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Abstract: 27 

Soil thickness (ST) is a crucial factor in earth surface modelling and soil storage 28 

capacity calculations (e.g., available water capacity and carbon stocks). However, the 29 

observed depths recorded in soil information systems for some profiles are often less 30 

than the actual ST (i.e., right censored data). The use of such data will negatively 31 

affect model and map accuracy, yet few studies have been done to resolve this issue 32 

or propose methods to correct for right censored data. Therefore, this work 33 

demonstrates how right censored data can be accounted for in the ST modelling of 34 

mainland France. We propose the use of Random Survival Forest (RSF) for ST 35 

probability mapping within a Digital Soil Mapping framework. Among 2109 sites of the 36 

French Soil Monitoring Network, 1089 observed STs were defined as being right 37 

censored. Using RSF, the probability of exceeding a given depth was modelled using 38 

freely available spatial data representing the main soil-forming factors. Subsequently, 39 

the models were extrapolated to the full spatial extent of mainland France. As 40 

examples, we produced maps showing the probability of exceeding the thickness of 41 

each GlobalSoilMap standard depth: 5, 15, 30, 60, 100, and 200 cm. In addition, a 42 

bootstrapping approach was used to assess the 90% confidence intervals. Our 43 

results showed that RSF was able to correct for right censored data entries occurring 44 

within a given dataset. RSF was more reliable for thin (0.3 m) and thick soils (1 to 2 45 

m), as they performed better (overall accuracy from 0.793 to 0.989) than soils with a 46 

thickness between 0.3 and 1 m. This study provides a new approach for modelling 47 

right censored soil information. Moreover, RSF can produce probability maps at any 48 

depth less than the maximum depth of the calibration data, which is of great value for 49 

designing additional sampling campaigns and decision making in geotechnical 50 

engineering. 51 
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1. Introduction 54 

Soils are of great importance in supporting, provisioning, and regulating 55 

ecosystem services, such as food production and climate change mitigation (Clothier 56 

et al., 2011; Keesstra et al., 2016; Millennium Ecosystems Assessment, 2005). As 57 

stated by recent studies (e.g., Bouma, 2018; Groshans et al., 2018; Marx et al., 2019), 58 

there is a rising demand for up-to-date and ecosystem service relevant soil 59 

information. Therefore, substantial effort is needed to communicate soil information 60 

among diverse audiences and produce fine resolution soil maps to support practical 61 

land management. In this study, we use the GlobalSoilMap project specifications. 62 

These specifications focus on delivering consistently produced high-resolution soil 63 

property information throughout the world by predicting mean values and their 64 

prediction intervals (PIs) (Arrouays et al., 2014a; Arrouays et al., 2014b; Sanchez et 65 

al., 2009). Among the twelve soil properties to be predicted following the 66 

recommendations of GlobalSoilMap, soil thickness (ST) is a key property. In this 67 

study, in line with GlobalSoilMap, ST is defined as ‘the depth (cm) from the soil 68 

surface to the lithic or a paralithic contact’ (Soil Survey Division Staff, 1993). The ST 69 

is highly relevant for soil hydro-mechanical modelling (Tesfa et al., 2009; Wang et al., 70 

2006), soil erosion impact, landscape evolution, vegetation growth (Heimsath et al., 71 

2001; Meyer et al., 2007), and for calculating soil functions (e.g., available water 72 

capacity (Leenaars et al., 2018; Román Dobarco et al., 2019), soil structure (Rabot et 73 

al., 2018; Vogel et al., 2018), and soil organic carbon stocks (Batjes, 1996; Chen et 74 

al., 2019)). Despite the great importance of accurate ST information, the large spatial 75 

variability and high cost of ST measurements make ST determination difficult 76 

(Lacoste et al., 2016). Discordance in the definition of ST also hampers ST modelling, 77 

especially when data are collected from various projects (Lacoste et al., 2016). The 78 



observed ST recorded in soil information systems for some profiles are often less 79 

than the actual ST (i.e., right censored data).  80 

ST results from the mass balance between soil formation from the bedrock 81 

and soil transport by erosion and sedimentation (Heimsath et al., 1997; Heimsath et 82 

al.,1999); thus, it varies as a function of physical, chemical, and biological processes 83 

(Román et al., 2018). ST can be related to these processes by modeling the 84 

relationship between the main soil-forming factors, i.e., Jenny’s Soil-Landscape 85 

paradigm (Jenny,1941): parent material, climatic conditions, organisms, terrain relief, 86 

and time (Dietrich et al., 1995; Minasny and McBratney, 1999). More recently, 87 

McBratney et al. (2003) formulated the concept of the SCORPAN model, which also 88 

includes also soil information and spatial location. 89 

Various approaches for ST modelling and mapping have relied on modelling 90 

the relationship between the main soil forming factors. The majority of these 91 

approaches can be broadly classified into two groups: 1) physically based and 92 

mechanistic models, which predict ST using soil process models based on the rates 93 

of weathering, denudation, and accumulation (Bonfatti et al., 2018; Dietrich et al., 94 

