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Abstract

This paper addresses the problem of estimating the local viscoelastic parameters of sandwich beams. An

original procedure involving an inverse vibratory method (Force Analysis Technique) and the Timoshenko

beam theory is detailed and applied experimentally on a sample presenting a honeycomb core. The major

philosophy relies in considering multi-layer beams as equivalent homogeneous structures. This simplified

approach is thought to be more representative of the global dynamic behaviour, in addition the reduction

of degrees of freedom is obviously an improvement for modelling on Finite Element software.

When compared to other usual approaches, the method developed in this paper shows a very good agree-

ment between the experimental sandwich beam and the homogeneous model, which highlights interesting

insights for applying it to industrial structures. The local aspect, the robustness and the self-regularization

properties are verified on a wide frequency range, making the procedure possibly efficient for characterization

of structures on a production line, flaw detection and Structural Health Monitoring.

Keywords: Inverse identification, Timoshenko beam, Young’s modulus, Shear modulus, Honeycomb,

Composite material

1. Introduction

In order to reduce energy consumptions, transportation industries are increasingly focusing on new struc-

tures to diminish the mass of their vehicles. Thus composite materials appear to be ideal since they present

a high stiffness and a low weight. Nonetheless the complexity in estimating and representing their dynamic

behaviour relegates their use to secondary structures (car’s bonnet, plane’s tail, inner parts) which are sub-

ject to weaker disturbances. Although standard procedures are reliable for identifying elastic properties of

common materials and alloys, their application on composite structures can be struggling.

∗Corresponding author
Email addresses: thibault.wassereau@gmail.com (Thibault Wassereau), frederic.ablitzer@univ-lemans.fr (Frédéric
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Firstly measurement approaches involving modal analysis theory are widely used in engineering and in

the literature. A verification of the theoretical resonance frequencies allows to identify the Young’s modulus

and the structural losses by applying the general half-power bandwidth method [1]. One can also mention

standardized tests for estimating the elastic properties of multi layer composite beams, especially the shear

modulus of the core, using the Oberst beam method [2]. Nonetheless these modal procedures imply specific

boundary conditions that can be tricky to achieve, such as the cantilever beam. Montalvao et al. [3]

demonstrated an important variability over the parameter estimation depending on the clamping condition.

In addition a potential fibre breakage or core flattening can happen when applying such condition. To avoid

these issues a hard piece of metal is usually inserted in the core. Eventually, the so-called ”base beam” must

present a stable stiffness versus frequency, which is not always the case for composite material, needing some

changes in the measurement procedure as proposed by Liao et al. [4].

Secondly the finite element method approaches provide realistic simulations and can couple various

dynamic phenomena. A comparison between the predictions of a theoretical model and measurement on

a real structure may lead to the estimation of elastic parameters [5, 6]. Unfortunately the results strongly

depend on user’s decisions (assumptions, mesh refinement used for the finite element model, etc). One can

also underline the difficulties to characterize but also to model some structures. For instance a bonding

between two layers can be harsh to determine and even more to define accurately. The same trend can be

extended to boundary conditions, coupling, and more generally to the trustworthiness of a model. Hence the

misdiagnosis on a given structure can come from the measurement step and/or from the modelling stage.

Third some analytical approaches have been studied to represent the dynamic behaviour of composite

structures. Amongst the numerous theories developed, always representative for one specific kind of sandwich

organization, the zig-zag theory [7] appears as the most reliable method since it allows a global kinematic

description of the multilayer material. Using a matrix transfer function, the vector of degrees of freedom

(DOFs) of the bottom layer is projected onto the one above, whose computed vector of DOFs is applied to

the upper layer, and so on until reaching the top layer whose vector of DOFs will represent the dynamic

behaviour of the entire structure as an equivalent homogeneous material. Guyader et al. applied this

approach to estimate equivalent elastic properties of homogenized multi-layer composites [8, 9] and proved

the reliability of this homogenization approach. Once more, it is of importance to perfectly know the

mechanical properties of each layer to apply this analytical method.

