root zone plant-available water holding capacity of the soil of sub-Saharan Africa[END_REF][START_REF] Román Dobarco | Uncertainty assessment of GlobalSoilMap soil available water capacity products: a French case study[END_REF], soil structure (Rabot et al., 2018;[START_REF] Vogel | A systemic approach for modeling soil functions[END_REF], and soil organic carbon stocks [START_REF] Batjes | Total carbon and nitrogen in the soils of the world[END_REF][START_REF] Chen | National estimation of soil organic carbon storage potential for arable soils: A data-driven approach coupled with carbon-landscape zones[END_REF]). Despite the great importance of accurate ST information, the large spatial variability and high cost of ST measurements make ST determination difficult [START_REF] Lacoste | Evaluating large-extent spatial modeling approaches: A case study for soil depth for France[END_REF]. Discordance in the definition of ST also hampers ST modelling, especially when data are collected from various projects [START_REF] Lacoste | Evaluating large-extent spatial modeling approaches: A case study for soil depth for France[END_REF]. The observed ST recorded in soil information systems for some profiles are often less than the actual ST (i.e., right censored data).

ST results from the mass balance between soil formation from the bedrock and soil transport by erosion and sedimentation [START_REF] Heimsath | The soil production function and landscape equilibrium[END_REF][START_REF] Heimsath | Cosmogenic nuclides, topography, and the spatial variation of soil depth[END_REF]; thus, it varies as a function of physical, chemical, and biological processes [START_REF] Román | Restoring soil functions by means of cyanobacteria inoculation: importance of soil conditions and species selection[END_REF]. ST can be related to these processes by modeling the relationship between the main soil-forming factors, i.e., Jenny's Soil-Landscape paradigm (Jenny,1941): parent material, climatic conditions, organisms, terrain relief, and time [START_REF] Dietrich | A process-based model for colluvial soil depth and shallow landsliding using digital elevation data[END_REF][START_REF] Minasny | A rudimentary mechanistic model for soil production and landscape development[END_REF]. More recently, [START_REF] Mcbratney | On digital soil mapping[END_REF] formulated the concept of the SCORPAN model, which also includes also soil information and spatial location.

Various approaches for ST modelling and mapping have relied on modelling the relationship between the main soil forming factors. The majority of these approaches can be broadly classified into two groups: 1) physically based and mechanistic models, which predict ST using soil process models based on the rates of weathering, denudation, and accumulation [START_REF] Bonfatti | A mechanistic model to predict soil thickness in a valley area of Rio Grande do Sul, Brazil[END_REF][START_REF] Dietrich | A process-based model for colluvial soil depth and shallow landsliding using digital elevation data[END_REF][START_REF] Minasny | A rudimentary mechanistic model for soil production and landscape development[END_REF][START_REF] Pelletier | Geomorphically based predictive mapping of soil thickness in upland watersheds[END_REF]; and 2) empirical models, including statistical and geostatistical methods [START_REF] Kuriakose | Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala, India[END_REF]. These models rely on the empirical relationships between ST and explanatory covariates of inferential attributes (e.g., plant species, precipitation, and parent material).

For the latter, a wide range of statistical methods have been previously applied in ST modelling, including canonical correspondence analysis and principal component analysis [START_REF] Odeh | Elucidation of soillandform interrelationships by canonical ordination analysis[END_REF], multiple linear regression [START_REF] Moore | Soil attribute prediction using terrain analysis[END_REF], expert knowledge and fuzzy logic [START_REF] Zhu | Soil mapping using GIS, expert knowledge, and fuzzy logic[END_REF], Generalized Additive Models and Random Forest [START_REF] Tesfa | Modeling soil depth from topographic and land cover attributes[END_REF], and Cubist and Gradient Boosting Modelling [START_REF] Lacoste | Evaluating large-extent spatial modeling approaches: A case study for soil depth for France[END_REF]Mulder et al., 2016a).

