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INTRODUCTION

As most of the failures of rotating machineries are related to the bearings [START_REF] Zhou | Bearing Condition Monitoring Methods for Electric Machines: A General Review[END_REF], it is necessary to monitor the conditions of these components, detect their anomalies and predict their failures. Numerous papers propose to use vibration signals to monitor the bearing condition because their defects generally produce fault signatures in the machine vibration. Major disadvantage of vibration monitoring is high cost of accelerometers and difficulties when accessing to the machine to install the sensors. On the other hand, numerous studies propose to use electrical signals (current or voltage) for bearing fault detection because their sen-Khanh Nguyen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

sors are inexpensive and easy to implement. However, bearing fault signatures do not clearly present in the stator current which sometimes has low signal-to-noise ratio [START_REF] Zhou | Bearing Condition Monitoring Methods for Electric Machines: A General Review[END_REF]. Based on vibration or electrical signals, various feature extraction methods have been proposed for fault detection, diagnostics and prognostics in ball bearings. However, a few articles attempt to assess and compare the performance of these features. In [START_REF] Tandon | A comparison of some vibration parameters for the condition monitoring of rolling element bearings[END_REF], the authors compared only the vibration parameters (RMS, Peak, Crest factor, power and cepstrum) for bearing condition monitoring. For bearing fault diagnostic, the performance of a set of features extracted from vibration signals was evaluated [START_REF] Mahamad | Development of artificial neural network based fault diagnosis of induction motor dearing[END_REF] using the ratio of average extern distance between classes to the average intern distance within one class. The authors in [START_REF] Kappaganthu | Feature Selection for Fault Detection in Rolling Element Bearings Using Mutual Information[END_REF] proposed to use the mutual information to evaluate performances of various vibration features for detecting inner and outer race defects in rolling element bearings. However, the proposed approach requires the prior information about the feature probability density function that is not easy and might take high time to evaluate. Then, in [START_REF] Shukla | Analysis of statistical features for fault detection in ball bearing[END_REF], the authors introduced an ordering metric, that measures the separability between the normalized feature vectors characterizing healthy and faulty classes to rapidly rank the features extracted from vibration signals in time and frequency domains. On the other hand, for electrical signals, the paper [START_REF] Knöbel | Fault detection in linear electromagnetic actuators using time and time-frequency-domain features based on current and voltage measurements[END_REF] addressed the fault classification issue using features extracted from current and voltage measurements. The authors proposed to use the modified Fisher-ratio (F-ratio), where the best features are the ones having a small intra class covariance but high inter class covariance, for feature selection.

In summary, the above reported work propose metrics to separately assess the performance of features from vibration and electrical signals. In this paper, we address the question of which feature(s) is(are) the best appropriate for vibration and current signals. Moreover, the robustness of feature ranking when using numerous sensor sources is also considered. The main contribution of this paper is to propose a simple algorithm of feature ranking. It is simple for prompt evaluation, takes into account the standard deviation of feature and does not depend on the feature units. Thus, it allows comparing heterogeneous features in different domains

We firstly present a brief review of feature extraction methods that could be applied for vibration and current signals in Section 2. A fast, simple, and effective ranking algorithm to access the performance of multiple features for fault detection and prognostics is then developed in Section 3. Next, the comparison and analysis of the performance of the features based on real data acquired from our test bench will be discussed in Section 4. Finally, the conclusion and perspective of this work will be presented in Section 5.

FEATURE EXTRACTION METHODS

In this section, we present the common, robustness and effective methods of feature extraction that could be applied for both vibration and current signals. In general, these methods can be classified into three categories: time, frequency, and time-frequency domain.