Instead of analysing each layer independently (first plausible source of bias) in order to model a realistic

multi-layer structure in a finite element simulation or analytical formulation (second possible source of

bias), an original experimental approach is suggested in this paper using an homogenization of the whole

composite. Such consideration of the sandwich beams has also been studied by Rak et al. [10] with the

Euler-Bernoulli theory using a wave approach, and similar work has been conducted on plates by Ichchou

et al. [11]. The proposed procedure herein involves the Timoshenko beam theory combined with the inverse
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vibratory method called the Force Analysis Technique.

To the authors’ knowledge the use of Timoshenko beam theory to represent sandwich beams has not

been an extended subject of research so far. Labuschagne et al. [12] compared the Euler-Bernoulli and the

Timoshenko models, Lim et al. [13] developed an improved Euler-Bernoulli formulation to take shear effects

into account. Dixit [14] focused on the differences between these beam theories to identify defects from

the analysis of modal frequency shifts, while Mei et al. [15] expanded analytical expressions to represent

vibrations of cracked beams using a wave approach and the Timoshenko theory. Concerning the vibrations

of sandwich beams, the important shear and the associated damping effects induced by the core layer are

often highlighted [16, 17]. Besides the lack of experimental data regarding the Poisson’s ratio (directly linked

to the shear modulus) for composite structures may influence the analysis of their stiffness properties [18].

A method allowing to simultaneously characterize the Young’s modulus and the shear modulus using few

assumptions and easily reproducible measurement step is a requirement commonly aroused by engineering

and industries.

The second originality of the proposed formalism lies in the use of an inverse vibratory method, the

Force Analysis Technique (FAT), initially developed by Pézerat and Guyader to identify vibratory sources

[19, 20, 21]. Based on a local verification of the equation of motion, this method allows analyses of various

structures such as beams, plates, shells [22], and more complex structures using the finite element method

[23, 24]. Its application is valid for a wide frequency range and does not depend on the boundary conditions

because of its local feature. Any unknown or undesired phenomena which is out of the measurement area can

be simply discarded. For theses reasons numerous developments arose from the Force Analysis Technique

such as the suppression of the filtering stage using a smart measurement mesh [25, 26], detection of defects

[27, 28, 29], localization of acoustic sources [30], or identification of acoustic part in turbulent wall pressures

[31]. One of these developments focused on the characterization of the stiffness and the loss factor on plates

as suggested by Ablitzer et al. [32, 26] and showed promising results as a novel method to analyse local

properties of structures. The work presented in this paper consists in an expansion of this approach to

multi-layer composite beams and aims at characterizing the Young’s modulus, the shear modulus and their

respective damping simultaneously on a wide frequency range by only measuring the transverse displacement

of the structure.

The paper is structured as follows. First, the general principle of the method is presented. Afterwards

some simulation cases are considered in order to prove the feasibility of the procedure. The different steps to

de-noise the data and stabilize the inverse problem are given in details. Finally an experimental validation

is exposed to confirm the potential of applicability of the method.
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2. Theoretical approach

Let us consider the harmonic vibration of a beam. Out of the exciting source area, the equation of

motion for an Euler-Bernoulli beam and a Timoshenko beam respectively take the form :

ẼI
∂4W (x)

∂x4
− ρSω2W (x) = 0, (1)

and

ẼI
∂4W (x)

∂x4
+ ρIω2

(

Ẽ

G̃
+ 1

)

∂2W (x)

∂x2
+

(

ρ2I

G̃
ω4 − ρSω2

)

W (x) = 0, (2)

whereW is the transverse displacement, Ẽ the complex Young modulus (Ẽ = E(1+jηE)), ηE its associated

damping coefficient, G̃ the complex shear modulus (G̃ = G(1 + jηG)), ηG the shear loss factor, S the cross

section of the beam, I the second moment of area, ρ the density and ω the angular frequency.

The identification of the complex moduli lies on the knowledge ofW (x), ∂4W (x)
∂x4 and ∂2W (x)

∂x2 as seen in Eq.

