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Abstract: In this paper, an approach is developed to solve the joint production planning and 

maintenance problem. Moreover, some propositions and mathematical properties were suggested and 

applied in the proposed heuristic to solve this integrated problem. It is based on Lagrangian relaxation 

(Fisher 1981) of the capacity constraints and sub-gradient optimization. At every step of sub-gradient 

method, a smoothing procedure is applied to the solution of the Lagrangian problem to ensure the 

feasibility of solution and to improve it. Computational experiments are carried out to show the results 

obtained by our approaches and are compared to those of a commercial solver. 
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1. Introduction  

Maintenance is a task closely related to production scheduling in industrial settings. It is the 

function that allows maintaining or restoring equipment to a specific state and guaranteeing a 

given service. Production and maintenance activities conflict since maintenance is generally 

considered as a secondary process in companies that have production as their core business. 

Indeed, preventive maintenance activities are often carried out in hours or days out of service. 

Therefore, the number of breakdowns increases and the availability of production equipment 

is reduced. We can notice then that production planning and maintenance are addressed 

separately in the literature and also in the industry. As a remedy to this problem, the 

maintenance planning should be an integral part of the overall business strategy and should be 

coordinated and scheduled with manufacturing activities. So, maintenance should be 

considered as integral parts of the production plan rather than as interruptions to that plan and 

any violation of the maintenance schedule will induce a violation of the production plan 

integrity. 

In this paper, a new integrated production and maintenance planning problem is studied 

considering a single production line at the tactical level. For production planning, the single 

stage multi item capacitated lot sizing problem with demand shortages is proposed. The 

objective is to determine the schedules and lot sizes of multiple items that share capacity 

constraint resources. The problems deals with tight capacities and when the capacity is 

insufficient to produce the total demand, it is spread among the items by minimizing the total 

amount of demand shortages. The maintenance planning problem is to determine the dates of 

preventive maintenance in time windows according to reliability of production equipment and 

demand. When preventive maintenance actions are carried out the production line is restored 

to as good as new (AGAN) state, i.e. the system has the same lifetime distribution and failure 

rate function as a brand new one, and when a production line fails, a minimal repair is 



performed to restore the system to the failure rate it had when it failed (as bad as old (ABAO) 

state). The resulting problem is modeled as a linear mixed-integer program to minimize 

production, inventory, setup, demand shortage, preventive and corrective maintenance costs. 

To our knowledge, there are only few works dealing with this issue. An integrated aggregate 

production planning and maintenance problem was tackled initially by Weinstein and Chung 

(Weinstein and Chung, 1999). The authors presented a three part-model to solve the 

conflicting objectives of system reliability and profit maximization. An aggregate production 

plan is first generated, and then a master production schedule is developed to minimize the 

weighted deviations from the specified aggregate production goals. Finally, work-center 

loading requirements, determined through rough cut capacity planning, are used to simulate 

equipment failures during the aggregate planning horizon. Unlike Weinstein and Chung, 

Aghezzaf et al (Aghezzaf et al. 2007) proposed an integrated aggregate production planning 

and maintenance model for a system that is periodically renewed and minimally repaired at 

failure. They assumed that any maintenance action carried out on the system in a given period 

reduces the system’s available production capacity during that period. The objective was to 

find an integrated lot-sizing and preventive maintenance strategy of the system that satisfies 

the demand for all items over the entire horizon without backlogging, and which minimizes 

the expected sum of production and maintenance costs. An extension of the above work is 

treated by Aghezzaf and Najid (Aghezzaf and Najid, 2008) by considering parallel production 

lines. Recently, we treated the problem of integrating production and maintenance for small 

instances in (Najid et al. 2010). The integrated model and the separate model (where 

production and maintenance are planned separately) were solved and a comparison between 

integrated and separate models was studied and showed the effectiveness of the integrated 

one. Nourelfath et al. (Nourelfath et al. 2010) integrated preventive maintenance with tactical 

production planning in multi-state systems. The objective is to determine an integrated lot-



sizing and preventive maintenance strategy of the system that will minimize the sum of 

maintenance, setup, holding, backorder, and production costs, while satisfying the demand for 

all products over the entire horizon. 