Features in time domain

Using directly raw data, signal processing in time domain are classical, fast and simple. They play a critical role for fault detection, diagnostic and prognostic. However, these techniques are not viable for noisy signals. It could require a pretreatment techniques to enhance signals before the evaluation of indicators. Among features in time domain, the statistical indicators are widely used thanks to their strict relations with incipient bearing damages. In fact, the Mean, Variance, Min, Max, Skewness (SKE) and Kurtosis (KUR) values are evaluated based on vibration and current signals [START_REF] Shukla | Analysis of statistical features for fault detection in ball bearing[END_REF]. The root mean square (RMS) value is also effective for the detection of a localized bearing default by assessing the power content in the vibration signature [START_REF] Lei | A New Method Based on Stochastic Process Models for Machine Remaining Useful Life Prediction[END_REF][START_REF] Huang | Remaining useful life prediction for an adaptive skew-Wiener process model[END_REF] or the stator current signal [START_REF] Shukla | Analysis of statistical features for fault detection in ball bearing[END_REF][START_REF] Alameh | Feature extraction for vibration-based fault detection in Permanent Magnet Synchronous Motors[END_REF]. On the other hand, the factors that represent the overall shape of signals, such as the Crest factor (CF), Peak to Peak value (PP), Shape factor (SF), and Impulse factor (IF), are powerful to capture changes in the signal pattern of vibration [START_REF] Mahamad | Development of artificial neural network based fault diagnosis of induction motor dearing[END_REF] or current signals [START_REF] Shukla | Analysis of statistical features for fault detection in ball bearing[END_REF] when anomalies occur. In [START_REF] Sassi | TALAF and THIKAT as innovative time domain indicators for tracking BALL bearings[END_REF], the authors combine the conventional scalar indicators such as RMS, KUR, CF, and Peak to create new indicators that aim to predict future failures and track defects from the first signs of degradation to the end of life.

Features in frequency domain

Frequency analysis is a common technique to observe the bearing condition because bearing defects generally generate characteristic frequencies in the vibration and current signals (see Annex for the details of the evaluation of characteristic frequencies).

2.2.1. Features extracted from spectrum analysis.

The Fast Fourier Transform (FFT) is widely used to decompose physical signals into number of discrete frequencies or spectrum of continuous frequencies. After performing FFT, the magnitude values at the characteristic frequencies f c are used as common indicators for bearing fault detection and diagnostic [START_REF] Kappaganthu | Feature Selection for Fault Detection in Rolling Element Bearings Using Mutual Information[END_REF][START_REF] Harlis ¸ca | Diagnosis of rolling bearings faults in electric machines through stray magnetic flux monitoring[END_REF]. Other usual indicators that can be used for both vibration and current signal spectrum are the statistical parameters such as RMS, root variance (RV), mean, and median values [START_REF] Mahamad | Development of artificial neural network based fault diagnosis of induction motor dearing[END_REF][START_REF] Shukla | Analysis of statistical features for fault detection in ball bearing[END_REF]. In [START_REF] Yu | Local and Nonlocal Preserving Projection for Bearing Defect Classification and Performance Assessment[END_REF], a frequency feature called PMM, that is the ratio between the maximal value of FFT magnitudes at the characteristic frequencies and the mean of the entire magnitude frequency value, is used for defect and severity classification and for bearing performance assessment. The authors in (Elbouchikhi et al., 2015) used the spectral kurtosis for mechanical unbalance detection in an induction machine using the stator currents instantaneous frequency.

Features extracted from envelope analysis.

The contact of a bearing localized defect with another surface in bearing will generate multiple repetitive vibration impulses. This leads to a concentration of the energy in narrow band. Therefore, the envelope analysis allows effectively detecting bearing failure in different situations. In fact, the maximal value of the envelope spectrum magnitude is used as an indicator for bearing fault detection in [START_REF] Mahamad | Development of artificial neural network based fault diagnosis of induction motor dearing[END_REF][START_REF] Shukla | Analysis of statistical features for fault detection in ball bearing[END_REF]. Numerous articles show that the envelope spectrum magnitudes at the characteristic frequencies are powerful to detect and classify the bearing failures [START_REF] Cong | Spectral kurtosis based on AR model for fault diagnosis and condition monitoring of rolling bearing[END_REF][START_REF] Leite | Detection of Localized Bearing Faults in Induction Machines by Spectral Kurtosis and Envelope Analysis of Stator Current[END_REF]. On the other hand, in [START_REF] Yu | Local and Nonlocal Preserving Projection for Bearing Defect Classification and Performance Assessment[END_REF], the ratio between the maximal value of envelope spectrum magnitudes at the characteristic frequencies and the mean value of the entire magnitudes is also used for bearing diagnostic and degradation assessment.