(1) and (2). In practice the transverse displacementW (x) is simply estimated by using an accelerometer or a

scanning laser vibrometer but the spatial derivatives cannot be assessed with a straightforward measurement.

This issue is bypassed through a fourth order finite difference scheme leading to the approximated spatial

derivatives δ2x (≈ ∂2W (x)
∂x2 ) and δ4x (≈ ∂4W (x)

∂x4 ) of which expressions are detailed in Appendix A. When

considering a matrix representation the previous equations of motion take the form :

[

Iδ4x
] [

Ẽ
]

=
[

ρSω2W

]

, (3)

for the Euler-Bernoulli model and

[

Iδ4x ρIω2δ2x
]







Ẽ

Ẽ

G̃
+ 1






=

[(

ρSω2 − ρ2I

G̃
ω4

)

W

]

. (4)

for the Timoshenko one.

One may notice that the complex elastic parameters Ẽ and G̃ are isolated in the last expressions, allowing

to find a unique value of E, ηE , G and ηG by mean of a matrix division in the least square sense as :











Iδ4x(x1)
...

Iδ4x(xNx
)











[

Ẽ
]

=











ρSω2W (x1)
...

ρSω2W (xNx
)











, (5)
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









Iδ4x(x1) ρIω2δ2x(x1)
...

...

Iδ4x(xNx
) ρIω2δ2x(xNx

)

















Ẽ

Ẽ

G̃
+ 1






=















(

ρSω2 − ρ2I

G̃
ω4

)

W (x1)

...
(

ρSω2 − ρ2I

G̃
ω4

)

W (xNx
)















. (6)

The unknown parameter G̃ is still present in the right hand side of Eq. (6) in which ρ2I

G̃
ω4 expresses the

rotatory inertia. An iterative procedure is therefore applied as presented below. The first iteration consists

in removing the rotatory inertia which is neglected in first approximation, leading to estimation of Ẽ1 and

G̃1. The latter is inserted in the second iteration in which the right hand side is complete, allowing a more

precise estimation of Ẽ2 and G̃2, used for computation of Ẽ3 and G̃3, and so on until reaching a variation

of G smaller than 0.1% between two iterations, which is generally achieved after 4 loops.

1st iteration :

[

Iδ4x ρIω2δ2x
]







Ẽ1

Ẽ1

G̃1

+ 1






=
[

ρSω2W

]

, (7)

2nd iteration :

[

Iδ4x ρIω2δ2x
]







Ẽ2

Ẽ2

G̃2

+ 1






=

[(

ρSω2 − ρ2I

G̃1

ω4

)

W

]

, (8)

nth iteration :

[

Iδ4x ρIω2δ2x
]







Ẽn

Ẽn

G̃n

+ 1






=

[(

ρSω2 − ρ2I

G̃n−1

ω4

)

W

]

. (9)

3. Proof-of-concept

This part will deal with simulations to verify the validity of the suggested method. First an analytical

expression of the displacement field using the Timoshenko beam theory is developed. Then, the inverse

problem is tested using exact data or noisy data. The latter implies a regularization procedure, but also

specific post treatments for the Timoshenko problem that are explained in a last section.

3.1. Direct problem

Before applying the inverse approach detailed previously, it is necessary to define a convenient displace-

ment field according to the Timoshenko beam theory. An analytical expression of the displacement field W

is computed through a forced wave decomposition [33], for a simply supported beam of length Lx excited

by an harmonic source at position x0 :
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Figure 1: Modulus of the displacement field of the simulated thick aluminium beam versus frequency and position on the

structure. The dB scale is defined as 20 log10 |W |.