Within the field of geostatistics, various kriging techniques have often been used to predict and spatially interpolate ST from point samples. Ordinary Kriging was most commonly used among these kriging techniques [START_REF] Penížek | Soil depth prediction supported by primary terrain attributes: a comparison of methods[END_REF][START_REF] Vanwalleghem | Spatial variability of soil horizon depth in natural loess-derived soils[END_REF]. The prediction variance was typically reduced when including additional prediction variables using regression kriging [START_REF] Kuriakose | Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala, India[END_REF][START_REF] Odeh | Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regressionkriging[END_REF] or Kriging with External Drift [START_REF] Bourennane | Improving the kriging of a soil variable using slope gradient as external drift[END_REF][START_REF] Kempen | Operationalizing digital soil mapping for nationwide updating of the 1: 50,000 soil map of the Netherlands[END_REF].

None of the studies referred to above addressed the issue of having right censored data entries in their soil databases. However, it is often the case that the actual ST is thicker than the observed ST, which can mainly be attributed to practical constraints, such as the standard auger length (120 cm), and time constraints. In fact, in soil sciences very few studies consider the effect of right censored data; the issue is often ignored or processed by adding a fixed value (e.g., 30 cm) in ST modelling [START_REF] Knotters | A comparison of kriging, co-kriging and kriging combined with regression for spatial interpolation of horizon depth with censored observations[END_REF][START_REF] Vaysse | Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France)[END_REF][START_REF] Lacoste | Evaluating large-extent spatial modeling approaches: A case study for soil depth for France[END_REF][START_REF] Shangguan | Mapping the global depth to bedrock for land surface modeling[END_REF]. Some previous works dealt with left censored data, especially regarding data below detection limits (e.g., [START_REF] De Oliveira | Bayesian inference and prediction of Gaussian random fields based on censored data[END_REF][START_REF] Fridley | Data augmentation for a Bayesian spatial model involving censored observations[END_REF][START_REF] Orton | Using measurements close to a detection limit in a geostatistical case study to predict selenium concentration in topsoil[END_REF][START_REF] Orton | Analyzing the spatial distribution of PCB concentrations in soils Using below-quantification limit data[END_REF]Villaneau et al., 2011). Ignoring the presence of right censored data entries within a database and relying on the observed ST for those entries will result in an underestimation of modelled ST [START_REF] Vaysse | Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France)[END_REF][START_REF] Shangguan | Mapping the global depth to bedrock for land surface modeling[END_REF]. However, right censored data are commonly used in statistics and medical research, especially in survival analysis. Several models have been used to deal with right censored data in survival analysis, including the Kaplan Meier method [START_REF] Kaplan | Nonparametric estimation from incomplete observations[END_REF], Cox regression [START_REF] Andersen | Cox's regression model for counting processes: a large sample study[END_REF], and Random Survival Forest (RSF, [START_REF] Ishwaran | Random survival forests[END_REF]. The Kaplan Meier method and Cox regression mainly deal with linear effects, but RSF is capable of handling complex non-linear effects that may exist between predictor variables [START_REF] Mogensen | Evaluating random forests for survival analysis using prediction error curves[END_REF]. Therefore, as previously suggested by [START_REF] Styc | Predicting soil depth using a survival analysis model[END_REF], RSF may have the best potential for identifying and correcting right censored data used for Digital Soil Mapping (DSM).

In this study, the potential of RSF was evaluated for ST mapping in mainland France. The main objectives of this study are noted below:

1) Apply RSF for mapping the probability of exceeding a certain ST using both actual and right censored ST data from the French Soil Monitoring Network (RMQS) and 2) Derive the 90% confidence intervals of the specific ST using bootstrapping.

Material and methods

Soil dataset

We used ST data from the RMQS soil database that were gathered between 2001 and 2009 [START_REF] Jolivet | Le Réseau de Mesures de la Qualité des Sols de France (RMQS). État d'avancement et premiers résultats[END_REF], covering different soil, climate, relief, and land cover conditions (Fig. 1). The RMQS dataset is based on a 16 km × 16 km square grid where all sites are selected at the centre of each grid cell. When sampling the exact location was not possible, a site was selected as close as possible to the grid centre. A soil pit was dug, and the surrounding information (land use and geomorphology) and a detailed description of the soil profile were recorded for each site, including soil horizon depth and ST. Auger boring was recommended (but not mandatory) to complete the soil profile when the soil pit was not thick enough to determine the ST. For more detailed information about the soil sampling design and laboratory analysis, see [START_REF] Chen | Fine resolution map of top-and subsoil carbon sequestration potential in France[END_REF]. Among 2109 RMQS sites, ST was explicitly recorded for 1020 sites (down to a lithic or paralithic contact), while the remaining 1089 sites were right censored data. The ST for nine RMQS sites was set to 0, as these sites were identified as mountainous sites with bare rock.

