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ABSTRACT

Feature extraction is one of the most important elements in
Prognostics and Health Management (PHM) systems. Nu-
merous techniques have been proposed for fault detection,
diagnostics and prognostics in ball bearings which are key
components of rotating machineries, widely used in the in-
dustry. Considering the strengths and weaknesses of these
techniques, this paper aims at evaluating and analyzing dif-
ferent features in all three signal processing domains: time,
frequency and time-frequency. The crucial indicators related
to normal and abnormal cases are extracted from both vibra-
tion signals and stator current signals. Then, a new met-
ric is proposed to measure the evolution of these indicators
with respect to degradation levels of bearings. The perfor-
mance of every indicator is analyzed to study which feature(s)
is(are) better than other(s) and which feature(s) is(are) the
best appropriate for vibration and current signals. These re-
sults could be effectively used in future for fault detection,
diagnostics and prognostics applications.

1. INTRODUCTION

As most of the failures of rotating machineries are related
to the bearings (Zhou et al., 2007), it is necessary to moni-
tor the conditions of these components, detect their anoma-
lies and predict their failures. Numerous papers propose to
use vibration signals to monitor the bearing condition be-
cause their defects generally produce fault signatures in the
machine vibration. Major disadvantage of vibration monitor-
ing is high cost of accelerometers and difficulties when ac-
cessing to the machine to install the sensors. On the other
hand, numerous studies propose to use electrical signals (cur-
rent or voltage) for bearing fault detection because their sen-
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vided the original author and source are credited.

sors are inexpensive and easy to implement. However, bear-
ing fault signatures do not clearly present in the stator cur-
rent which sometimes has low signal-to-noise ratio (Zhou et
al., 2007). Based on vibration or electrical signals, various
feature extraction methods have been proposed for fault de-
tection, diagnostics and prognostics in ball bearings. How-
ever, a few articles attempt to assess and compare the per-
formance of these features. In (Tandon, 1994), the authors
compared only the vibration parameters (RMS, Peak, Crest
factor, power and cepstrum) for bearing condition monitor-
ing. For bearing fault diagnostic, the performance of a set of
features extracted from vibration signals was evaluated (Ma-
hamad & Hiyama, 2008) using the ratio of average extern
distance between classes to the average intern distance within
one class. The authors in (Kappaganthu & Nataraj, 2011)
proposed to use the mutual information to evaluate perfor-
mances of various vibration features for detecting inner and
outer race defects in rolling element bearings. However, the
proposed approach requires the prior information about the
feature probability density function that is not easy and might
take high time to evaluate. Then, in (Shukla et al., 2015),
the authors introduced an ordering metric, that measures the
separability between the normalized feature vectors charac-
terizing healthy and faulty classes to rapidly rank the features
extracted from vibration signals in time and frequency do-
mains. On the other hand, for electrical signals, the paper
(Knöbel et al., 2015) addressed the fault classification issue
using features extracted from current and voltage measure-
ments. The authors proposed to use the modified Fisher-ratio
(F-ratio), where the best features are the ones having a small
intra class covariance but high inter class covariance, for fea-
ture selection.

In summary, the above reported work propose metrics to sep-
arately assess the performance of features from vibration and
electrical signals. In this paper, we address the question of
which feature(s) is(are) the best appropriate for vibration and



current signals. Moreover, the robustness of feature ranking
when using numerous sensor sources is also considered. The
main contribution of this paper is to propose a simple algo-
rithm of feature ranking. It is simple for prompt evaluation,
takes into account the standard deviation of feature and does
not depend on the feature units. Thus, it allows comparing
heterogeneous features in different domains

We firstly present a brief review of feature extraction meth-
ods that could be applied for vibration and current signals in
Section 2. A fast, simple, and effective ranking algorithm to
access the performance of multiple features for fault detec-
tion and prognostics is then developed in Section 3. Next, the
comparison and analysis of the performance of the features
based on real data acquired from our test bench will be dis-
cussed in Section 4. Finally, the conclusion and perspective
of this work will be presented in Section 5.

2. FEATURE EXTRACTION METHODS

In this section, we present the common, robustness and effec-
tive methods of feature extraction that could be applied for
both vibration and current signals. In general, these methods
can be classified into three categories: time, frequency, and
time-frequency domain.