WTIMO(x) =























































F

G̃2SẼIkekp(k2
e+k2

p)

[

ke(G̃
2S + G̃k2eẼI + ẼIρω2)

sin(kpx) sin(kp(Lx−x0))
sin(kpLx)

−kp(G̃2S − G̃k2pẼI + ẼIρω2) sh(kex) sh(ke(Lx−x0))
sh(keLx)

]

, if x ∈ [0;x0[

F

G̃2SẼIkekp(k2
e+k2

p)

[

ke(G̃
2S + G̃k2eẼI + ẼIρω2)

sin(kpx0) sin(kp(Lx−x))
sin(kpLx)

−kp(G̃2S − G̃k2pẼI + ẼIρω2) sh(kex0) sh(ke(Lx−x))
sh(keLx)

]

, if x ∈ [x0;Lx[

(10)

with F the amplitude of the source applied to the structure, kp the propagative wavenumber and ke the

evanescent wavenumber defined as follows :

kp =

√

√

√

√

ρIω2
(

1 + Ẽ

G̃

)

+
√
∆

2ẼI
, (11)

ke =

√

√

√

√

−ρIω2
(

1 + Ẽ

G̃

)

+
√
∆

2ẼI
, (12)

with ∆ = ρ2I2ω4
(

1− Ẽ

G̃

)2

+ 4ẼIρSω2.

The complex displacement field is computed on a thick aluminium beam with the parameters resumed in

Table 1. The length to thickness ratio is about 33, which is sufficient to imply a difference between the

Euler-Bernoulli and Timoshenko models because of the presence of shear effects, as it will be shown later.

The moduli of displacements are plotted in Fig. 1.
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Parameters Values

Length Lx = 1 m

Width Ly = 5 mm

Thickness Lz = 30 mm

Mesh elements Nx = 300

Spatial step ∆x = 3.3 mm

Density ρ = 2700 kg.m−3

Young’s modulus E = 70 GPa

Elastic loss factor ηE = 0.03

Shear modulus G = 26 GPa

Shear loss factor ηG = 0.05

Frequency f = [1000, 4000] Hz

Force F = 1 N

Source position x0 = 0.05 m

Studied area x ∈ [0.1, 1] m

Table 1: Properties of the direct problem simulated for a thick aluminium beam.

3.2. Inverse problem using exact displacements

The exact displacement and its discrete spatial derivatives estimated on the studied area x ∈ [0.1, 1] m,

i.e out of the source region, are put into Eq. (5) and (6) for the Euler-Bernoulli model and the Timoshenko

model respectively, at every discrete frequency to estimate the viscoelastic parameters. Fig. 2 presents the

computed results. First the theoretical approach is validated for the Timoshenko model since the elastic

parameters estimated by the inverse problem are perfectly matching the ones applied for the direct problem

(Fig. 2(b), (c), (e) and (f)). On the other hand the Euler-Bernoulli model shows its limits for such structure

(Fig. 2(a) and (d)). Even if the beam has a relative high shear stiffness, its thickness is sufficient to induce

wrong inference of the Young’s modulus. Indeed the simplicity of the Euler-Bernoulli theory interprets the

shear contribution, which grows towards frequency, as a compensation on the complex Young’s modulus.

The aluminium beam is seen as a softer and more damped structure as frequency increases.

3.3. Inverse problem using noisy displacements

The displacement field computed in the last section is now blurred with some noise contribution as

defined by Pereira et al. [34], using a Signal to Noise Ratio (SNR) of 40 dB :
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Figure 2: Elastic parameters estimated using the exact displacement field simulated on a thick aluminium beam. (a) Young’s

modulus E and (d) elastic loss factor ηE identified with the Euler-Bernoulli model. (b) Young’s modulus E, (e) elastic loss

factor ηE , (c) shear modulus G and (f) shear loss factor ηG identified with the Timoshenko model. The Euler-Bernoulli model

shows a linear decrease of the Young’s modulus and a rise of the loss factor ηE with frequency.

Wnoisy = Wexact + 10
−SNR

20



αejθWexact + γejφ

√

||Wexact||2
Ns



 , (13)

where Wnoisy is the noisy transverse displacement at a given frequency, Wexact is the exact transverse

displacement at a given frequency, α and γ are zero mean Gaussian random variables with unit variance, θ

and φ are random variables uniformly distributed in [0, 2π], Ns is the number of samples of the signal.