Exhaustive covariates

We used a DSM framework [START_REF] Mcbratney | On digital soil mapping[END_REF] to model the relationships between ST and ancillary covariates (Table 1). These covariates cover a series of soil formation related environmental factors, including soil, climate, organisms, relief and parent material. Before modelling, these covariates were re-projected to Lambert 93 (official projection for mainland France) and resampled to a 90 m resolution (in raster format) using a bilinear interpolation (numeric covariates) or nearest neighbour (categorical covariates).

Random survival forest for probability modelling of soil thickness

General introduction

RSF is an ensemble tree method for modelling right censored survival data [START_REF] Ishwaran | Random survival forests[END_REF]. RSF is an extension of [START_REF] Breiman | Random forests[END_REF] random forest (RF), known as an ensemble learning approach that is improved by injecting randomization into the base-learning process. For example, using a human analogy, a specific status introduced in RSF aims to distinguish whether it is a death case (status = 1) or a survival case (status = 0) at a given observed time. The RSF does this by estimating the presence-absence probability. Applying this censoring concept to ST, at a given site there are two possibilities for a thickness to be recorded: i) the actual ST has been observed down to lithic or paralithic contact as defined before (status = 1) or ii) the lithic or paralithic contact has not been reached and the actual ST remains unknown (status = 0). For the latter, it is only known that the actual ST is greater than the observed ST. RSF uses a new type of predicted outcome that contains a cumulative hazard function (CHF, see Section 2.3.2).

Random survival forest model fitting

RSF model fitting involves the following steps [START_REF] Ishwaran | Random survival forests[END_REF], as shown in Fig. 2. 1) Select ntree bootstrapped samples from the calibration data. Approximately 37% (e -1 ) of the calibration data are excluded in each bootstrapped sample, which are so-called out-of-bag (OOB) data.

2) Grow a survival tree for each bootstrapped sample. At each node of the survival tree, randomly select mtry covariates for splitting the data. Survival splitting criteria are then used, and each node is split on that covariate, which maximizes survival differences across sub-nodes.

3) Grow the survival tree to full size under the constraint that a terminal node should have no less than nodesize unique actual ST samples. 4) Calculate a CHF for each survival tree and obtain the ensemble CHF by averaging all the survival trees for each sample. 5) Calculate the prediction error of the ensemble CHF based on OOB data.

Ensemble cumulative hazard function and ensemble survival function

Constructing the ensemble CHF is crucial for RSF. Hereafter, we provide details about the procedure for a better understanding.

For a survival tree, let (ST1,h, δ1,h), . . . ,(STn(h),h, δn(h),h) be the observed ST and the 0-1 censoring status (δ) for n samples in a terminal node h. Here, let ST1,h < ST2,h < • • • < STn(h),h be the different observed ST in the terminal node. The CHF estimate for h is then defined by the Nelson-Aalen estimator :

= , , , , 1 
where al,h and Yl,h are the number of actual ST samples and all samples at observed ST stl,h, respectively. All the samples within the terminal node h have the same CHF.

Each sample i has a mtry-dimensional covariate xi that will belong to a unique terminal node h. Therefore, the CHF for i is the Nelson-Aalen estimator for xi'

terminal node: | = . 2
Equation 2 describes the CHF from an individual tree. The ensemble CHF is computed by averaging over ntree trees. The bootstrap ensemble CHF for sample i is defined below (the definition of OOB ensemble CHF please refer to [START_REF] Ishwaran | Random survival forests[END_REF]:

| = 1 | , ! 3
where Hn (st|x) is the CHF for a tree grown from the n th bootstrap sample.

The survival function is a probability density function that describes the survival probability at a given ST. In RSF, the ensemble survival function (Se) could be derived from ensemble CHF [START_REF] Mogensen | Evaluating random forests for survival analysis using prediction error curves[END_REF]:

# | = exp '- 1 | ! ). 4 
Here, the survival probability at a given ST is equal to the probability of exceeding a given ST or censored probability at a given ST. The probability of exceeding a given ST ranges from 0 to 1, and when it is close to 1, the location has a high probability of being censored. Therefore, in this latter case, the actual ST has a high probability of being thicker than the censored ST.