1995; Minasny and McBratney, 1999; Pelletier and Rasmussen, 2009); and 2) 95 

empirical models, including statistical and geostatistical methods (Kuriakose et al., 96 

2009). These models rely on the empirical relationships between ST and explanatory 97 

covariates of inferential attributes (e.g., plant species, precipitation, and parent 98 

material).  99 

For the latter, a wide range of statistical methods have been previously applied 100 

in ST modelling, including canonical correspondence analysis and principal 101 

component analysis (Odeh et al., 1991), multiple linear regression (Moore et al., 102 

1993), expert knowledge and fuzzy logic (Zhu et al., 2001), Generalized Additive 103 



Models and Random Forest (Tesfa et al., 2009), and Cubist and Gradient Boosting 104 

Modelling (Lacoste et al., 2016; Mulder et al., 2016a). 105 

Within the field of geostatistics, various kriging techniques have often been 106 

used to predict and spatially interpolate ST from point samples. Ordinary Kriging was 107 

most commonly used among these kriging techniques (Penížek and Borůvka, 2006; 108 

Vanwalleghem et al., 2010). The prediction variance was typically reduced when 109 

including additional prediction variables using regression kriging (Kuriakose et al., 110 

2009; Odeh et al., 1995) or Kriging with External Drift (Bourennane et al., 1996; 111 

Kempen et al., 2015). 112 

None of the studies referred to above addressed the issue of having right 113 

censored data entries in their soil databases. However, it is often the case that the 114 

actual ST is thicker than the observed ST, which can mainly be attributed to practical 115 

constraints, such as the standard auger length (120 cm), and time constraints. In fact, 116 

in soil sciences very few studies consider the effect of right censored data; the issue 117 

is often ignored or processed by adding a fixed value (e.g., 30 cm) in ST modelling 118 

(Knotters et al., 1995; Vaysse and Lagacherie, 2015; Lacoste et al., 2016; 119 

Shangguan et al., 2017). Some previous works dealt with left censored data, 120 

especially regarding data below detection limits (e.g., de Oliveira, 2005; Fridley and 121 

Dixon, 2007; Orton et al., 2009; Orton et al., 2012; Villaneau et al., 2011). Ignoring 122 

the presence of right censored data entries within a database and relying on the 123 

observed ST for those entries will result in an underestimation of modelled ST 124 

(Vaysse and Lagacherie, 2015; Shangguan et al., 2017).  125 

However, right censored data are commonly used in statistics and medical 126 

research, especially in survival analysis. Several models have been used to deal with 127 

right censored data in survival analysis, including the Kaplan Meier method (Kaplan 128 



and Meier, 1958), Cox regression (Andersen and Gill, 1982), and Random Survival 129 

Forest (RSF, Ishwaran et al., 2008). The Kaplan Meier method and Cox regression 130 

mainly deal with linear effects, but RSF is capable of handling complex non-linear 131 

effects that may exist between predictor variables (Mogensen et al., 2012). Therefore, 132 

as previously suggested by Styc and Lagacherie (2016), RSF may have the best 133 

potential for identifying and correcting right censored data used for Digital Soil 134 

Mapping (DSM). 135 

In this study, the potential of RSF was evaluated for ST mapping in mainland 136 

France. The main objectives of this study are noted below: 137 

1) Apply RSF for mapping the probability of exceeding a certain ST using both 138 

actual and right censored ST data from the French Soil Monitoring Network 139 

(RMQS) and 140 

2) Derive the 90% confidence intervals of the specific ST using bootstrapping. 141 

 142 

2. Material and methods 143 

2.1. Soil dataset 144 

We used ST data from the RMQS soil database that were gathered between 145 

2001 and 2009 (Jolivet et al., 2006), covering different soil, climate, relief, and land 146 

cover conditions (Fig. 1). The RMQS dataset is based on a 16 km × 16 km square 147 

grid where all sites are selected at the centre of each grid cell. When sampling the 148 

exact location was not possible, a site was selected as close as possible to the grid 149 

centre. A soil pit was dug, and the surrounding information (land use and 150 

geomorphology) and a detailed description of the soil profile were recorded for each 151 

site, including soil horizon depth and ST. Auger boring was recommended (but not 152 

mandatory) to complete the soil profile when the soil pit was not thick enough to 153 



determine the ST. For more detailed information about the soil sampling design and 154 

laboratory analysis, see Chen et al. (2018). Among 2109 RMQS sites, ST was 155 

explicitly recorded for 1020 sites (down to a lithic or paralithic contact), while the 156 

remaining 1089 sites were right censored data. The ST for nine RMQS sites was set 157 

to 0, as these sites were identified as mountainous sites with bare rock. 158 

 159 

2.2. Exhaustive covariates 160 

We used a DSM framework (McBratney et al., 2003) to model the relationships 161 

between ST and ancillary covariates (Table 1). These covariates cover a series of 162 

soil formation related environmental factors, including soil, climate, organisms, relief 163 

and parent material. Before modelling, these covariates were re-projected to Lambert 164 