3.3.1. Regularization procedure

The presence of noise is a current drawback in inverse problems unavoidably implying a regularization

step [35]. Most of them rely on a Singular Value Decomposition to properly inverse the matrix of data [24]

or on probabilistic approaches [36]. Even if the approach suggested in this paper does not involve a matrix

inversion, the extreme amplification of noise is still present in the terms δ2x and δ4x because a weak error

in the displacement field implies important discrepancies in the estimation of the spatial derivatives. For

these reasons a simple procedure using a windowing (Hanning window) and a low-pass filter (with cutoff

wavenumber kc) is applied on the noisy data as initially proposed by Pézerat et al. [19] for the Force Analysis

Technique. More details about the regularization step can be found in Appendix B.
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Figure 3: Elastic parameters estimated using the regularized noisy displacement field simulated on a thick aluminium beam.

(a) Young’s modulus E and (d) elastic loss factor ηE identified with the Euler-Bernoulli model. (b) Young’s modulus E, (e)

elastic loss factor ηE , (c) shear modulus G and (f) shear loss factor ηG identified with the Timoshenko model. The elastic

parameters estimated by the Timoshenko model present a random behaviour despite the regularization step.

3.3.2. Simulation using noisy data with regularization

For this second simulation case the noisy displacement field is used to compute the spatial derivatives

δ2x and δ4x. The data are treated through the windowing and low pass filtering procedures with a cutoff

wavenumber kc = kp. Eq. (5) and (6) are then solved to identify the elastic parameters plotted in Fig. 3.

Apart from the presence of small variations on the damping, due to residual noise, the results obtained with

the Euler-Bernoulli formulation (Fig. 3(a) and (d)) remain the same than the ones computed from the exact

case (Fig. 2(a) and (d)). The filtering procedure on noisy data is efficient and allows the identification of

the elastic parameters. On the contrary the Timoshenko model fails to identify the parameters despite the

regularisation step (with exception for the Young’s modulus (Fig. 3(b)) at some antiresonance frequencies).

The Timoshenko equations allow to compute more viscoelastic parameters than the Euler-Bernoulli equa-

tions, and could explain the presence of a more important bias on each viscoelastic parameter. But in this

case the behaviour of the estimated complex moduli is almost random as shown by Fig. 3. This instability

of the Timoshenko equations, when using regularized data at a single frequency, is explained in the next

section.
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3.4. Recovery of Timoshenko’s stability

3.4.1. Phenomenon explanation

To make the instability easier to represent, let us consider the previous displacement field with only real

variables, i.e. the damping parts are ignored (ηE = ηG = 0). When expressing the Eq. (4) as represented in

Eq. (14) one may interpret the Timoshenko’s equation of motion as the equation of a plane in the reference

frame (W, δ4x, δ2x), with A and B corresponding to the slopes depending on E and G.

W = Aδ4x +Bδ
2x. (14)

To illustrate this, the exact data computed at f = 1530 Hz for W , δ4x and δ2x is plotted in Fig. 4(a).

The information gathered along the spatial positions on the beam forms a curved line, as shown by the

side projections, which belongs to the equation of a plane as expected from Eq. (14). Nonetheless the

regularization procedure vanishes this trend as presented on Fig. 4(b). Without considering the influence of

noise, the low-pass filter already degrades the curvature of the exact data. As a consequence the estimation

of the slopes A and B (and so E and G) only relies on the residual noise contribution, leading to wrong

identification of elastic parameters. On the other hand the Euler-Bernoulli model does not suffer from this

issue since it only depends onW and δ4x and represents the equation of a line. As shown from the projection

on the reference frame (W, δ4x) the exact and the regularized data are quite the same and the estimation of

the Young’s modulus E remains stable.

The deterioration induced on the data by the regularizing step appears mostly on δ2x. To bypass this

difficulty it is necessary to use additional data belonging to the plane, which is achieved using a multi-

frequency analysis.