Node splitting rule

The node splitting rule is another important parameter in RSF. There are several choices for splitting rules, including the log-rank splitting rule, conservation splitting rule, log-rank score rule, and fast approximation to the log-rank splitting.

Here, the log-rank splitting rule is used as the default splitting rule, as suggested by [START_REF] Ishwaran | Random survival forests[END_REF]. We define ! < , < ⋯ < as the ST intervals and xi,j and ai,j as the number of samples and number of actual ST samples at ST sti in the subnodes j (1 or 2), respectively. Here, xi = xi,1 + xi,2 and ai = ai,1 + ai,2. The log-rank test for a split at the value n of the covariate c is defined as

. /, = ∑ ,! -1 ,! 1 3∑ 1 ,! 1 1 - 1 ,! 1 1 - 1 -1 2 ! , 5
where 

Prediction error

In survival analysis, Harrell's concordance index [START_REF] Harrell | Evaluating the yield of medical tests[END_REF] is commonly used for estimating prediction error as it does not depend on choosing a fixed time for model evaluation and specifically accounts for censoring [START_REF] May | Development and validation of a prognostic model for survival time data: application to prognosis of HIV positive patients treated with antiretroviral therapy[END_REF]. The concordance index (C index) is calculated by the following steps in ST modelling.

1) Generate all possible pairs of samples over the data.

2) Remove pairs whose lower ST is censored. Remove pairs i and j if sti = stj unless at least one is an actual ST sample. The total number of permissible pairs is recorded as Per.

3) For each permissible pair where sti ≠ stj: if the thinner ST has worse predicted outcome (higher cumulative hazard value), count 1; ii) otherwise, count 0.5. For each permissible pair where sti = stj and both are actual ST samples: i) if predicted outcomes are equal, count 1; ii) otherwise, count 0.5. For each permissible pair where sti = stj and not both, are actual ST samples: i) if the actual ST sample has a worse predicted outcome, count 1; ii) otherwise, count 0.5. The sum of all permissible pairs is recorded as Con.

4) The C index is defined by the ratio of Con to Per.

In RSF, the C index is computed via OOB data using the steps mentioned above, and it ranges between 0 and 1. The prediction error is calculated by the1-C index, so it is also between 0 and 1. A lower prediction error represents better model performance for the calibration model.

Assessing the main controlling factors for ST modelling

To assess the main controlling factors for ST in France, the variable importance of the ST predictors (i.e., covariates used) in the RSF model were evaluated. In RSF, the variable importance of a covariate c is calculated by dropping OOB samples down their in-bag survival tree. A sub-node is randomly assigned when encountering a split for c, and then an average of the CHF obtained from these trees is calculated. The variable importance for c is calculated as the difference of prediction error between the new ensemble obtained using randomized c assignments and the original ensemble. A larger variable importance value indicates a higher contribution to the model for a covariate.

Soil thickness probability mapping and bootstrapping for determining prediction uncertainty

As introduced in Section 2.3.2, the RSF model outcome entails a function between the survival (censored) probability and ST for each prediction. In other words, the censored probability can be calculated over the full soil profile (0 to the maximum depth of actual ST samples) for any position in mainland France from RSF.

As an example, the censored probabilities for the six GlobalSoilMap standard depths were extracted from the survival probability function (Fig. 3); those depths are 5, 15, 30, 60, 100, and 200 cm, which we refer to hereafter as ST5, ST15, ST30, ST60, ST100 and ST200, respectively. From this, we derived a probability map for each GlobalSoilMap standard depth in mainland France.