Features in time-frequency domain

In order to avoid the non-stationary characteristic of signals, it is necessary to present them into two-dimensional function of time and frequency. Therefore, numerous signal processing techniques in time-frequency domain have been developed in literature.

Features extracted from the short time Fourier transform (STFT).

The STFT firstly decomposes the signals into a set of data within a fixed window length and secondly performs the FT on every data window. Then, the spectrum magnitude at FFT characteristic frequencies is proposed to use as an effective feature for bearing defect diagnostic [START_REF] Yazici | An adaptive statistical timefrequency method for detection of broken bars and bearing faults in motors using stator current[END_REF]. However, the selection of the fixed window length before performing STFT can strongly affect the method performance. Therefore, the wavelet transform based on variable window length is recommended.

Features extracted from wavelet transform.

Wavelet transform (WT) allows flexibly adapting the resolutions of time and frequencies for signal analysis, e.g. good time and poor frequency resolution at high frequencies and vice-versa. This technique can be divided into three groups: continuous wavelet, discrete wavelet and wavelet packet transform. For bearing fault detection, the features are extracted based on statistical evaluation of the wavelet coefficients [START_REF] Kompella | DWT based bearing fault detection in induction motor using noise cancellation[END_REF][START_REF] Deekshit Kompella | Bearing fault detection in a 3 phase induction motor using stator current frequency spectral subtraction with various wavelet decomposition techniques[END_REF]. On the other hand, features evaluated based on the wavelet energy are also widely used for bearing fault detection using vibration [START_REF] Yu | Local and Nonlocal Preserving Projection for Bearing Defect Classification and Performance Assessment[END_REF] or stator current signals [START_REF] Knöbel | Fault detection in linear electromagnetic actuators using time and time-frequency-domain features based on current and voltage measurements[END_REF][START_REF] Singh | Motor Current Signature Analysis for Bearing Fault Detection in Mechanical Systems[END_REF]. In (Tobon-Mejia, 2012), the authors propose an effective approach based on the utilization of the WPD and the MoG-HHM for bearing failure prognostics.

Features extracted from Hilbert Huang transform.

As the performance of wavelet analysis method strictly depends on the choice of the mother wavelet, it is suitable to use Hilbert Huang transform (HHT) for analyzing non-stationary signals when we do not have a prior information about the signal shape. The HHT technique includes two phases. Firstly, the input signal is decomposed into a set of intrinsic mode functions (IMFs) using Empirical mode decomposition (EMD). Secondly, the instantaneous frequencies of the IMFs are extracted through Hilbert spectrum analysis (HSA). Therefore, HHT becomes a powerful tool for analyzing and characterizing the signal spectrum in time. For bearing fault detection and diagnostic, the HHT marginal spectrum at characteristic frequencies is proved to be an effective indicator extracted from vibration [START_REF] Refaat | ANN-based for detection, diagnosis the bearing fault for three phase induction motors using current signal[END_REF] and stator current signals [START_REF] Elbouchikhi | An Efficient Hilbert Huang Transform-Based Bearing Faults Detection in Induction Machines[END_REF]. This indicator is also powerful for prognostic of bearing failure [START_REF] Soualhi | Bearing Health Monitoring Based on Hilbert Huang Transform, Support Vector Machine, and Regression[END_REF].

FEATURE RANKING

Feature performance measure

In order to evaluate the performance of the extracted features for fault detection and prognostics, it is necessary to propose a new measure that can satisfy the following requirements: • being simple for prompt evaluation ;

• not depending on the feature units. Thus, it allows comparing heterogeneous features in different domains ; • and taking into account the standard deviation of feature values when assessing their performance.