93 (official projection for mainland France) and resampled to a 90 m resolution (in 165 

raster format) using a bilinear interpolation (numeric covariates) or nearest neighbour 166 

(categorical covariates). 167 

 168 

2.3. Random survival forest for probability modelling of soil thickness 169 

2.3.1. General introduction  170 

RSF is an ensemble tree method for modelling right censored survival data 171 

(Ishwaran et al., 2008). RSF is an extension of Breiman’s (2001) random forest (RF), 172 

known as an ensemble learning approach that is improved by injecting randomization 173 

into the base-learning process. For example, using a human analogy, a specific 174 

status introduced in RSF aims to distinguish whether it is a death case (status = 1) or 175 

a survival case (status = 0) at a given observed time. The RSF does this by 176 

estimating the presence-absence probability. Applying this censoring concept to ST, 177 

at a given site there are two possibilities for a thickness to be recorded: i) the actual 178 



ST has been observed down to lithic or paralithic contact as defined before (status = 179 

1) or ii) the lithic or paralithic contact has not been reached and the actual ST 180 

remains unknown (status = 0). For the latter, it is only known that the actual ST is 181 

greater than the observed ST. RSF uses a new type of predicted outcome that 182 

contains a cumulative hazard function (CHF, see Section 2.3.2).  183 

 184 

2.3.2. Random survival forest model fitting 185 

RSF model fitting involves the following steps (Ishwaran et al., 2008), as 186 

shown in Fig. 2. 187 

1) Select ntree bootstrapped samples from the calibration data. Approximately 37% 188 

(e-1) of the calibration data are excluded in each bootstrapped sample, which are 189 

so-called out-of-bag (OOB) data. 190 

2) Grow a survival tree for each bootstrapped sample. At each node of the survival 191 

tree, randomly select mtry covariates for splitting the data. Survival splitting 192 

criteria are then used, and each node is split on that covariate, which maximizes 193 

survival differences across sub-nodes. 194 

3) Grow the survival tree to full size under the constraint that a terminal node should 195 

have no less than nodesize unique actual ST samples. 196 

4) Calculate a CHF for each survival tree and obtain the ensemble CHF by 197 

averaging all the survival trees for each sample. 198 

5) Calculate the prediction error of the ensemble CHF based on OOB data. 199 

 200 

Ensemble cumulative hazard function and ensemble survival function 201 

Constructing the ensemble CHF is crucial for RSF. Hereafter, we provide 202 

details about the procedure for a better understanding. 203 



For a survival tree, let (ST1,h, δ1,h), . . . ,(STn(h),h, δn(h),h) be the observed ST and 204 

the 0–1 censoring status (δ) for n samples in a terminal node h. Here, let ST1,h < 205 

ST2,h < · · · < STn(h),h be the different observed ST in the terminal node. The CHF 206 

estimate for h is then defined by the Nelson–Aalen estimator ���: 207 

������� = 	 
�,��,����,����
 ,                                                             �1� 208 

where al,h and Yl,h are the number of actual ST samples and all samples at observed 209 

ST stl,h, respectively. All the samples within the terminal node h have the same CHF. 210 

Each sample i has a mtry-dimensional covariate xi that will belong to a unique 211 

terminal node h. Therefore, the CHF for i is the Nelson–Aalen estimator for xi’ 212 

terminal node: 213 

����|��� = �������.                                                               �2� 214 

Equation 2 describes the CHF from an individual tree. The ensemble CHF is 215 

computed by averaging over ntree trees. The bootstrap ensemble CHF for sample i is 216 

defined below (the definition of OOB ensemble CHF please refer to Ishwaran et al., 217 

2008): 218 

�����|��� = 1����� 	 �����|���,
�����

� !
                                           �3� 219 

where Hn (st|x) is the CHF for a tree grown from the nth bootstrap sample. 220 

The survival function is a probability density function that describes the 221 

survival probability at a given ST. In RSF, the ensemble survival function (Se) could 222 

be derived from ensemble CHF (Mogensen et al., 2012): 223 

#����|��� = exp '− 1����� 	 �����|���
�����

� !
  ).                            �4� 224 

Here, the survival probability at a given ST is equal to the probability of 225 

exceeding a given ST or censored probability at a given ST. The probability of 226 



exceeding a given ST ranges from 0 to 1, and when it is close to 1, the location has a 227 

high probability of being censored. Therefore, in this latter case, the actual ST has a 228 

high probability of being thicker than the censored ST. 229 

 230 

Node splitting rule 231 

The node splitting rule is another important parameter in RSF. There are 232 

several choices for splitting rules, including the log-rank splitting rule, conservation 233 

splitting rule, log-rank score rule, and fast approximation to the log-rank splitting. 234 