Bootstrapping was applied to determine the average and 90% Confidence Intervals (CIs) of the RSF model. Hence, we did not determine the 90% PIs as is recommended by the GlobalSoilMap specifications; instead we estimated the 90%

CIs. This was deemed suitable, as we were not able to identify the random error in the RSF model. Consequently, the estimated 90% CIs would be narrower than 90%

PIs. The bootstrap samples were drawn 50 times by repeated random sampling with replacement of the RMQS sites; the RMQS sites not used in each bootstrap sample were used to evaluate the model performance of each bootstrap RSF model (details in Section 2.5). Note that the bootstrap sample used here corresponds to the initial data used in the RSF framework (Fig. 2), not the bootstrap sample used to generate trees. Finally, using these bootstrap samples, 50 bootstrap RSF models were generated, from which 50 probability functions between the censored probability and ST could be exhaustively predicted for mainland France. After several iterative model calibrations leading to the final prediction model, we choose 50 bootstrap models because it is time-consuming to make predictions at a 90 m resolution for mainland

France (RSF produces a probability function rather than a value for each pixel, so it takes 2 weeks for 50 bootstrap RSF models under parallel computing that make full use of a computer with 8 cores and 32 GB of RAM). A robust estimate of the probability of exceeding each standard GlobalSoilMap soil depth was determined by averaging the bootstrap predictions. Their lower and upper 90% CIs were calculated by the averaged bootstrap predictions minus and plus 1.645 times (Z score for 90%

CIs) the standard deviation of bootstrap predictions, respectively. Surface area percentages of five probability intervals (0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8, and 0.8-1)

were calculated from the averaged bootstrap predictions of probability maps at six GlobalSoilMap standard depths. The mean probability was computed by averaging all pixels of the probability map for each GlobalSoilMap standard depth.

Model performance

In addition to the CIs, the model performance of each GlobalSoilMap standard depth was evaluated using the RMQS sites that were not used in the bootstrap samples, which referred to an evaluation dataset from each bootstrap RSF model.

For a given GlobalSoilMap standard depth (sts), the prediction performance was evaluated based on the confusion matrix in which the misclassification rate was calculated based on whether the data was censored or not. Hence, given a sample with observed ST (sto): 1) when sts ≤ sto, if the probability exceeds 0.5, the sample is correctly predicted, otherwise, it is incorrectly predicted; and 2) when sts > sto, if the probability is less than 0.5, the sample is correctly predicted, otherwise, it is incorrectly predicted.

Subsequently, the confusion matrix was calculated as the mean counts of OOB samples with actual ST and censored ST separately from 50 bootstrap predictions.

All of the statistics and modelling were performed in R (R Core Team, 2016). R package randomForestSRC was used for RSF modelling [START_REF] Ishwaran | Random Forests for Survival, Regression, and Classification (RF-SRC)[END_REF].

Results

Summary statistics of the ST dataset

Among 2108 RMQS sites, more than half were right censored for ST (Fig. 4).

The actual ST ranged from 0 to 300 cm, with a mean value of 64 cm. The first quantile, median and third quantile were 39, 59, and 80 cm, respectively, indicating a large percentage of soils thinner than 60 cm. The censored ST ranged from 50 to 270 cm, with the mean ST (104 cm) being higher than the actual observed RMQS sites.

For the censored RMQS sites, the first quantile, median, and third quantile were 75, 95, and 120 cm, respectively.

Model performance

The prediction error of the calibrated RSF models decreased from 0.27 to 0.15 as the number of trees increased up to 50 (Fig. 5). After 50 trees, the prediction error decreased slightly and became more stable as the number of trees increased (max.

The prediction performance differed when evaluated at the six GlobalSoilMap standard depths (Table 2). For the actual RMQS sites, the overall accuracy decreased from 0.989 to 0.546, when depth increased from ST5 to ST60. The overall accuracy then gradually increased up to 0.793 for ST200. The overall accuracy for censored RMQS sites were 1, 0.998, and 0.995, respectively, for SD5, SD15, and SD30, the accuracy then decreased to 0.825 for SD60 and subsequently dropped to 0.534 for ST100 and 0.563 for ST200.

Controlling factors of ST modelling

Parent material (PM) and climatic zones (TYPO) were the two most important variables affecting the ST probabilities in RSF models, based on the average bootstrap RSF (Fig. 6). The difference in prediction error between the new and the original ensembles was most affected by these two variables, despite the large 90%

CIs. Roughness, precipitation, elevation, slope, gravimetry and Net Primary Production (NPP) also had large contributions in ST modelling. The remaining covariates contributed less to the RSF model and had smaller CIs.