While all above mentioned papers consider that preventive maintenance activities should be 

planned at a fixed date, the present work provides more flexibility to preventive maintenance 

tasks with time windows to better optimize the overall cost of production and maintenance. 

The remainder of the paper is organized as follows. In the second section, the description and 

mathematical formulation of the problem are presented. The heuristics to solve the integrated 

problem are developed in the third section and some computational results are showed in the 

fourth section. Finally, we end up with conclusion and prospects in the last section. 

2. Mathematical model 

2.1 Preventive Maintenance Policy 

Our preventive maintenance (PM) policy is planned in time windows and based on the 

periodic PM policy, see e.g. (Barlow and Hunter, 1960), Nakagawa (Nakagawa 1981a, b), 

Wang and Pham (Wang and Pham, 1999). In the classical periodic PM policy, the equipment 

is maintained at fixed time intervals  (k=1, 2…) where  ( is the 

optimal number of PM period and  is the length of each period t  H) is the optimal length of 

PM period. Therefore, PM tasks will be performed periodically in the beginning of period’s    

t =1, +1, 2 +1, 3 +1, +1 etc. In our study, The PM actions are planned in time 

windows  where and  is the number of 

preventive maintenance activities during the horizon, and is defined as: 

 

Thus, a preventive maintenance task will be carried out at the earliest in the beginning of the 

period  or at the latest in the beginning of the period  and will 



complete within the period in which it started. The parameter k which determines the width of 

the time windows is chosen to avoid their overlapping:  

 

Moreover, we assume that each preventive or corrective maintenance action carried out on the 

production line consumes capacity units and at the beginning of the planning horizon the 

production line is considered as new. When a preventive maintenance is planned, the 

production line is restored to AGAN state and when a production line fails, a minimal repair 

is performed to restore it to “as bad as old” (ABAO) state. The production line is considered 

here as a complex system and the failure rate is an overall rate of the whole line. It is also 

assumed that the failure distribution of the production line is known. Let and  denote 

its corresponding probability density and cumulative distribution functions, respectively. Let 

 denotes the failure rate function of the production line at time .  

 

Finally, we assume that expected failures increase with elapsed time since the last preventive 

maintenance. 

The objective of the maintenance problem is to decide when performing preventive 

maintenance activities in predetermined time windows and reducing the number of failures. 

The expected maintenance cost during the horizon is defined as the sum of preventive and 

corrective maintenance costs. 

2.2 Planning Time windows  

To determine time windows, we need to estimate, for each period t of the horizon, the 

expected number of failures, denoted essential to compute the expected maintenance 

cost per unit time.  



 

The optimal length of preventive maintenance period  corresponds to the period 

t which minimizes the expected maintenance cost per unit time, denoted CM(t), and given by :  

 

Where and  are respectively preventive and corrective maintenance costs, and is the 

expected maintenance cost during [0, t] and given by: 

 

Example: 

If we consider an horizon with 9 periods and an optimal length of preventive maintenance 

period  ( ), the maintenance planning, without considering production 

constraints, is shown in figure 1. By using equation (2), k is equal to 1 and then time windows 

in the whole of horizon are defined as shown in figure 2 

[Figures 1, 2] 

2.3 Integrated production and maintenance planning model 

The studied problem is an integrated production and maintenance planning model where 

preventive maintenance activities are carried out in time windows. The production planning 

considers a planning horizon H of length  covering N periods of fixed length , 

and a set of items  to be produced on a single capacitated production line. During each 

period , a demand  of the item  should be satisfied (figure 3). Items are produced 

on a production line with known capacities given in unit time, and processing time is 

expressed in unit time per item. Furthermore, the demand shortage is allowed to be unfulfilled 

due to insufficient capacity and using a high unit cost for each item lost. 

 [Figure 3] 

Notations  



Index: 

i: Items. 

t: Periods. 