2.1. Features in time domain

Using directly raw data, signal processing in time domain are
classical, fast and simple. They play a critical role for fault
detection, diagnostic and prognostic. However, these tech-
niques are not viable for noisy signals. It could require a pre-
treatment techniques to enhance signals before the evaluation
of indicators.
Among features in time domain, the statistical indicators are
widely used thanks to their strict relations with incipient bear-
ing damages. In fact, the Mean, Variance, Min, Max, Skew-
ness (SKE) and Kurtosis (KUR) values are evaluated based
on vibration and current signals (Shukla et al., 2015). The
root mean square (RMS) value is also effective for the de-
tection of a localized bearing default by assessing the power
content in the vibration signature (Lei et al., 2016 ; Huang
et al., 2017) or the stator current signal (Shukla et al., 2015 ;
Alameh et al., 2015). On the other hand, the factors that rep-
resent the overall shape of signals, such as the Crest factor
(CF), Peak to Peak value (PP), Shape factor (SF), and Im-
pulse factor (IF), are powerful to capture changes in the signal
pattern of vibration (Mahamad & Hiyama, 2008) or current
signals (Shukla et al., 2015) when anomalies occur. In (Sassi
et al., 2006), the authors combine the conventional scalar in-
dicators such as RMS, KUR, CF, and Peak to create new in-
dicators that aim to predict future failures and track defects
from the first signs of degradation to the end of life.

2.2. Features in frequency domain

Frequency analysis is a common technique to observe the
bearing condition because bearing defects generally generate
characteristic frequencies in the vibration and current signals
(see Annex for the details of the evaluation of characteristic
frequencies).

2.2.1. Features extracted from spectrum analysis.

The Fast Fourier Transform (FFT) is widely used to decom-
pose physical signals into number of discrete frequencies or
spectrum of continuous frequencies. After performing FFT,
the magnitude values at the characteristic frequencies fc are
used as common indicators for bearing fault detection and
diagnostic (Kappaganthu & Nataraj, 2011 ; Harlişca et al.,
2013). Other usual indicators that can be used for both vi-
bration and current signal spectrum are the statistical param-
eters such as RMS, root variance (RV), mean, and median
values (Mahamad & Hiyama, 2008 ; Shukla et al., 2015). In
(Yu, 2012), a frequency feature called PMM, that is the ratio
between the maximal value of FFT magnitudes at the char-
acteristic frequencies and the mean of the entire magnitude
frequency value, is used for defect and severity classification
and for bearing performance assessment. The authors in (El-
bouchikhi et al., 2015) used the spectral kurtosis for mechan-
ical unbalance detection in an induction machine using the
stator currents instantaneous frequency.

2.2.2. Features extracted from envelope analysis.

The contact of a bearing localized defect with another sur-
face in bearing will generate multiple repetitive vibration im-
pulses. This leads to a concentration of the energy in narrow
band. Therefore, the envelope analysis allows effectively de-
tecting bearing failure in different situations. In fact, the max-
imal value of the envelope spectrum magnitude is used as an
indicator for bearing fault detection in (Mahamad & Hiyama,
2008 ; Shukla et al., 2015). Numerous articles show that the
envelope spectrum magnitudes at the characteristic frequen-
cies are powerful to detect and classify the bearing failures
(Cong et al., 2012 ; Leite et al., 2015). On the other hand, in
(Yu, 2012), the ratio between the maximal value of envelope
spectrum magnitudes at the characteristic frequencies and the
mean value of the entire magnitudes is also used for bearing
diagnostic and degradation assessment.

2.3. Features in time-frequency domain

In order to avoid the non-stationary characteristic of signals, it
is necessary to present them into two-dimensional function of
time and frequency. Therefore, numerous signal processing
techniques in time-frequency domain have been developed in
literature.



2.3.1. Features extracted from the short time Fourier trans-
form (STFT).

The STFT firstly decomposes the signals into a set of data
within a fixed window length and secondly performs the FT
on every data window. Then, the spectrum magnitude at FFT
characteristic frequencies is proposed to use as an effective
feature for bearing defect diagnostic (Yazici & Kliman, 1999).
However, the selection of the fixed window length before per-
forming STFT can strongly affect the method performance.
Therefore, the wavelet transform based on variable window
length is recommended.