ST probability maps and associated confidence intervals

Fig. 7 presents the ST probability maps of exceeding the six GlobalSoilMap standard depths and their 90% CIs for mainland France. Overall, the average probability of exceeding the GlobalSoilMap standard depths of 5, 15, 30, 60,100, and 200 cm were 0.99, 0.97, 0.88, 0.68, 0.51, and 0.42, respectively.

The probability of exceeding ST5 was close to 1 across the whole country, except for eastern (the Alps) and southwestern France (the Pyrenees). The 90% CI was very narrow (0.02 ± 0.06), indicating low model uncertainty and thus robust estimates for the ST5 map.

A similar spatial distribution was observed when ST increased to ST15. The low probability in southern France (the Massif Central) showed that this region had a high probability of having STs less than 15 cm. The difference between the lower and upper limits of the 90% CI was still low (0.05 ± 0.08), indicating a robust estimate.

Moreover, the surface area percentages for the five probability intervals were also quite close to those of ST5 (Fig. 8).

When the ST depth criteria was further increased to ST30, in addition to previously mentioned locations, low probabilities were found in eastern France (the Jura Mountains, Fig. 7). Moreover, the CIs substantially increased (give numbers) compared to ST5 and ST15. This indicates a larger prediction uncertainty and a lower model robustness. In comparison with ST15, a slight increase (2%) was observed for the surface area with probabilities between 0.4 and 0.6. The surface area having a probability between 0.6 and 0.8 increased from 1 to 14%, while the area with a probability between 0.8 and 1 decreased from 98 to 83% (Fig. 8).

Moving from the ST30 up to the ST200 thickness criteria, substantial changes in spatial patterns and the probability of surpassing the ST criteria became apparent.

Most notable is how the surface area with probabilities between 0.8 and 1.0 continuously decreased, from 83% (ST30) to 2% (ST200). ST60 corresponded with a probability of 27% and ST100 with a probability of 7% (Fig. 8).

For ST200, more than 50% of the territory of mainland France had a low probability (<0.4) of exceeding ST by 2 m, while less than 17% of the areas had a high probability (>0.6) of exceeding the ST by 2 m (Fig. 7). The areas with a high probability were mainly located in southwestern France (the Landes of Gascony), central France (Sologne), and northern France (thick loess deposits).

Discussion

Several ways to perform probability mapping have been proposed in the literature since the 1990s. For instance, [START_REF] Bell | Soil drainage class probability mapping using a soil-landscape model[END_REF] [START_REF] Cattle | Kriging method evaluation for assessing the spatial distribution of urban soil lead contamination[END_REF]. The survival analysis we used is a similar approach, except that it models the survival function rather than the empirical distribution function.

In the RMQS dataset, right censored ST observations entail more than half of the observations. Using them for ST modelling with traditional DSM approaches would result in highly underestimated ST estimates. [START_REF] Lacoste | Evaluating large-extent spatial modeling approaches: A case study for soil depth for France[END_REF] proposed adding a fixed value of 30 cm to censored samples before modelling, which may help lower the underestimation but does not really solve the problem. Moreover, as actual ST values of these censored sites remain unknown, adding a fixed value may even add more noise to the data, and thus enlarging the prediction uncertainty. As shown in Fig. 9, the probability of exceeding the observed ST for each censored RMQS site was mainly between 0.5 and 1, with a median value of 0.78. Thereafter, as outlined in the methodology Section 2.3.2, RSF makes use of the probability function derived from right censored information, thereby avoiding underestimating ST at these censored positions.

The mean probability of exceeding an ST of 100 cm across mainland France was 0.51 (Fig. 8), which means that all locations have a 50% possibility of being observed with an ST thicker than 100 cm. This result implies that the median ST in mainland France is approximately 100 cm, which is in line with previous work by [START_REF] Lacoste | Evaluating large-extent spatial modeling approaches: A case study for soil depth for France[END_REF], showing that 48 and 54% of surface areas were below 100 cm when using Gradient Boosting Modelling and Cubist models, respectively.