Parameters: 

        : Demand of item i to satisfy during period t. 

K (t)     : Available capacity in period t. 

         : Set-up cost of producing one unit of item i in period t. 

        : Fixed cost of producing one unit of item i period t. 

        : Variable cost of holding one unit of item i by the end of period t. 

        : Unit cost for demand shortage of item i in period t. 

  : Expected maintenance cost when preventive maintenance task is carried out in 

period t. 

        : Processing time for each item i. 

)    : Expected capacity consumed by each preventive maintenance action in period t. 

(t)     : Expected capacity consumed by each corrective maintenance action in period t. 

  : Expected capacity consumed by maintenance when preventive maintenance task is 

carried out in period t. 

        : Vector of N elements contains the expected number of failures in each period t, when 

no preventive maintenance task is performed.  

 = [NB(1), NB(2), NB(3)… NB(T)] 

Decision variables: 

          : Binary set-up variable of item i in period t. 

        : Quantity of item i produced in period t. 

         : Inventory of item i at the end of period t. 

         : Demand shortage for item i in period t. 

         : Binary preventive maintenance variable (1 if preventive maintenance is carried out 

in the beginning of period t, 0 otherwise).  

         : Binary variable (1 if in period t the last preventive maintenance ended in period j, 0 

otherwise). 

The mathematical formulation of the integrated problem is given below :  



             

                               

Subject to: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             

 

The objective function (7) minimizes the sum of the set-up, holding, production, demand 

shortage, and maintenance (preventive and corrective) costs over the whole N-periods 

horizon. Constraint (8) is the inventory balance equation. Constraints (9.1) and (9.2) are the 



capacity constraints that consider preventive and corrective maintenance. Indeed, if a 

preventive or corrective maintenance activity is carried out, a part of the available capacity is 

consumed. Constraint (10) relates the continuous production variables to the binary setup 

variables. Constraint (11) expresses that quantity lost of item i in period t must be less than or 

equal to demand of item  in period t. Constraint (12) ensures that one maintenance must 

be carried out in the interval . Constraint (13) ensures that two 

preventive maintenance actions cannot be carried out in successive time periods. Constraints 

(14)-(16) force variable  to 1 if, in period t, the last preventive maintenance ended in period 

j, 0 otherwise. Those constraints are equivalent to . 

Constraints (17)-(20) express non-negativity and integrality constraints. 

2.3 Evaluation of and  

When preventive maintenance activities are performed in period t, the expected cost generated 

and the capacity consumed by maintenance, are, respectively,  and . The 

maintenance cost in this period t is the sum of preventive and corrective maintenance costs. 

The corrective maintenance cost in period t is the product of the expected number of failures 

and the corrective maintenance action cost in the same period. Thus, the expected 

maintenance cost in each preventive maintenance period t is: 

 

The same reasoning can be applied for the capacity consumed by maintenance task in a 

preventive maintenance period t. 

 



Notice that if no preventive maintenance action is performed, the expected maintenance cost 

and the capacity consumed in period t are, respectively, the expected cost generated and the 

capacity consumed by corrective maintenance:  

 

 

With j is the period where the last preventive maintenance activity was performed. 

3. Heuristic for ULSP-TW-SC  

In our decomposition method, the integrated production and maintenance problem is divided 

into a set of sub-problems. Each sub-problem is a single item uncapacitated lot sizing problem 

with time windows and shortage cost called ULSP-TW-SC. This sub-problem is a combination 

of the single item capacitated lot sizing problem with shortage cost (ULSP-SC) treated by 

Aksen et al (Aksen et al, 2003) solved in and a maintenance problem where preventive 

maintenance tasks are planned in time windows. 

 

Subject to: 

(8) - (24) excepting capacity constraints (9.1) and (9.2).  

 

The solution of the problem (ULSP-TW-SC) was carried out by using the optimization solver 

"XpressMP" and the results showed that the computation time increases exponentially when 

the number of periods becomes important. 