2.3.2. Features extracted from wavelet transform.

Wavelet transform (WT) allows flexibly adapting the resolu-
tions of time and frequencies for signal analysis, e.g. good
time and poor frequency resolution at high frequencies and
vice-versa. This technique can be divided into three groups:
continuous wavelet, discrete wavelet and wavelet packet trans-
form. For bearing fault detection, the features are extracted
based on statistical evaluation of the wavelet coefficients (Kom-
pella et al., 2016 ; Deekshit Kompella et al., 2017). On the
other hand, features evaluated based on the wavelet energy
are also widely used for bearing fault detection using vibra-
tion (Yu, 2012) or stator current signals (Knöbel et al., 2015 ;
Singh et al., 2014). In (Tobon-Mejia, 2012), the authors pro-
pose an effective approach based on the utilization of the
WPD and the MoG-HHM for bearing failure prognostics.

2.3.3. Features extracted from Hilbert Huang transform.

As the performance of wavelet analysis method strictly de-
pends on the choice of the mother wavelet, it is suitable to use
Hilbert Huang transform (HHT) for analyzing non-stationary
signals when we do not have a prior information about the sig-
nal shape. The HHT technique includes two phases. Firstly,
the input signal is decomposed into a set of intrinsic mode
functions (IMFs) using Empirical mode decomposition (EMD).
Secondly, the instantaneous frequencies of the IMFs are ex-
tracted through Hilbert spectrum analysis (HSA). Therefore,
HHT becomes a powerful tool for analyzing and characteriz-
ing the signal spectrum in time. For bearing fault detection
and diagnostic, the HHT marginal spectrum at characteristic
frequencies is proved to be an effective indicator extracted
from vibration (Refaat et al., 2013) and stator current signals
(Elbouchikhi et al., 2017). This indicator is also powerful for
prognostic of bearing failure (Soualhi et al., 2015).

3. FEATURE RANKING

3.1. Feature performance measure

In order to evaluate the performance of the extracted features
for fault detection and prognostics, it is necessary to propose
a new measure that can satisfy the following requirements:

Extraction of features

characterised healthy

state

Extraction of features

characterised faulty

state

Evaluation of the RD distance

for every features

Set i = 1

Ranking features according

their RD mean values

Reject H0?

Set rank of features (i+1)th:

i+1

Set rank of

features

(i+1)th: i

i+1=N?

END

increasing i

Yes

Yes

No

No

Yes

Extraction of features 
(in the nominal case) 

Extraction of features 
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(i+1)th 

feature: i

Figure 1. Feature ranking algorithm.

• being simple for prompt evaluation ;
• not depending on the feature units. Thus, it allows com-

paring heterogeneous features in different domains ;
• and taking into account the standard deviation of feature

values when assessing their performance.

Therefore, we introduce in this section a measure, called the
distance ratio (RD), that it is evaluated by the ratio between
the Euclidean distance from a feature value (point i), extracted
from a monitoring signal, to the median value of the set of
nominal feature values (SFV ), characterizing the healthy state,
and the standard deviation of nominal feature value set, σ(SFV ):

RD =
||i−median(SFV )||2

σ(SFV )
(1)

For fault detection and prognostics, if the extracted feature
allows clearly distinguishing the normal and abnormal state,



then the feature performance is well highlighted. Considering
Eq.1, if the distance of a feature value to the median value of
the healthy state is significant while the standard deviation of
distances between nominal feature values is small, then the
corresponding RD is high. In other words, the greater RD
value is, the higher feature performance will be. Therefore,
RD can be used as an effective measure for feature perfor-
mance ranking when considering fault detection and prog-
nostic issues.

3.2. Feature ranking algorithm

To assess the feature robustness, it is essential to evaluate
multiple RD measures corresponding to feature values ex-
tracted from numerous signal sources (for example, same sig-
nal type but different sensor positions). Therefore, in this
subsection, a new algorithm of feature ranking, illustrated by
Figure 1, is developed. This algorithm is based on the follow-
ing principle: the higher RD mean value of a feature is, the
greater performance of this feature will be. In detail, for rank-
ing of N features, the RD measures are firstly evaluated for
every feature. Then, N features are sorted according to their
RD mean values such as the RD mean value of i-th feature
is greater than the one of i+ 1-th feature (µi > µi+1). Next,
it is necessary to verify the confidence level of this feature
ranking list. In other words, we consider whether the results
(µi > µi+1, i ∈ [1, N − 1]) are statistical significant or only
random observations.

• If H0 : µi = µi+1 is rejected, the rank of i and (i+1)-th
feature are maintained.

• If not, we can not conclude that the i-th feature is better
than the (i+1)-th one. Consequently, they have the same
rank.