Here, the log-rank splitting rule is used as the default splitting rule, as suggested by 235 

Ishwaran et al. (2008). We define ��! < ��, < ⋯ < ��� as the ST intervals and xi,j and 236 

ai,j as the number of samples and number of actual ST samples at ST sti in the sub-237 

nodes j (1 or 2), respectively. Here, xi
 = xi,1

 + xi,2 and ai
 = ai,1 + ai,2. The log-rank test 238 

for a split at the value n of the covariate c is defined as 239 

.�/, �� = ∑ �
�,! − 1�,! 
�1��2� !
3∑ 1�,!1� �1 − 1�,!1� ��1� − 
�1� − 1 �
�2� !

,                                     �5� 240 

where the value |L(c, n)| is the measure of node split, and xi,1 and ai,1 are the number 241 

of samples and number of actual ST samples, respectively, at ST sti when c is less 242 

than n. The larger the |L(c, n)| value, the larger the difference between two sub-243 

nodes and a better split. The best split at each note is determined by searching the 244 

optimized covariate c* and split value n* to maximize the |L(c, n)| value. 245 

 246 

Prediction error 247 

In survival analysis, Harrell’s concordance index (Harrell Jr et al., 1982) is 248 

commonly used for estimating prediction error as it does not depend on choosing a 249 

fixed time for model evaluation and specifically accounts for censoring (May et al., 250 



2004). The concordance index (C index) is calculated by the following steps in ST 251 

modelling. 252 

1) Generate all possible pairs of samples over the data. 253 

2) Remove pairs whose lower ST is censored. Remove pairs i and j if sti = stj unless 254 

at least one is an actual ST sample. The total number of permissible pairs is 255 

recorded as Per. 256 

3) For each permissible pair where sti ≠ stj: if the thinner ST has worse predicted 257 

outcome (higher cumulative hazard value), count 1; ii) otherwise, count 0.5. For 258 

each permissible pair where sti = stj and both are actual ST samples: i) if 259 

predicted outcomes are equal, count 1; ii) otherwise, count 0.5. For each 260 

permissible pair where sti = stj and not both, are actual ST samples: i) if the 261 

actual ST sample has a worse predicted outcome, count 1; ii) otherwise, count 262 

0.5. The sum of all permissible pairs is recorded as Con. 263 

4) The C index is defined by the ratio of Con to Per. 264 

In RSF, the C index is computed via OOB data using the steps mentioned 265 

above, and it ranges between 0 and 1. The prediction error is calculated by the1-C 266 

index, so it is also between 0 and 1. A lower prediction error represents better model 267 

performance for the calibration model. 268 

 269 

2.3.3. Assessing the main controlling factors for ST modelling 270 

To assess the main controlling factors for ST in France, the variable 271 

importance of the ST predictors (i.e., covariates used) in the RSF model were 272 

evaluated. In RSF, the variable importance of a covariate c is calculated by dropping 273 

OOB samples down their in-bag survival tree. A sub-node is randomly assigned 274 

when encountering a split for c, and then an average of the CHF obtained from these 275 



trees is calculated. The variable importance for c is calculated as the difference of 276 

prediction error between the new ensemble obtained using randomized c 277 

assignments and the original ensemble. A larger variable importance value indicates 278 

a higher contribution to the model for a covariate. 279 

 280 

2.4. Soil thickness probability mapping and bootstrapping for determining prediction 281 

uncertainty  282 

As introduced in Section 2.3.2, the RSF model outcome entails a function 283 

between the survival (censored) probability and ST for each prediction. In other 284 

words, the censored probability can be calculated over the full soil profile (0 to the 285 

maximum depth of actual ST samples) for any position in mainland France from RSF. 286 

As an example, the censored probabilities for the six GlobalSoilMap standard depths 287 

were extracted from the survival probability function (Fig. 3); those depths are 5, 15, 288 

30, 60, 100, and 200 cm, which we refer to hereafter as ST5, ST15, ST30, ST60, 289 

ST100 and ST200, respectively. From this, we derived a probability map for each 290 

GlobalSoilMap standard depth in mainland France. 291 

Bootstrapping was applied to determine the average and 90% Confidence 292 

Intervals (CIs) of the RSF model. Hence, we did not determine the 90% PIs as is 293 

recommended by the GlobalSoilMap specifications; instead we estimated the 90% 294 

CIs. This was deemed suitable, as we were not able to identify the random error in 295 

the RSF model. Consequently, the estimated 90% CIs would be narrower than 90% 296 

PIs. The bootstrap samples were drawn 50 times by repeated random sampling with 297 

replacement of the RMQS sites; the RMQS sites not used in each bootstrap sample 298 

were used to evaluate the model performance of each bootstrap RSF model (details 299 

in Section 2.5). Note that the bootstrap sample used here corresponds to the initial 300 



data used in the RSF framework (Fig. 2), not the bootstrap sample used to generate 301 

trees. Finally, using these bootstrap samples, 50 bootstrap RSF models were 302 

generated, from which 50 probability functions between the censored probability and 303 