Therefore, we introduce in this section a measure, called the distance ratio (RD), that it is evaluated by the ratio between the Euclidean distance from a feature value (point i), extracted from a monitoring signal, to the median value of the set of nominal feature values (S F V ), characterizing the healthy state, and the standard deviation of nominal feature value set, σ(S F V ):

RD = ||i -median(S F V )|| 2 σ(S F V ) (1) 
For fault detection and prognostics, if the extracted feature allows clearly distinguishing the normal and abnormal state, then the feature performance is well highlighted. Considering Eq.1, if the distance of a feature value to the median value of the healthy state is significant while the standard deviation of distances between nominal feature values is small, then the corresponding RD is high. In other words, the greater RD value is, the higher feature performance will be. Therefore, RD can be used as an effective measure for feature performance ranking when considering fault detection and prognostic issues.

Feature ranking algorithm

To assess the feature robustness, it is essential to evaluate multiple RD measures corresponding to feature values extracted from numerous signal sources (for example, same signal type but different sensor positions). Therefore, in this subsection, a new algorithm of feature ranking, illustrated by Figure 1, is developed. This algorithm is based on the following principle: the higher RD mean value of a feature is, the greater performance of this feature will be. In detail, for ranking of N features, the RD measures are firstly evaluated for every feature. Then, N features are sorted according to their RD mean values such as the RD mean value of i-th feature is greater than the one of i + 1-th feature (µ i > µ i+1 ). Next, it is necessary to verify the confidence level of this feature ranking list. In other words, we consider whether the results

(µ i > µ i+1 , i ∈ [1, N -1]
) are statistical significant or only random observations.

• If H 0 : µ i = µ i+1 is rejected, the rank of i and (i + 1)-th feature are maintained.

• If not, we can not conclude that the i-th feature is better than the (i+1)-th one. Consequently, they have the same rank.

EXPERIMENTAL VALIDATION

Description of the Experimental Setup

The test bench, performed on the PRIMES platform, aims to track the health state of the traction auxiliary motors in a train, particularly that one of their bearings, in order to plan the maintenance interventions. Figure 2 presents a general view of the experimental system configuration. In detail, a threephase induction motor is powered via an onboard inverter.

The motor can run at high speed (HS: 2880 rpm) or low speed (LS: 1440 rpm). It includes two bearings at the two ends: one with a load like a fan or a centrifugal pump, called drive end (DE) and the opposite side, named non drive end (NDE). In this paper, we will consider, in priority, the detection of the outer bearing fault, which is represented by a groove, created using the Electro Discharge Machining (EDM) technique: the diameter of the grove is 3 mm on the bearing outer race at the NDE. The data acquisition procedure is performed by a Com-pactRIO 9039 which also allows running the fault detection algorithms in real time and controlling the electrical machines 

Discussion of feature performance

In time, frequency and time-frequency domains, we only focus on the features that are widely used for bearing fault detection and prognostics and easily extracted from both vibration and current signals. Table 1 summarizes 12 extracted features. The extraction procedure details of these features will be presented in the Annex.

In order to ensure the objectivity and robustness of the analyzed results corresponding to sensor positions, 200 samples of 1 s of vibration signals (or current signals) from accelerometers (or current sensors) and used to assess the features performance. In detail, 50 successive samples of 1 s are recorded from every sensor during 50 s. Figure 3 presents the box plot of the RD measures of time features extracted from vibration and current signals acquired by different accelerometers and current sensors. In general, the time features are effective for bearing outer fault (BOF) detection when using vibration signals. Indeed, the distance between On the other hand, a paradox result is recognized here. Indeed, the performance of extracted features (represented by RD measures) based on the envelope analysis is expected be higher than the one based on the FFT analysis. However, the experimental result shows an opposite conclusion. This result again illustrates the point of view that the envelope analysis performance strictly depends on the selection of the filter parameters. For further work, an optimization of the band-pass filter, for example the Kurtogram analysis, should be carefully considered. Next, the ranking list of the features extracted from vibration and current signals when considering the BOF are re- spectively presented in Tables 2 and3. In these tables, the mean and standard deviation (SD) of the RD measure of every feature are respectively given in the second and third column. The feature ranks, which are evaluated based on the algorithm summarized in Figure 1, are presented in the fourth column. Finally, the last column shows the p-value of the comparison test of RD mean values between the considered feature with the next feature in the ranking list. For example, considering T HIKAT feature in Table 2, its relevant p-value is 2%. It characterizes the probability of false rejection of the null hypothesis H 0 :

µ RD T HIKAT = µ RD KU R .
Considering the confidence level of 97.5%, the hypothesis µ RD T HIKAT = µ RD KU R will be rejected (because 2% < 100 -97.5%). In other words, the conclusion that the performance of the T HIKAT feature is better than the KU R feature is proven.