4. EXPERIMENTAL VALIDATION

4.1. Description of the Experimental Setup

The test bench, performed on the PRIMES platform, aims to
track the health state of the traction auxiliary motors in a train,
particularly that one of their bearings, in order to plan the
maintenance interventions. Figure 2 presents a general view
of the experimental system configuration. In detail, a three-
phase induction motor is powered via an onboard inverter.
The motor can run at high speed (HS: 2880 rpm) or low speed
(LS: 1440 rpm). It includes two bearings at the two ends: one
with a load like a fan or a centrifugal pump, called drive end
(DE) and the opposite side, named non drive end (NDE). In
this paper, we will consider, in priority, the detection of the
outer bearing fault, which is represented by a groove, created
using the Electro Discharge Machining (EDM) technique: the
diameter of the grove is 3 mm on the bearing outer race at the
NDE. The data acquisition procedure is performed by a Com-
pactRIO 9039 which also allows running the fault detection
algorithms in real time and controlling the electrical machines

Signal Processing methods Features
Time domain

Overall form PP , IF , SF

Statistic evaluation RMS, SKE, KUR,
THIKAT , TALAF

Frequency domain
Fast Fourier Transform BPFO
Envelope analysis EBPFO

Time-Frequency domain
Wavelet Transform WT.O
Hilbert Huang Transform HTT.O

Table 1. Summary of extracted features.

Note that: PP : Peak to Peak, IF : Impulse Factor, SF : Shape Fac-
tor, RMS: Root mean square, SKE: Skewness, KUR: Kurtosis,
THIKAT , TALAF (Sassi et al., 2006),
BPFO: FFT Magnitude at outer race defect frequency fo,
EBPFO: Envelope Amplitude at fo,
WT.O: FFT Magnitude of Wavelet Transform coefficients at fo,
HHT.O: HHT Marginal spectrum at fo.

from the LABVIEW software. In order to assess the perfor-
mance and robustness of multiple features with different sen-
sor placements, 4 accelerometers are mounted horizontally
and vertically on the DE and the NDE of the motor to capture
the vibration signals. On the other hand, the electrical sig-
nals provided by the on-board inverter are also measured and
recorded through 6 current sensors (3 sensors for HS and 3
sensors for LS). For the healthy (or faulty) state, the collected
data are composed of a) 200 samples of 1 s with a sampling
frequency of 51.2 kHz for vibration signals, and b) 200 sam-
ples of 1 s with a sampling frequency of 50 kHz for current
signals. Considering the bearing outer race defect, When the
motor runs at the high speed, its corresponding characteristic
frequency from the vibration signals is 171 Hz and the one
from the current signals is 50 ± k × 171 Hz (see Annex for
the evaluation of characteristic frequencies).

4.2. Discussion of feature performance

In time, frequency and time-frequency domains, we only fo-
cus on the features that are widely used for bearing fault de-
tection and prognostics and easily extracted from both vibra-
tion and current signals. Table 1 summarizes 12 extracted
features. The extraction procedure details of these features
will be presented in the Annex.
In order to ensure the objectivity and robustness of the an-

alyzed results corresponding to sensor positions, 200 sam-
ples of 1 s of vibration signals (or current signals) from ac-
celerometers (or current sensors) and used to assess the fea-
tures performance. In detail, 50 successive samples of 1 s are
recorded from every sensor during 50 s. Figure 3 presents
the box plot of the RD measures of time features extracted
from vibration and current signals acquired by different ac-
celerometers and current sensors. In general, the time fea-
tures are effective for bearing outer fault (BOF) detection
when using vibration signals. Indeed, the distance between



Features Mean SD Rank p-
value(%)

HHT.O 225.88 47.89 1 0
PP 51.81 8.86 2 0
WT.O 39.04 19.71 3 1.1
BPFO 34.69 18.29 4 31
RMS 34.04 2.68 4 0
EBPFO 26.62 19.89 6 0
SKE 16.94 8.8 7 0
SF 5.32 2.69 8 0
THIKAT 3.89 1.75 9 2
KUR 3.48 2.19 10 17.7
IF 3.29 1.77 10 0
TALAF 0.86 0.32 12

Table 2. Feature ranking for vibration signals with confidence
level of 97.5%, BOF, HS: 2880 rpm.

the normal and BOF state is well recognized according to
features PP , RMS and SKE. The RD measures are re-
spectively RDPP ∈ [36.6, 68.47], RDRMS ∈ [31.2, 39.1]
and RDSKE ∈ [0.4, 25.1]. However, the time features are
not useful for current signals. There are small differences be-
tween the healthy and faulty states that can be recognized as
RDPP ∈ [1.8, 6.7], RDTHIKAT ∈ [2.3, 8.3].