The results showed that the prediction performance decreased from 0 to 60 cm and subsequently increased up to 200 cm for censored RMQS sites (Table 2), implying that the predicted probability of exceeding a given ST from the RSF model is more reliable for extreme values (i.e., a thin ST or thick ST). Indeed, due to the soil forming conditions in mainland France, except for steep slopes in mountainous areas, very thin soils are quite rare, and thus the probability of exceeding a very thin ST is high. Conversely, very thick soils are concentrated in (former) depositional areas (valleys, aeolian sand, or loess deposits) that can be easily mapped using some of the covariates (e.g., parent material and terrain parameters). For the censored RMQS sites, the overall accuracies for ST100 and ST200 were approximately 0.5, in which a large percentage of thin ST samples were misclassified as being thick. This can be explained by the fact that we used observed ST of censored RMQS sites in calculating the confusion matrix. Consequently, we may overestimate the percentage of misclassification mentioned before and thus underestimate the overall accuracies of ST100 and ST200.

Parent material and climatic zones were the most important variables for predicting ST in France using the bootstrapped RSF, but roughness, precipitation, elevation, slope, gravimetry, and NPP also substantially contributed to the ST model.

These results are in line with previous findings reported by [START_REF] Lacoste | Evaluating large-extent spatial modeling approaches: A case study for soil depth for France[END_REF]. Future research should aim to derive an ST map using RSF, instead of the currently presented ST probability map of exceeding a given depth. There are three ways to determine the actual soil ST from the unique probability function produced by RSF for each location of interest: 1) use the ST extracted from the median probability in the predicted function; 2) use the ST extracted from a fixed probability, allowing the classification of censored and actual ST at high accuracy among RSF calibration datasets; 3) perform a derivative analysis on the probability curve. Moreover,it will be interesting to combine RSF with geostatistical methods. For example, kriging of residuals [START_REF] Hengl | A generic framework for spatial prediction of soil variables based on regression-kriging[END_REF] that are not captured by RSF and/or sampling optimizing for future campaigns to reduce the prediction variance at locations where it is highest. Alternatively, the presented probability maps can be used directly for additional ST sampling campaigns, aimed at ST modelling in mainland France. For example, the regions with a high probability (>0.8) of ST200 have a large chance of being censored. Integrating those high probability regions with parent material and climatic zones would yield an efficient and effective sampling design using conditioned Latin hypercube sampling (cLHS, [START_REF] Minasny | A conditioned Latin hypercube method for sampling in the presence of ancillary information[END_REF] to obtain more representative samples of all physiographic contexts. RSF is able to provide a probability at any depth and thus will be helpful for decision making in geotechnical engineering regarding, for example, laying out drains, pipes, and tubes [START_REF] Zhang | Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin[END_REF].

Conclusions

This 

  the value |L(c, n)| is the measure of node split, and xi,1 and ai,1 are the number of samples and number of actual ST samples, respectively, at ST sti when c is less than n. The larger the |L(c, n)| value, the larger the difference between two subnodes and a better split. The best split at each note is determined by searching the optimized covariate c * and split value n * to maximize the |L(c, n)| value.
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 1 Figures Fig. 1 Locations of RMQS sites with actual (dotted) and censored (star) ST values. For each site, ST is classified based on the GlobalSoilMap standard depths. Corine Land Cover map of 2006 of mainland France (right) with the administrative regions (black italics) and natural geographic regions (blue italics).
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 2 Fig. 2 Random survival forest workflow.
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 3 Fig. 3 Survival probability curve (blue solid line) for one location predicted by RSF. The orange dashed vertical lines indicate the six GlobalSoilMap standard depths, and the orange dashed horizontal lines indicate their corresponding censored probabilities that are derived from the survival probability curve.
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 5 Fig. 5 Mean and 90% confidence intervals of the prediction error, given different numbers of trees from 50 bootstrapping random survival forests.
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 6 Fig. 6 Mean and 90% confidence intervals of variable importance from 50 bootstrapping random survival forests.
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 8 Fig. 8 Surface area percentage of the probability of exceeding the ST of each GlobalSoilMap standard depths. The mean probability is calculated by averaging all the pixels in the probability map for each GlobalSoilMap standard depth.

  

  

  

  [START_REF] Lacoste | Evaluating large-extent spatial modeling approaches: A case study for soil depth for France[END_REF] stated that the most important covariates of ST modelling in mainland France were soil properties, climate covariates and land use. Considering the variable importance and the variables acting as controlling factors for ST, parent material, climatic zones, precipitation, and gravimetry are direct drivers for the weathering process. Roughness, elevation, slope, and NPP are more related to sediment transport dynamics.
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