ST could be exhaustively predicted for mainland France. After several iterative model 304 

calibrations leading to the final prediction model, we choose 50 bootstrap models 305 

because it is time-consuming to make predictions at a 90 m resolution for mainland 306 

France (RSF produces a probability function rather than a value for each pixel, so it 307 

takes 2 weeks for 50 bootstrap RSF models under parallel computing that make full 308 

use of a computer with 8 cores and 32 GB of RAM). A robust estimate of the 309 

probability of exceeding each standard GlobalSoilMap soil depth was determined by 310 

averaging the bootstrap predictions. Their lower and upper 90% CIs were calculated 311 

by the averaged bootstrap predictions minus and plus 1.645 times (Z score for 90% 312 

CIs) the standard deviation of bootstrap predictions, respectively. Surface area 313 

percentages of five probability intervals (0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8, and 0.8-1) 314 

were calculated from the averaged bootstrap predictions of probability maps at six 315 

GlobalSoilMap standard depths. The mean probability was computed by averaging 316 

all pixels of the probability map for each GlobalSoilMap standard depth. 317 

 318 

2.5. Model performance  319 

In addition to the CIs, the model performance of each GlobalSoilMap standard 320 

depth was evaluated using the RMQS sites that were not used in the bootstrap 321 

samples, which referred to an evaluation dataset from each bootstrap RSF model. 322 

For a given GlobalSoilMap standard depth (sts), the prediction performance was 323 

evaluated based on the confusion matrix in which the misclassification rate was 324 

calculated based on whether the data was censored or not. Hence, given a sample 325 



with observed ST (sto): 1) when sts ≤ sto, if the probability exceeds 0.5, the sample is 326 

correctly predicted, otherwise, it is incorrectly predicted; and 2) when sts > sto, if the 327 

probability is less than 0.5, the sample is correctly predicted, otherwise, it is 328 

incorrectly predicted. 329 

Subsequently, the confusion matrix was calculated as the mean counts of 330 

OOB samples with actual ST and censored ST separately from 50 bootstrap 331 

predictions. 332 

All of the statistics and modelling were performed in R (R Core Team, 2016). R 333 

package randomForestSRC was used for RSF modelling (Ishwaran and Kogalur, 334 

2017). 335 

 336 

3. Results  337 

3.1. Summary statistics of the ST dataset 338 

Among 2108 RMQS sites, more than half were right censored for ST (Fig. 4). 339 

The actual ST ranged from 0 to 300 cm, with a mean value of 64 cm. The first 340 

quantile, median and third quantile were 39, 59, and 80 cm, respectively, indicating a 341 

large percentage of soils thinner than 60 cm. The censored ST ranged from 50 to 270 342 

cm, with the mean ST (104 cm) being higher than the actual observed RMQS sites. 343 

For the censored RMQS sites, the first quantile, median, and third quantile were 75, 344 

95, and 120 cm, respectively. 345 

 346 

3.2. Model performance  347 

The prediction error of the calibrated RSF models decreased from 0.27 to 0.15 348 

as the number of trees increased up to 50 (Fig. 5). After 50 trees, the prediction error 349 

decreased slightly and became more stable as the number of trees increased (max. 350 



300 trees). This indicated that 50 trees were sufficient for this study to produce a 351 

stable model while accelerating the prediction efficiency for big data. 352 

The prediction performance differed when evaluated at the six GlobalSoilMap 353 

standard depths (Table 2). For the actual RMQS sites, the overall accuracy 354 

decreased from 0.989 to 0.546, when depth increased from ST5 to ST60. The overall 355 

accuracy then gradually increased up to 0.793 for ST200. The overall accuracy for 356 

censored RMQS sites were 1, 0.998, and 0.995, respectively, for SD5, SD15, and 357 

SD30, the accuracy then decreased to 0.825 for SD60 and subsequently dropped to 358 

0.534 for ST100 and 0.563 for ST200. 359 

 360 

3.3. Controlling factors of ST modelling 361 

Parent material (PM) and climatic zones (TYPO) were the two most important 362 

variables affecting the ST probabilities in RSF models, based on the average 363 

bootstrap RSF (Fig. 6). The difference in prediction error between the new and the 364 

original ensembles was most affected by these two variables, despite the large 90% 365 

CIs. Roughness, precipitation, elevation, slope, gravimetry and Net Primary 366 

Production (NPP) also had large contributions in ST modelling. The remaining 367 

covariates contributed less to the RSF model and had smaller CIs. 368 

 369 

3.4. ST probability maps and associated confidence intervals 370 

Fig. 7 presents the ST probability maps of exceeding the six GlobalSoilMap 371 

standard depths and their 90% CIs for mainland France. Overall, the average 372 

probability of exceeding the GlobalSoilMap standard depths of 5, 15, 30, 60,100, and 373 