3.4.2. Multi-frequency analysis

A convenient solution to get stability back for the Timoshenko model is to estimate the parameters from

data gathered at different close frequencies f −∆f , f and f +∆f . The exact data and the regularized data

computed at f = [1230, 1530, 1830] Hz are shown in Fig. 5(a) and (b) respectively. A progressive rotation

of data is distinguishable as frequency increases, this particularity is the key idea of the multi-frequency

analysis. Regarding the regularized case the lost of curvature is still present but the remaining data now

clearly lies on a plane, the equation of which can be identified.

The identification of the elastic parameters E, ηE , ηG and G is now carried out using the multi-frequency

analysis and presented in Fig. 6. First the frequency axis is necessarily reduced by 2∆f ; a measurement

achieved on the bandwidth [f1, f2] allows identification on a bandwidth of [f1 +∆f , f2 −∆f ]. Secondly the

Euler-Bernoulli model does not undergo important variations between a single frequency analysis (Fig. 3(a)

and (d)) or a multi-frequency analysis (Fig. 6(a) and (d)). Indeed as seen in Fig. 5 the rotation of W and
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Figure 4: (a) Exact data and (b) regularized exact data at a single frequency f = 1530 Hz in the reference frame (W ,δ4x,δ2x).

• Entire data and projected data on • (W ,δ4x), • (W ,δ2x) and • (δ4x,δ2x). The exact data defines a curved line allowing the

determination of a plane equation (in the least square sense), while the regularized data gives a single straight line preventing

from estimating a plane equation.
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Figure 5: (a) Exact data and (b) regularized exact data for three frequencies f = [1230, 1530, 1830] Hz in the reference frame

(W ,δ4x,δ2x). • Entire data and projected data on • (W ,δ4x), • (W ,δ2x) and • (δ4x,δ2x). Using data at different frequencies

allows the definition of a same plane equation in the least square sense to fit the whole input data for the exact and the

regularized variables.
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δ4x for f ±∆f is equally distributed around the central frequency f . Hence the least square estimation of

the complex Young’s modulus is neutral regarding the side frequencies. Third the estimation of the elastic

parameters is highly improved for the Timoshenko model. The Young’s modulus E (Fig. 6(b)) is fitting the

one defined in the direct problem, the estimated shear modulus G (Fig. 6(c)) and elastic damping ηE (Fig.

6(e)) are spread around the expected values. The identification of the shear loss factor ηG (Fig. 6(f)) is not

satisfactory, due to its weak contribution in the motion of the beam. In fact it represents 5% of G which

itself provides a small effect on such aluminium thick beam, ηG is simply lost in the noise. To conclude with

this multi-frequency analysis it is a clear improvement compared to the single frequency analysis. Even if

the gathering of information is not compulsory for W and δ4x, it provides an important enhancement on

stabilization of δ2x when applying the regularization procedure. At last it must be underlined that if the

elastic parameters are frequency dependent the multi-frequency analysis has a smoothing effect. Therefore

the choice of ∆f has to be tuned before conducting a satisfactory identification, this part is discussed in the

next section.
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Figure 6: Elastic parameters estimated using the multi-frequency analysis on the regularized noisy displacement field simulated

on a thick aluminium beam, with ∆f = 530 Hz. (a) Young’s modulus E and (d) elastic loss factor ηE identified with the

Euler-Bernoulli model. (b) Young’s modulus E, (e) elastic loss factor ηE , (c) shear modulus G and (f) shear loss factor

ηG identified with the Timoshenko model. The Timoshenko model allows identification of convincing parameters showing a

recovery of stability..
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3.4.3. Width criterion ∆f

In order to stabilize the Timoshenko model without preventing frequency variations of the elastic pa-

rameters too much, a compromise has to be done on the width criterion ∆f . This part only concerns the

Timoshenko model since the Euler-Bernoulli one does not necessarily need the multi-frequency analysis.

The elastic parameters are now computed for every applicable multi-frequency analyses [f −∆f ; f ; f +∆f ].

For instance at f = 1800 Hz the multi-frequency can be achieved with ∆f ≤ 800 Hz otherwise unavailable

frequency samples at f ≤ 1000 Hz would be needed. Similarly at f = 3400 Hz we must have ∆f ≤ 600 Hz

so the multi-frequency analysis is limited to the available frequency samples, i.e f ≤ 4000 Hz.