The numerical tests were performed on a computer with an Intel Core Duo 2.13 GHz and 4 

GB of memory. For each planning horizon length such that 0 ≤ N ≤ 150, we 

generated 10 problems randomly. The demand shortage costs are selected between 30 and 100 

and the demand in each period of the horizon is chosen in the interval [20.100]. The 

average computation time needed to solve these problems is given in Table 1. These results 

are also shown graphically in Figure 4. Note the exponential growth of computing time from 

N = 70. 

[Table 1] and [Figure 4] 

To solve the problem (ULSP-TW-SC), a heuristic based on a dynamic programming 

algorithm proposed by Aksen et al. (Aksen et al. 2003) is developed. The expected gap 

between the optimal solution (or a lower bound) obtained by the solver and the one provided 

by the heuristic is equal to 0.113%. The main steps of this heuristic are described below: 

Step 1: Solve the single item Uncapacitated Lot Sizing Problem with Shortage Cost (ULSP-

SC) to optimality using the dynamic algorithm addressed by Aksen et al (Aksen et al, 2003) 

and based on the structural characteristics stated in lemmas 1 to 3. 

Lemma 1:  

 

Under assumption that , the first lemma suggests that there is an optimal solution such 

that demand in a given period will be fully satisfied if procurement is made in that period. 

Lemma 2: 

 

The second lemma suggests that there is an optimal solution such that we will procure in a 

given period only if the inventory level at the end of the preceding period drops to zero. This 

principle is also known as the zero-inventory ordering policy of the Wagner–Whitin solution 



(Wagner et Whitin, 1958), according to which beginning inventory in a period of procurement 

activity is always zero. In our lost demand model, it is slightly altered such that we might 

have both  and  if the demand  is not met. 

Lemma 3: 

 

The third lemma suggests that there is an optimal solution such that if we lose any demand in 

a given period, then we should lose the entire demand in that period. In other words, it 

prohibits partial loss of demand. If , then must equal .  

The proofs of the lemmas 1 to 3 can be found in (Aksen et al. 2003). 

Step 2: Select the first time window, plan a preventive maintenance task in the period when 

the total cost of production and Maintenance is minimal. 

Step 3: Update the total cost of production and maintenance, select the next time window and 

plan a preventive maintenance task in the period when the total cost is minimal. 

4. Heuristic based on Lagrangian relaxation (LH) 

Our heuristic is based on the Lagrangian relaxation approach. The general idea is to 

decompose our integrated production planning and maintenance problem to N sub-problems 

easy to solve by relaxing the resource capacity constraints (10) and by using a set of Lagrange 

multipliers  in the objective function of the MCLSP-TW-SC model. 

Let  the Lagrangian function, the mathematical formulation of relaxed 

problem (MULSP-SC-TW) is stated below: 

                                                         

                                                  



                                             

                                      

Subject to:  

                  (27) 

(8) - (24) excepting capacity constraints (9.1) and (9.2).  

  

 

The Lagrangian relaxation of the capacity constraints of the MCLSP-TW-SC decomposes the 

model into n single-item uncapacitated lot-sizing problems with shortage cost and time 

windows, denoted ULSP-TW-SC and solved in section 3. 

From Lagrangian relaxation theory (Fisher, 1981),  is a lower bound of the 

optimal solution of MCLSP-TW-SC. The greatest lower bound attainable with the Lagrangian 

relaxation is provided by multipliers obtained by solving the following Lagrangian dual 

problem (LD) which can be solved efficiently by a sub-gradient optimization procedure 

(Fisher, 1981). 

 

Subject to:  

 

The main advantage of using a Lagrangian relaxation is that it usually preserves most of the 

original problem structure. This makes it easier to use the relaxed problem solution to 

generate a feasible solution for the original problem. Therefore, a very efficient heuristic 

method to solve MCLSP-TW-SC could be obtained by applying the sub-gradient optimization 



procedure and by checking, at each iteration, if the solution provided by the primal sub 

problem is a feasible solution of MCLSP-TW-SC, i.e. if 

, then this solution is optimal. Otherwise, this solution can 

be modified by using a perturbation procedure (smoothing procedure) to generate a feasible 

solution for MCLSP- TW-SC. A detailed heuristic based on this idea is presented in the 

following subsection. 