200 cm were 0.99, 0.97, 0.88, 0.68, 0.51, and 0.42, respectively. 374 



The probability of exceeding ST5 was close to 1 across the whole country, 375 

except for eastern (the Alps) and southwestern France (the Pyrenees). The 90% CI 376 

was very narrow (0.02 ± 0.06), indicating low model uncertainty and thus robust 377 

estimates for the ST5 map. 378 

A similar spatial distribution was observed when ST increased to ST15. The 379 

low probability in southern France (the Massif Central) showed that this region had a 380 

high probability of having STs less than 15 cm. The difference between the lower and 381 

upper limits of the 90% CI was still low (0.05 ± 0.08), indicating a robust estimate. 382 

Moreover, the surface area percentages for the five probability intervals were also 383 

quite close to those of ST5 (Fig. 8). 384 

When the ST depth criteria was further increased to ST30, in addition to 385 

previously mentioned locations, low probabilities were found in eastern France (the 386 

Jura Mountains, Fig. 7). Moreover, the CIs substantially increased (give numbers) 387 

compared to ST5 and ST15. This indicates a larger prediction uncertainty and a 388 

lower model robustness. In comparison with ST15, a slight increase (2%) was 389 

observed for the surface area with probabilities between 0.4 and 0.6. The surface 390 

area having a probability between 0.6 and 0.8 increased from 1 to 14%, while the 391 

area with a probability between 0.8 and 1 decreased from 98 to 83% (Fig. 8).  392 

Moving from the ST30 up to the ST200 thickness criteria, substantial changes 393 

in spatial patterns and the probability of surpassing the ST criteria became apparent. 394 

Most notable is how the surface area with probabilities between 0.8 and 1.0 395 

continuously decreased, from 83% (ST30) to 2% (ST200). ST60 corresponded with a 396 

probability of 27% and ST100 with a probability of 7% (Fig. 8). 397 

For ST200, more than 50% of the territory of mainland France had a low 398 

probability (<0.4) of exceeding ST by 2 m, while less than 17% of the areas had a 399 



high probability (>0.6) of exceeding the ST by 2 m (Fig. 7). The areas with a high 400 

probability were mainly located in southwestern France (the Landes of Gascony), 401 

central France (Sologne), and northern France (thick loess deposits). 402 

 403 

4. Discussion 404 

Several ways to perform probability mapping have been proposed in the 405 

literature since the 1990s. For instance, Bell et al. (1994) applied discriminant 406 

analysis with a maximum-likelihood classification function to map the soil drainage 407 

probability in south-central Pennsylvania, USA. von Steiger et al. (1996) mapped the 408 

probability of exceeding the maximum tolerable heavy metal concentrations by 409 

Disjunctive Kriging in northeast Switzerland. Richer-de-Forges et al. (2017) used 410 

Logistic Regression Kriging in probability mapping of iron pan presence in sandy 411 

podzols in southwest France. The largest differences between the methods used in 412 

previous studies and RSF can be summarized in two aspects: 1) RSF is able to deal 413 

with right censored data while others are not, and 2) RSF can potentially produce 414 

probability estimates of any ST value, whereas other methods deal with 415 

presence/absence at a given threshold for the soil attributes of interest. Moreover, 416 

others used multiple sequential indicator simulations to model this type of distribution 417 

(e.g., Cattle et al., 2002). The survival analysis we used is a similar approach, except 418 

that it models the survival function rather than the empirical distribution function. 419 

In the RMQS dataset, right censored ST observations entail more than half of 420 

the observations. Using them for ST modelling with traditional DSM approaches 421 

would result in highly underestimated ST estimates. Lacoste et al. (2016) proposed 422 

adding a fixed value of 30 cm to censored samples before modelling, which may help 423 

lower the underestimation but does not really solve the problem. Moreover, as actual 424 



ST values of these censored sites remain unknown, adding a fixed value may even 425 

add more noise to the data, and thus enlarging the prediction uncertainty. As shown 426 

in Fig. 9, the probability of exceeding the observed ST for each censored RMQS site 427 

was mainly between 0.5 and 1, with a median value of 0.78. Thereafter, as outlined 428 

in the methodology Section 2.3.2, RSF makes use of the probability function derived 429 

from right censored information, thereby avoiding underestimating ST at these 430 

censored positions.  431 

The mean probability of exceeding an ST of 100 cm across mainland France 432 

was 0.51 (Fig. 8), which means that all locations have a 50% possibility of being 433 

observed with an ST thicker than 100 cm. This result implies that the median ST in 434 

mainland France is approximately 100 cm, which is in line with previous work by 435 