Considering Tables 2 and3, we find that the feature based on the Hilbert Huang Transform (HHT.O) is the best one for BOF detection using both vibration and the current signals. 

CONCLUSION

We have presented in this paper a new metric that allows assessing the performance of heterogeneous features in different domains for fault detection, diagnostics and prognostics. 

ANNEX Characteristic frequencies

For vibration signals, the characteristic frequencies associated to different types of bearing fault are evaluated as follows, [START_REF] Shah | A Review of Dynamic Modeling and Fault Identifications Methods for Rolling Element Bearing[END_REF]:

• Outer race defect, fo = n 2 fr 1 - B D cos(α)
where n = number of balls in rolling element bearing, B = ball diameter, D = bearing pitch diameter, α = bearing contact angle and fr = rotor frequency.

These abnormal vibrations also generate rotating eccentricities or load torque variations. They lead to periodical changes in machines inductances and therefore deduce additional characteristic frequencies in the stator current f s c , [START_REF] Schoen | Motor bearing damage detection using stator current monitoring[END_REF][START_REF] Blodt | Models for Bearing Damage Detection in Induction Motors Using Stator Current Monitoring[END_REF].

• Considering the radial movement of the rotor center, the characteristic frequencies of current signals, f s c , are evaluated by following expressions:

-Outer race defect, f s o = fs ± kfo where fs = electrical stator supply frequency, fr = rotor frequency and k = 1, 2, 3, ... • Considering the torque variation, the characteristic frequencies of current signals, f s c are given by: -Outer race defect, f s o = fs ± kfo.

Evaluation of features

• In time domain, where s(t i ) be the signal at time where RM S 0 is the RMS value defined for a healthy bearing at the initial moment.

-THIKAT value: T HIKAT = log KU R CF + RM S RM S 0 ) P where CF is the crest factor, CF = P RM S and P is the peak value of signals, P = max i (s(t i ))

• In frequency domain:

-BP F O: FFT Magnitude at outer race defect frequency fo.

-EBP F O: Envelope Amplitude at fo, that is evaluated based on the envelope analysis: * Hilbert transform of signal ; * Calculation of the envelope signal A(t): A(t) = x 2 R (t) + x 2 I (t) where x R and x I are the real and image part of the
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 5 Figure 5 presents the RD measure box plot of time-frequency features extracted from vibration and current signals. We find that the time-frequency features, in particular the HHT.O, extracted from both vibration and current signals are very effective for bearing outer race fault detection. They allow clearly distinguishing the normal and faulty states. In detail, the RD measure of the features extracted from the vibration signals are RD W T.O ∈ [10.14, 89.4] and RD HHT.O ∈ [121.2, 381.5] while the one extracted from current signals are RD W T.O ∈ [8.3, 61.4], and RD HHT.O ∈ [39.8, 240.9].
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 5 Figure 5. Comparison between features in time-frequency domain, BOF, HS: 2880 rpm.

-

  t i : -Peak to Peak value (P P ): P P = | max i (s(t i )) -min(s(t i )| -Root mean square value (RM S): RM S = Shape factor value (SF ): SF = RM S S meana bs -Impulse factor value (IF ): IF = max i (s(t i )) S meana bs -TALAF value: T ALAF = log KU R + RM S RM S 0

Table 1 .