4.1 Lagrangian heuristic algorithm  

Our overall solution method to solve MCLSP-TW-SC is a modified sub-gradient optimization 

procedure. At a given iteration, if the Lagrangian solution is not feasible for MCLSP-SC-TW, 

this solution is modified using the heuristic described in following sub-section 4.2 to find a 

new feasible solution for MCLSP-TW-SC, if its value is better than the current upper bound, 

it becomes the new one. The Lagrangian multipliers are initially set to zero and updated on 

each iteration to maximize the objective function of dual relaxed problem (LD) according to 

the formula: 

:= max (0, +  ), 

Where   is the sub-gradient of  given by:  

. 

 is the norm of the sub-gradient vector and  is the sub-gradient step size: 

 

, we start with  and divide by 2 if any improvement of  is seen 

after some iterations. Finally, the stopping criterion is based on maximum number of 

iterations or when the Gap between upper and lower bounds is smaller than a value . A 

detailed description of the Lagrangian heuristic is found below: 

Algorithm 2 



1. Initialization:  

  t= 1, 2…T. (Lagrange multipliers) 

k =1  (Iteration counter) 

                        (Multipliers) 

   (Lower bound value) 

  (Upper bound value where M is a large number) 

2. For a given iteration k:   

(a) Solving the Lagrangian problem with . 

   

If Lagrangian solution is feasible then  

  

 Stop the algorithm. 

 (b) Compute the new lower bound: 

  If > then   

(c) Perturbation procedure: a heuristic is used to find a feasible solution using a 

smoothing procedure as described in the following sub-section 4.2.  

  If < then   

(d) Compute sub-gradient of . 

(e) Compute sub-gradient step size . 

 (f) Updating Lagrange multipliers .  

  If (no improvement after more than K iterations) then  : =  2  

Else  : =  



(g) Stopping criteria:  

- Maximum number of iterations is reached. 

- Or when Gap is less than a value   (  > 0). 

4.2 Smoothing Procedure 

In order to find a feasible solution at each step of the Lagrangian relaxation, we propose a 

procedure to provide an upper bound, denoted NAM. It is based on the Lagrangian solution 

obtained at each step of the Lagrangian heuristic algorithm. Since the capacity constraints 

(9.1) and (9.2) are relaxed, the Lagrangian solution violates them. The NAM heuristic is 

mainly based on a smoothing procedure to lower shortages by reusing missing resource 

capacities. The heuristic is based on the work of Trigeiro et al. (Trigeiro et al., 1989) who 

proposed an efficient Lagrangian relaxation heuristic for the classical multi-item capacitated 

lot sizing problem with setup times. Recently, Brahimi et al (Brahimi et al. 2006) proposed a 

generalization of Trigeiro et al (Trigeiro et al, 1989) smoothing heuristic to solve the multi-

item capacitated lot sizing problem with time windows. Notice that the NAM procedure uses 

the Propositions 5 and 6 and the formula below, that computes the overtimes in each period, 

to find a feasible solution and to improve it. 

 

Proposition 5: From the solution obtained by solving the Lagrangian problem, if in period t 

and  for l = {1 ... j-1}, then a set-up of production has been performed in 

period t and the next setup was planned in period t + j, therefore: 

and for  

and for  



Proof 

At each iteration of the algorithm 2, the relaxed problem of (MCLSP-TW-SC) is solved. If we 

notice that  and for then there was unavoidably the setup of 

one or several items in the period t. 

According to lemma 2, we never produce in a period when the inventory level of a previous 

period is non-zero, i.e.  In our case, an amount of one or several 

references was produced in the period t ( ) as the overtimes are greater than zero 

( ). Moreover, since for we can deduce that one or several 

items have not been produced between period’s t+1 and t+j-1 and that their demands were 

met by the inventory built in the period t, so . 

and for  

and for  

Our NAM procedure is described as follows:  

Step1: After solving the relaxed problem, several cases arise. According to Proposition 5, the 

surplus amounts produced are shifted from period t to period t+1 using Proposition 2 (see 

section 4.1.2). 