The identified elastic parameters are represented in Fig. 7. One can remark a rapid convergence with

respect to ∆f on the Young’s modulus E (Fig. 7(a)) and a slower convergence for its loss factor ηE (Fig.

7(c)). The shear modulus G (Fig. 7(b)) is a lot more disturbed for small values of ∆f , and the damping

ηG (Fig. 7(d)) is almost random, for the same reasons as explained before, and will not be used for the

choice of the width criterion. The computed data for G presents an important drop for ∆f < 100 Hz and an

acceptable stability for ∆f > 600 Hz. Nonetheless the smoothing effect on the elastic parameters towards

frequency implied by such a width criterion and the important reduction of the frequency bandwidth are

not satisfactory. For these reasons an objective function is needed. As explained previously the higher ∆f

the more the stability and the less the number of analysed frequencies. Since our goal is to reach coherent

elastic parameters on the widest frequency band the objective function has to depend on the dispersion

of the shear modulus G (the purpose to use the Timoshenko model) assessed using an Euclidean norm

along frequency, at a given ∆f , and on the number of output frequencies Nf (∆f ) (i.e the bandwidth of the

estimated complex moduli after applying the multi-frequency analysis), as :

OG(∆f ) =
1

Nf (∆f )

√

√

√

√

Nf (∆f )
∑

i=1

G2(fi,∆f ). (15)

An illustration of the computed objective function is available in Fig. 8. A transient zone can be seen

and is followed by a slow increase that finally diverges. The best width criterion is chosen to be the one that

minimizes the objective function apart from the transient zone. For this case the optimal width criterion is

found to be ∆f = 530 Hz. By using a multi-frequency analysis with such width criterion one can obtain the

results that were presented in Fig. 6.

3.5. Optimized self-regularization

For a given frequency f a structural wavenumber kp is associated. In the Force Analysis Technique,

a common way to adjust the low-pass filter is to choose a cutoff wavenumber proportional to the natural

wavenumber of the structure. From past experience it has been noticed that for the Timoshenko model

the optimal cutoff wavenumber koptc must be tuned around the natural wavenumber such as koptc = kp [37].
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Figure 7: Identified elastic parameters versus the width criterion ∆f and the frequency f . (a) Young’s modulus E, (c) elastic

loss factor ηE , (b) shear modulus G and (d) shear loss factor ηG. Stability is reached as ∆f increases but is accompanied with

a reduction of the analyzed bandwidth.
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Figure 8: Objective function computed for different values of ∆f . Its minimization (discarding the transient region) leads to

an optimized width criterion of ∆opt

f
= 530 Hz.
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The application of a low-pass filter to the displacement field of an unknown structure can appear to be

tricky. The cutoff wavenumber has to be tuned with respect to the natural wavenumber of the structure,

which is itself unknown since it depends on the complex moduli to identify. To overcome the lack of a priori

knowledge on the natural wavenumber the following procedure is applied.

Our goal is to find an optimal cutoff wavenumber koptc such that koptc = kp. To do so the noisy data is

filtered with different candidate cutoff wavenumbers kc and the elastic parameters are identified as explained

previously. Then for each candidate wavenumber the identified complex moduli are used to obtain an

estimation of the natural wavenumber kp as given by Eq. (11). Finally the values of kp are compared to

the ones of kc. Their coincidence means that the cutoff wavenumber is equivalent to the one estimated on

the filtered data, indicating optimal regularization of koptc = kc = kp. This case is considered as the best

adjustment of filter and the associated elastic parameters are kept for this frequency f .