Lacoste et al. (2016), showing that 48 and 54% of surface areas were below 100 cm 436 

when using Gradient Boosting Modelling and Cubist models, respectively. 437 

The results showed that the prediction performance decreased from 0 to 60 438 

cm and subsequently increased up to 200 cm for censored RMQS sites (Table 2), 439 

implying that the predicted probability of exceeding a given ST from the RSF model is 440 

more reliable for extreme values (i.e., a thin ST or thick ST). Indeed, due to the soil 441 

forming conditions in mainland France, except for steep slopes in mountainous areas, 442 

very thin soils are quite rare, and thus the probability of exceeding a very thin ST is 443 

high. Conversely, very thick soils are concentrated in (former) depositional areas 444 

(valleys, aeolian sand, or loess deposits) that can be easily mapped using some of 445 

the covariates (e.g., parent material and terrain parameters). For the censored 446 

RMQS sites, the overall accuracies for ST100 and ST200 were approximately 0.5, in 447 

which a large percentage of thin ST samples were misclassified as being thick. This 448 

can be explained by the fact that we used observed ST of censored RMQS sites in 449 



calculating the confusion matrix. Consequently, we may overestimate the percentage 450 

of misclassification mentioned before and thus underestimate the overall accuracies 451 

of ST100 and ST200. 452 

Parent material and climatic zones were the most important variables for 453 

predicting ST in France using the bootstrapped RSF, but roughness, precipitation, 454 

elevation, slope, gravimetry, and NPP also substantially contributed to the ST model. 455 

These results are in line with previous findings reported by Lacoste et al. (2016). 456 

Lacoste et al. (2016) stated that the most important covariates of ST modelling in 457 

mainland France were soil properties, climate covariates and land use. Considering 458 

the variable importance and the variables acting as controlling factors for ST, parent 459 

material, climatic zones, precipitation, and gravimetry are direct drivers for the 460 

weathering process. Roughness, elevation, slope, and NPP are more related to 461 

sediment transport dynamics. 462 

Future research should aim to derive an ST map using RSF, instead of the 463 

currently presented ST probability map of exceeding a given depth. There are three 464 

ways to determine the actual soil ST from the unique probability function produced by 465 

RSF for each location of interest: 1) use the ST extracted from the median probability 466 

in the predicted function; 2) use the ST extracted from a fixed probability, allowing the 467 

classification of censored and actual ST at high accuracy among RSF calibration 468 

datasets; 3) perform a derivative analysis on the probability curve. Moreover,it will be 469 

interesting to combine RSF with geostatistical methods. For example, kriging of 470 

residuals (Hengl et al., 2004) that are not captured by RSF and/or sampling 471 

optimizing for future campaigns to reduce the prediction variance at locations where it 472 

is highest. Alternatively, the presented probability maps can be used directly for 473 

additional ST sampling campaigns, aimed at ST modelling in mainland France. For 474 



example, the regions with a high probability (>0.8) of ST200 have a large chance of 475 

being censored. Integrating those high probability regions with parent material and 476 

climatic zones would yield an efficient and effective sampling design using 477 

conditioned Latin hypercube sampling (cLHS, Minasny and McBratney, 2006) to 478 

obtain more representative samples of all physiographic contexts. RSF is able to 479 

provide a probability at any depth and thus will be helpful for decision making in 480 

geotechnical engineering regarding, for example, laying out drains, pipes, and tubes 481 

(Zhang et al., 2005). 482 

5. Conclusions 483 

 This study introduced the use of RSF in ST probability modelling to deal with 484 

right censored data for Digital Soil Mapping. RSF produced a probability function of 485 

ST for each soil sample included in the database. This function allowed the 486 

estimation of a probability of exceeding a given ST, indicating each soil location was 487 

right censored or not. Robust estimates were made by bootstrapping the RSF model 488 

to quantify an averaged bootstrap prediction and 90% CI for each GlobalSoilMap 489 

standard depth (5, 15, 30, 60, 100 and 200 cm) using the RSF survival probability 490 

functions. The model evaluation indicated an overall good performance (overall 491 

accuracy from 0.546 to 0.989) of RSF to predict the probability exceeding the six 492 

GlobalSoilMap standard depths. The RSF proved suitable for using right censored 493 

soil data for digital soil mapping, and thereby this work introduced a new approach 494 

capable of using both right censored and actual data for modelling ST accordingly. 495 
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 740 



Figures 741 

Fig. 1 Locations of RMQS sites with actual (dotted) and censored (star) ST values. 742 

For each site, ST is classified based on the GlobalSoilMap standard depths. Corine 743 

Land Cover map of 2006 of mainland France (right) with the administrative regions 744 

(black italics) and natural geographic regions (blue italics). 745 

   

 746 



Fig. 2 Random survival forest workflow. 747 

 748 

 749 



Fig. 3 Survival probability curve (blue solid line) for one location predicted by RSF. 750 