Step2:  in some periods, if and the quantity of one or several items is lost, then the 

demand shortage should be shifted to a quantity produced in the current period according to 

Proposition 3 (see section 4.1.2). 

Step 3:  From the solution obtained by steps 1 and 2, if, at a given period,  and     

, a quantity of one or several items produced in period t+1 is shifted to the previous 

period, since the available capacity is exceeded in period t+1 and isn’t fully used in period t. 

http://fr.wikipedia.org/wiki/%E2%85%A3


Step4: After the step 3, we must verify that, in each period, the available capacity is not 

exceeded. Otherwise, if at a given period,  and  such , a quantity of one or 

several items is selected to be lost in the same period according to Proposition 4 (section 

4.1.2). Else if  and  such , the quantity lost of one or several items in 

period t+1 will be a quantity produced in period t according to Proposition 4. 

5. Computational results  

In this section, we present different tests resulting from the application of the Lagrangian 

heuristic, denoted (LH). Our algorithms were implemented in the Java programming 

language. The computations were tested on an Intel Core 2 CPU 2.2GHz PC with 4GB RAM. 

Computational tests are performed on a series of extended instances from the lot-sizing library 

LOTSIZELIB, initially described in (Trigeiro et al. 1989). These instances are denoted by 

trn−N, where n = 6, 12, 24 is the number of items and N = 15, 30 is the number of periods. 

These instances are characterized by variable resource consumption equal to one, and enough 

capacity to satisfy all demands over the planning horizon. They are also characterized by 

important setup costs, small setup times. Since these instances have enough capacity to satisfy 

all demands over the planning horizon, some modifications were made to induce shortages.  

A planning horizon composed of N production periods of fixed length  is considered to 

produce a set of items on the production line with an available capacity. The production, set-

up, and holding costs are, respectively, 10, 30, and 5. Four parameters are considered for the 

analysis: 

Problem dimension: The problem dimensions represented by the number of items n  

and the number of periods N = 15 and 30.  

Production capacity: The capacity required, in each period, is initially computed as lot-for-

lot solutions were implemented. Then, the capacity is obtained by dividing the later result by 



the target average utilization of capacity . The factor  is set to 0.95 and 1.1 corresponding 

respectively to situations with tight and too tight capacity constraints. 

Demand pattern: The demand for each item in each period is generated randomly on the 

interval [20,100]. 

Shortage cost: the shortage cost is considered as penalty cost and its value for each item is 

generated from the follows intervals [I1], [I2] and [I3].  

 [I1]: [0.5*(Production cost+ setup cost), 1.5*(Production cost+ setup cost) ] 

 [I2]: [0.5*(Production cost+ setup cost), 2.5*(Production cost+ setup cost) ] 

 [I3]: [0.5*(Production cost+ setup cost), 3.5*(Production cost+ setup cost) ] 

Six classes of instances are created:  

 Class A, Class B and Class C: Too tight capacity and shortage cost for each item is 

generated from [I1], [I2] and [I3], respectively. 

 Class D, Class E and Class F: Tight capacity and shortage cost for each item is 

generated from [I1], [I2] and [I3], respectively. 

All problem tests are generated with Weibull distribution of production line. The shape and 

scale parameters are respectively , and . The cost of preventive maintenance action 

is set to , and the cost of minimal repair action is given by . The capacity lost 

when a preventive maintenance task and minimal repair action are carried out, is 

respectively and . Table 2 shows the expected number of 

failures in each period NB(t) as a function of system’s age. 

We assume that the system lifetime is distributed according to weibull distribution with 

failure probability density function f(t) and failure rate function r(t). 

 



 

[Table 2] 

To have a meaningful comparison, we compare the results of the lagrangian heuristic to those 

obtained by XpressMP solver. The computational results of the heuristic (LH) and the solver 

are shown in Tables 3 and 4. The gaps between the best lower bounds or optimal solution 

obtained and the upper bounds provided by the heuristics and by the solver are computed 

respectively by the given formula suggested by Millar and Yang (1994): The different gaps 

are expressed using equations (28) and (29). 