The RD measure box plot of frequency features extracted
from vibration and current signals are illustrated in Figure 4.
We find that both BPFO and EBPFO allow effectively
distinguishing the normal and BOF states when using vibra-
tion and also current signals. In fact, the RD measure of
features extracted from vibration signals are RDBPFO ∈
[8.7, 78.9], and RDEBPFO ∈ [5.2, 65.2] while the one ex-
tracted from current signals are RDBPFO ∈ [8.1, 61.5], and
RDEBPFO ∈ [0.76, 46.1]. On the other hand, a paradox re-
sult is recognized here. Indeed, the performance of extracted
features (represented byRDmeasures) based on the envelope
analysis is expected be higher than the one based on the FFT
analysis. However, the experimental result shows an oppo-
site conclusion. This result again illustrates the point of view
that the envelope analysis performance strictly depends on the
selection of the filter parameters. For further work, an opti-
mization of the band-pass filter, for example the Kurtogram
analysis, should be carefully considered.

Figure 5 presents theRD measure box plot of time-frequency
features extracted from vibration and current signals. We find
that the time-frequency features, in particular the HHT.O,
extracted from both vibration and current signals are very
effective for bearing outer race fault detection. They allow
clearly distinguishing the normal and faulty states. In de-
tail, theRD measure of the features extracted from the vibra-
tion signals are RDWT.O ∈ [10.14, 89.4] and RDHHT.O ∈
[121.2, 381.5] while the one extracted from current signals
are RDWT.O ∈ [8.3, 61.4], and RDHHT.O ∈ [39.8, 240.9].

Next, the ranking list of the features extracted from vibra-
tion and current signals when considering the BOF are re-

Features Mean SD Rank p-
value(%)

HHT.O 132.22 70.93 1 0
WT.O 29.46 11.81 2 0
BPFO 24.68 12.11 3 0
EBPFO 16.76 10.34 4 0
THIKAT 3.94 2.4 5 0.1
PP 3.23 1.97 6 0
IF 2.49 0.29 7 2.4
RMS 2.24 1.76 8 0
TALAF 0.73 0.42 9 3.3
SF 0.68 0.04 9 0
SKE 0.34 0.13 11 0
KUR 0.23 0.01 12

Table 3. Feature ranking for current signals with confidence
level of 97.5%, BOF, HS: 2880 rpm.

spectively presented in Tables 2 and 3. In these tables, the
mean and standard deviation (SD) of the RD measure of ev-
ery feature are respectively given in the second and third col-
umn. The feature ranks, which are evaluated based on the al-
gorithm summarized in Figure 1, are presented in the fourth
column. Finally, the last column shows the p-value of the
comparison test of RD mean values between the considered
feature with the next feature in the ranking list. For exam-
ple, considering THIKAT feature in Table 2, its relevant
p-value is 2%. It characterizes the probability of false rejec-
tion of the null hypothesis H0 : µRDTHIKAT

= µRDKUR
.

Considering the confidence level of 97.5%, the hypothesis
µRDTHIKAT

= µRDKUR
will be rejected (because 2% <

100 − 97.5%). In other words, the conclusion that the per-
formance of the THIKAT feature is better than the KUR
feature is proven.

Considering Tables 2 and 3, we find that the feature based on
the Hilbert Huang Transform (HHT.O) is the best one for
BOF detection using both vibration and the current signals.
Next, the ranks of the rest of features are trivially different in
two tables. For example, the PP feature in time domain is
very effective (ranked at 2nd) for the vibration signal but is
only in intermediate rank (6th) for the current signal. In fact,
features in time domain are not reliable for current signals.
In this case, it is suitable to use features in time-frequency
(HHT.O,WT.O) or frequency (BPFO,EBPFO) domain
to capture the change of the signals. On the other hand, an in-
teresting result shows that theRD mean values of all features
extracted from vibration signals are generally greater than the
ones extracted from current signals. That means, for BOF de-
tection, the vibration signals are better than the current sig-
nals.

5. CONCLUSION

We have presented in this paper a new metric that allows as-
sessing the performance of heterogeneous features in differ-
ent domains for fault detection, diagnostics and prognostics.
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Figure 2. Experimental system configuration.