The orange dashed vertical lines indicate the six GlobalSoilMap standard depths, 751 

and the orange dashed horizontal lines indicate their corresponding censored 752 

probabilities that are derived from the survival probability curve. 753 

 754 

 755 



Fig. 4 Density distribution of STs for actual and censored RMQS sites. Counts of 756 

actual and censored samples within GlobalSoilMap depth intervals are provided. 757 

 758 

 759 



Fig. 5 Mean and 90% confidence intervals of the prediction error, given different 760 

numbers of trees from 50 bootstrapping random survival forests. 761 

762 



Fig. 6 Mean and 90% confidence intervals of variable importance from 50 763 

bootstrapping random survival forests.  764 

765 



Fig. 7 Probability maps of exceeding the six GlobalSoilMap standard depths (middle) 766 

and their associated 90% confidence intervals (left and right). 767 

 

     

    

 

 

      

    

 

 



      

    

 

 



Fig. 8 Surface area percentage of the probability of exceeding the ST of each 768 

GlobalSoilMap standard depths. The mean probability is calculated by averaging all 769 

the pixels in the probability map for each GlobalSoilMap standard depth. 770 

771 



Fig. 9 Histogram with the probability of exceeding the observed ST for each censored 772 

RMQS site. 773 
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 775 



Tables 776 

Table 1 Exhaustive covariates used for ST modelling (after Mulder et al., 2016b) 777 

Variable Abbreviation Scale/resolution Soil forming factor Reference 

Elevation ELEVATION 90 m Relief Jarvis et al. (2008) 

Compound topographic 

index 

CTI 90 m Relief Jarvis et al. (2008) 

Curvature CURVATURE 90 m Relief Jarvis et al. (2008) 

Exposition EXPOSITION 90 m Relief Jarvis et al. (2008) 

Roughness ROUGHNESS 90 m Relief Jarvis et al. (2008) 

Slope SLOPE 90 m Relief Jarvis et al. (2008) 

Slope cosines SLOPECOS 90 m Relief Jarvis et al. (2008) 

Slope position SLOPEPOS 90 m Relief Jarvis et al. (2008) 

Topographic wetness index TWI 90 m Relief Jarvis et al. (2008) 

Gravimetric data (Bouguer 

anomaly)  

GREVIMETRY 4 km Relief Achache et al. (1997) 

Soil typea SOIL 1:1000000 Soil IUSS Working Group WRB (2006) 

Erosion rates EROS 1:1000000 Soil Cerdan et al. (2010) 

Rate of river network 

development and 

persistence 

IDPR 1:50000 Soil and parent 

material 

Info Terre – Site cartographique de 

référence sur les géosciences 

(2014) 

Parent material PM 1:1000000 Parent material King et al. (1995) 

Mean annual net primary 

production 

NPPMEAN 1 km Organisms NASA LD (2001) 

Forest type BDFOREST Min area 2.25 

ha 

Organisms Inventaire Forestier National 

(2006) 

Land cover from Sentinel-2 LCS 10 m  Organisms Inglada et al. (2017) 

Corine land cover 2006 CLC06 250 m Organisms Feranec et al. (2010) 

ECOCLIMAP land use ECOCLIM 1 km Organisms Faroux et al. (2013) 

Climatic zones TYPO 1 km Climate Joly et al. (2010) 

Mean annual precipitation RAINFALL 1 km Climate Hijmans et al. (2005) 

Mean annual temperature TEMPMEAN 1 km Climate Hijmans et al. (2005) 

a Soil type defined by World Reference Base (WRB)778 



Table 2 Model performance of actual and censored RMQS sites per each 779 

GlobalSoilMap standard depth, based on out of bag samples. The count of correctly 780 

classified sites is marked bold, and the overall accuracy is marked italic underlined. 781 

ST (cm)  Actual RMQS sites Censored RMQS sites 
 Predicted 

Observed Thin Thick Accuracy Thin Thick Accuracy 

5 Thin 2 2 0.500 0 0 1 
Thick 0 367 1 0 400 1 
Reliability 1 0.995 0.989 n.a. 1 1 

15 Thin 2 12 0.143 0 0 n.a. 
Thick 0 356 1 1 399 1 
Reliability 1 0.967 0.962 0 1 0.998 

30 Thin 5 65 0.063 0 0 n.a. 
Thick 1 300 0.997 2 398 1 
Reliability 0.833 0.843 0.822 0 1 0.995 

60 Thin 58 150 0.279 7 43 0.140 
Thick 18 144 0.889 27 323 0.923 
Reliability 0.763 0.490 0.546 0.205 0.883 0.825 

100 Thin 203 120 0.628 97 138 0.413 
Thick 19 28 0.596 49 117 0.705 
Reliability 0.914 0.189 0.624 0.664 0.459 0.534 

200 Thin 294 76 0.795 219 172 0.560 
Thick 1 1 0.500 3 6 0.667 
Reliability 0.997 0.013 0.793 0.986 0.034 0.563 

n.a. Not available. 782 