 

 

The stopping criterion of the XpressMP computation is a time limit equal to 3600 seconds or 

when the gap reaches a minimal value ( ). For the Lagrangian heuristic, it is when a 

number of sub-gradient iteration reaches a maximum of iteration  and also if the gap is 

small than . 

[Table 3] 

Tables 3 and 4 summarize the computational behavior of the Lagrangian heuristic and the 

computational results given by the solver. The gaps and CPU time are computed for each 

instance with the following parameters: the number of items (n), the number of periods (N), 

shortage cost for each item and capacity tightness. 

The results obtained with solver are very interesting. Indeed, most of instances are solved to 

optimality or are very close to optimal solution, but also require a significant amount of CPU 

time. Therefore, we developed heuristic to reduce computation time and to obtain a high 



quality solution. Then, a heuristic based on lagrangian relaxation (LH) is implemented. The 

results provided by (LH) are shown in Table 3 when capacity is too tight and in Table 4 when 

capacity is larger (tight capacity). 

[Table 4] 

We notice from Tables 3 and 4 that the heuristic LH can solve some instances to optimality. 

Others instances, which are not solved to optimality, have very small gaps and the upper 

bounds of the Lagrangian heuristic are very close to the upper bounds obtained by the solver 

and the deviation from the solver doesn’t exceed 0.97%. Also, we can observe that the CPU 

time of the Lagrangian heuristic enhance partially when we increase the number of items and 

considerably when we increase the number of periods. Finally, the computation time of the 

heuristic is much smaller than that of the solver for the same or a close result. 

6. Conclusion and perspectives 

We have formulated a mixed-integer linear programming model to plan jointly production 

and maintenance activities. The model takes into account the reliability (expected number of 

failures) production and maintenance costs, and demand shortage. Preventive maintenance is 

carried out in pre-determined time windows, and corrective maintenance is performed to 

restore the system to an operating state without changing the failure rate function.  

Computation results show that the Lagrangian heuristic (LH) seems a good trade-off between 

the solution quality and time execution. Therefore, for a decision maker who is interested in a 

good solution quality and a short execution time, our Lagrangian heuristic can be an 

appropriate approach to solve the problem.  

A Sensitivity Analysis would be a good perspective of this work to study how a change in the 

model data changes the optimal solution.  



An extension of our model to the concept of imperfect maintenance can be very useful to 

model a more realistic and accurate maintenance operations, which are in reality neither 

perfect nor minimal. 

Finally, other heuristics can be developed and compared to solve our integrated problem in a 

reasonable time. 
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Figure 2: Time windows of preventive 

maintenance in integrated case 
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Figure 3 : Production planning  

Figure 4: Average computation time vs. planning horizon 
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 Solver LH 

Items Periods Time (s) Gap1(%) Gap2(%) Time (s) 

Class A 

6 

12 

24 

36 

48 

 

6 

15 

15 

15 

15 

15 

 

30 

49.52 

226.3 

2677.44 

2693.89 

2641.43 

 

2723.36 

0.00 

0.00 

0.00 

0.00 

0.00 

 

0.01 

0.07 

0.09 

0.00 

0.00 

0.01 

 

0.10 

9 

11 

16 

25 

30 

 

35 

Periods Expected 

number of 

failures 

Periods Expected 

number of 

failures 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

0.0157 

0.1095 

0.2970 

0.5782 

0.9532 

1.4220 

1.9845 

2.6407 

3.3907 

4.2345 

5.1720 

6.2032 

7.3282 

8.5470 

9.8595 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

11.2657 

12.7657 

14.3595 

16.0470 

17.8282 

19.7032 

21.6720 

23.7345 

25.8907 

28.1407 

30.4845 

32.9220 

35.4532 

38.0782 

40.7970 

Table 2: Expected number of failures 

* : Over flow of the solver without obtaining an optimal solution 

Table. 1 – The average computation time to solve the problem (ULSP-TW-SC)  