 1 Summary of extracted features.

	Signal Processing methods	Features
	Time domain	
	Overall form	P P , IF , SF
	Statistic evaluation	RM S, SKE, KU R, T HIKAT , T ALAF
	Frequency domain	
	Fast Fourier Transform	BP F O
	Envelope analysis	EBP F O
	Time-Frequency domain	
	Wavelet Transform	W T.O
	Hilbert Huang Transform	HT T.O
	Note that: P P : Peak to Peak, IF : Impulse Factor, SF : Shape Fac-
	tor, RM S: Root mean square, SKE: Skewness, KU R: Kurtosis,
	T HIKAT , T ALAF (Sassi et al., 2006),
	BP F O: FFT Magnitude at outer race defect frequency fo,
	EBP F O: Envelope Amplitude at fo,	
	W T.O: FFT Magnitude of Wavelet Transform coefficients at fo,
	HHT.O: HHT Marginal spectrum at fo.

from the LABVIEW software. In order to assess the performance and robustness of multiple features with different sensor placements, 4 accelerometers are mounted horizontally and vertically on the DE and the NDE of the motor to capture the vibration signals. On the other hand, the electrical signals provided by the on-board inverter are also measured and recorded through 6 current sensors (3 sensors for HS and 3 sensors for LS). For the healthy (or faulty) state, the collected data are composed of a) 200 samples of 1 s with a sampling frequency of 51.2 kHz for vibration signals, and b) 200 samples of 1 s with a sampling frequency of 50 kHz for current signals. Considering the bearing outer race defect, When the motor runs at the high speed, its corresponding characteristic frequency from the vibration signals is 171 Hz and the one from the current signals is 50 ± k × 171 Hz (see Annex for the evaluation of characteristic frequencies).

Table 2 .

 2 Feature ranking for vibration signals with confidence level of 97.5%, BOF, HS: 2880 rpm. the normal and BOF state is well recognized according to features P P , RM S and SKE. The RD measures are respectively RD P P ∈ [36.6, 68.47], RD RM S ∈ [31.2, 39.1] and RD SKE ∈[0.4, 25.1]. However, the time features are not useful for current signals. There are small differences between the healthy and faulty states that can be recognized as RD

	Features	Mean	SD	Rank	p-value(%)
	HHT.O	225.88	47.89	1	0
	P P	51.81	8.86	2	0
	W T.O	39.04	19.71	3	1.1
	BP F O	34.69	18.29	4	31
	RM S	34.04	2.68	4	0
	EBP F O 26.62	19.89	6	0
	SKE	16.94	8.8	7	0
	SF	5.32	2.69	8	0
	T HIKAT 3.89	1.75	9	2
	KU R	3.48	2.19	10	17.7
	IF	3.29	1.77	10	0
	T ALAF	0.86	0.32	12	

P P ∈ [1.8, 6.7], RD T HIKAT ∈ [2.3, 8.3]. The RD measure box plot of frequency features extracted from vibration and current signals are illustrated in Figure 4. We find that both BP F O and EBP F O allow effectively distinguishing the normal and BOF states when using vibration and also current signals. In fact, the RD measure of features extracted from vibration signals are RD BP F O ∈ [8.7, 78.9], and RD EBP F O ∈ [5.2, 65.2] while the one extracted from current signals are RD BP F O ∈ [8.1, 61.5], and RD EBP F O ∈ [0.76, 46.1].

Table 3 .

 3 Feature ranking for current signals with confidence level of 97.5%, BOF, HS: 2880 rpm.

	Features	Mean	SD	Rank	p-value(%)
	HHT.O	132.22	70.93	1	0
	W T.O	29.46	11.81	2	0
	BP F O	24.68	12.11	3	0
	EBP F O 16.76	10.34	4	0
	T HIKAT 3.94	2.4	5	0.1
	P P	3.23	1.97	6	0
	IF	2.49	0.29	7	2.4
	RM S	2.24	1.76	8	0
	T ALAF	0.73	0.42	9	3.3
	SF	0.68	0.04	9	0
	SKE	0.34	0.13	11	0
	KU R	0.23	0.01	12	

  Next, the ranks of the rest of features are trivially different in two tables. For example, the P P feature in time domain is very effective (ranked at 2nd) for the vibration signal but is only in intermediate rank (6th) for the current signal. In fact, features in time domain are not reliable for current signals. In this case, it is suitable to use features in time-frequency (HHT.O, W T.O) or frequency (BP F O, EBP F O) domain to capture the change of the signals. On the other hand, an interesting result shows that the RD mean values of all features extracted from vibration signals are generally greater than the ones extracted from current signals. That means, for BOF detection, the vibration signals are better than the current signals.