Based on this feature, a ranking algorithm is developed to
study which features are better than others and which fea-
ture is the best effective from vibration or current signals.
The algorithm was validated for the outer bearing fault de-
tection based on real data acquired by various accelerometers
and current sensors on a real test bench. An interesting re-
sult shows that, considering both vibration and current sig-
nals, among numerous features in time, frequency and time-
frequency domains, the feature based on the Hilbert-Huang
Transform, HHT.O, is the best one that allows clearly dis-
tinguishing the normal and outer bearing faulty states. How-
ever this feature requires a lot of time for its extraction and
therefore should be improved for real time applications. On
the other hand, the features in time domain are simply and
rapidly extracted but are only useful when extracted from vi-
bration signals. For current signals, it is suitable to use time-
frequency or frequency features than the ones in time domain.
This paper was focused, in priority, on the feature perfor-
mance for detection of outer bearing fault. Further work should
extend the study on different bearing localized and also dis-
tributed defects. The features robustness should be verified
with different motor speeds et numerous diameter of groves
on bearing. Moreover, a new powerful prognostic method
based on the metric presented in this paper could be devel-
oped.
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ANNEX

Characteristic frequencies
For vibration signals, the characteristic frequencies associated to different
types of bearing fault are evaluated as follows, (Shah & Patel, 2014):

• Outer race defect, fo = n
2
fr
(
1− B

D cos(α)

)
where n = number of

balls in rolling element bearing,B = ball diameter,D = bearing pitch
diameter, α = bearing contact angle and fr = rotor frequency.

These abnormal vibrations also generate rotating eccentricities or load torque
variations. They lead to periodical changes in machines inductances and
therefore deduce additional characteristic frequencies in the stator current
fsc , (Schoen et al., 1994 ; Blodt et al., 2008).

• Considering the radial movement of the rotor center, the characteristic
frequencies of current signals, fsc , are evaluated by following expres-
sions:

– Outer race defect, fso = fs ± kfo where fs = electrical stator
supply frequency, fr = rotor frequency and k = 1, 2, 3, ...
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• Considering the torque variation, the characteristic frequencies of cur-
rent signals, fsc are given by:

– Outer race defect, fso = fs ± kfo.

Evaluation of features
• In time domain, where s(ti) be the signal at time ti:

– Peak to Peak value (PP ): PP = |maxi(s(ti))−min(s(ti)|

– Root mean square value (RMS): RMS =
√

1
n

∑n
i s(ti)

2

– Skewness value (SKE): SKE = 1
n

∑n
i (s(ti)−Smean)3

σ3

– Kurtosis value (KUR): KUR =
1
n

∑n
i=1(s(ti)−Smean)4

( 1
n

∑n
i=1(s(ti)−Smean)2))2

– Shape factor value (SF ): SF = RMS
Smeanabs

– Impulse factor value (IF ): IF =
maxi(s(ti))
Smeanabs

– TALAF value: TALAF = log
(
KUR+ RMS

RMS0

)
whereRMS0

is the RMS value defined for a healthy bearing at the initial mo-
ment.

– THIKAT value: THIKAT = log

(
KURCF +

(
RMS
RMS0

)
)P)

where CF is the crest factor, CF = P
RMS

and P is the peak
value of signals, P = maxi(s(ti))

• In frequency domain:
– BPFO: FFT Magnitude at outer race defect frequency fo.
– EBPFO: Envelope Amplitude at fo, that is evaluated based on

the envelope analysis:
∗ Hilbert transform of signal ;
∗ Calculation of the envelope signal A(t): A(t) = x2R(t) +

x2I(t) where xR and xI are the real and image part of the
Hilbert ;

∗ Fast Fourier transform of the envelope signal and extraction
of the amplitude at fo.

• In time-frequency domain:
– WT.O is the FFT Magnitude of Wavelet Transform coefficients

at fo is evaluated as follow:
∗ Discrete Packet Wavelet Transform of signals, (Knöbel et al.,

2015) ;
∗ Fast Fourier transform of all sub-signals ;
∗ Extraction of the amplitude at fo of all sub-signals ;
∗ WT.O is the maximal value of the magnitudes at fo of sub-

signals.
– HHT.O is the HHT Marginal spectrum at fo, which is evalu-

ated as follow:
∗ Empirical mode decomposition of signals to obtain a collec-

tion of intrinsic mode functions (IMFs) ;
∗ Evaluation of the marginal Hilbert spectrum of all IFMs at fo,

(Soualhi et al., 2015) ;
∗ HHT.O is the maximal value of the marginal Hilbert spec-

trum at fo.
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