12 

24 

36 

48 

30 

30 

30 

30 

2804.70 

2170.73 

2009.33 

1512.41 

0.00 

0.03 

0.03 

0.04 

0.05 

0.01 

0.13 

0.08 

60 

70 

96 

130 

Class B 

6 

12 

24 

36 

48 

 

6 

12 

24 

36 

48 

15 

15 

15 

15 

15 

 

30 

30 

30 

30 

30 

2677.87 

2644.63 

2657.81 

2629.07 

2629.07 

 

191.123 

84.194 

2666.68 

2678.21 

2562.49 

0.02 

0.02 

0.00 

0.00 

0.01 

 

0.00 

0.00 

0.00 

0.02 

0.03 

0.18 

0.05 

0.00 

0.00 

0.10 

 

0.10 

0.06 

0.04 

0.25 

0.03 

10 

11 

17 

22 

28 

 

27 

43 

69 

92 

119 

Class C 

6 

12 

24 

36 

48 

 

6 

12 

24 

36 

48 

15 

15 

15 

15 

15 

 

30 

30 

30 

30 

30 

0.718 

2632.24 

2652.22 

2650.65 

2667.17 

 

2657.43 

2660.38 

2672.74 

2685.30 

2640.75 

0.00 

0.05 

0.03 

0.01 

0.01 

 

0.01 

0.01 

0.03 

0.02 

0.03 

0.00 

0.34 

0.39 

0.09 

0.03 

 

0.03 

0.98 

0.09 

0.14 

0.06 

8 

13 

19 

24 

33 

 

31 

41 

68 

88 

123 
 

 

 

 

 

 

 
Solver LH 

Items Periods Time (s) Gap1(%) Gap2(%) Time (s) 

Class D 

6 

12 

24 

36 

48 

 

6 

15 

15 

15 

15 

15 

 

30 

2666.58 

2642.53 

2679.54 

2658.76 

2677.53 

 

1662.35 

0.01 

0.01 

0.00 

0.00 

0.01 

 

0.00 

0.16 

0.02 

0.00 

0.09 

0.10 

 

0.10 

11 

13 

18 

27 

36 

 

27 

Table 3: Computation results:  HR vs XpressMP when capacity is too tight 



12 

24 

36 

48 

30 

30 

30 

30 

7.036 

2676.89 

1663.35 

2532.2 

0.00 

0.01 

0.02 

0.03 

0.09 

0.06 

0.06 

0.08 

46 

69 

102 

150 

Class E  
6 

12 

24 

36 

48 

 

6 

12 

24 

36 

48 

15 

15 

15 

15 

15 

 

30 

30 

30 

30 

30 

2656.7 

2651.08 

2649.21 

2641.19 

2687.65 

 

16.708 

2635.11 

2703.74 

2661.22 

2677.51 

0.05 

0.02 

0.00 

0.01 

0.00 

 

0.00 

0.01 

0.00 

0.01 

0.01 

0.28 

0.03   

0.00  

0.00 

0.04 

 

0.36 

0.03 

0.00 

0.10 

0.16 

8 

13 

17 

23 

35 

 

36 

43 

63 

99 

141 

Class F 

6 

12 

24 

36 

48 

 

6 

12 

24 

36 

48 

15 

15 

15 

15 

15 

 

30 

30 

30 

30 

30 

1.263 

2624.67 

4.134 

2653.64 

2682.07 

 

2771.33 

2670.3 

2657.09 

2659.6 

2680.87 

0.00 

0.00 

0.00 

0.00 

0.00 

 

0.00 

0.00 

0.00 

0.00 

0.01 

0.16 

0.01  

0.01  

0.02  

0.00 

 

 0.07 

 0.03 

 0.02 

 0.03 

 0.33 

12 

13 

19 

25 

35 

 

27 

41 

68 

91 

120 

 

 

 

Table 4: Computation results: HR vs XpressMP when capacity is tight 