An illustration of this procedure is available in Figs. 9 and 10 for the elastic parameters and the estimated

wavenumber respectively, with the previous aluminium thick beam at f = 1990Hz with added noise. About

400 different candidate values of cutoff wavenumber between 12 and 48 rad/m are tested. It can be seen

that the Euler-Bernoulli model does not really depend on the filter’s severity (Fig. 9(a) and (d)). It actually

allows a higher filtering order depending on the noise level as already shown by Pézerat [38]. On the contrary

the Timoshenko model suffers important variations especially for G and ηG (Fig. 9(c) and (f)). But when

the estimated complex moduli are used to compute kp the result is astonishingly constant, no matter the

cutoff wavenumber, as shown in Fig. 10. This trend may be explained by the equilibrium between the elastic

parameters : a deviation of E can be counterbalanced by a more important deviation of G. One can also

notice that kp and kc are crossing each other at a location marked by a green dot. This specific coincidence

actually depicts the optimal filtering coefficient as confirmed by the elastic parameter identification. Back

to Fig. 9 it is clear that this situation is the only one for which all parameters are well-estimated with the

Timoshenko model. Moreover this stable region is very tight and corroborates with the importance of an

efficient filtering. The optimal cutoff wavenumber koptc computed at each frequency is presented in Fig. 11

and compared to the propagative wavenumber kp defined in the direct problem. The high coherence between

them confirms the robustness in the estimation of the optimal cutoff wavenumber koptc .
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Figure 9: Elastic parameters estimated at f = 1990 Hz using the multi-frequency analysis versus the cutoff wavenumber

kc defined for the regularization. (a) Young’s modulus E and (d) elastic loss factor ηE identified with the Euler-Bernoulli

model. (b) Young’s modulus E, (e) elastic loss factor ηE , (c) shear modulus G and (f) shear loss factor ηG identified with the

Timoshenko model. For this case the only value of kc allowing a coherent estimation of all elastic parameters corresponds to

the optimal low-pass filter with cutoff wavenumber k
opt
c .
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Figure 10: Natural wavenumber identified at f = 1990 Hz using the multi-frequency analysis versus the cutoff wavenumber kc

defined for the regularization. The coincidence between the identified natural wavenumber kp and the cutoff wavenumber kc

corresponds to the optimal low pass filter with cutoff wavenumber k
opt
c .
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Figure 11: Optimal cutoff wavenumber k
opt
c versus frequency. The comparison with the propagative wavenumber defined in

the direct problem kp shows a good robustness in the estimation of koptc .

4. Experimental validation

4.1. Analysed structure

The experimental validations were conducted on a sandwich beam of dimensions Lx = 0.651 m, Ly = 0.03

m, Lz = 0.01 m, presenting a Plascore PN1-1/8-6.0 aramid fibre honeycomb core of thickness tc = 9 mm,

cell width wc = 1/8 inches and density ρc = 96 kg.m−3. The two faces are made of glass fibre composite

(0/90) impregnated in an epoxy resin and of thickness tf = 0.5 mm. The entire beam weights 54.04× 10−3

kg, leading to a global density of ρ = 276.7 kg.m−3 for the sandwich material.

4.2. Measurement set-up

The beam is mounted on a Bruël & Kjaer LDS V201 shaker excited by a periodic chirp in the frequency

range [200, 4000] Hz at position x0 = 0.048 m (Fig. 12). The displacement field is acquired on a mesh grid

of 7 × 157 = 1099 points (spatial step ∆x = ∆y = 4.1 mm) using a PSV-500 scanning vibrometer and its

respective acquisition software.

4.3. Identified elastic parameters

The displacement field W is kept only out of the vibratory sources (space domain for which x > 0.1 m)

and a mean is performed over the y direction to discard the torsional modes. The spatial derivatives δ2x

and δ4x are computed by mean of the finite difference scheme. The regularization procedure (windowing

and filtering) is applied to these variables with various cutoff wavenumbers kc and are then put into Eq. (7)

to (9).

The elastic parameters are computed for every combination of (f ,∆f ,kc). The optimized cutoff wavenumber

koptc (section 3.5) is obtained as explained previously and depicted in Fig. 13. It does not depend on

the width criterion ∆f and its linear behaviour, confirmed in Fig. 14, is typical of beams presenting an
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Figure 12: Experimental set-up for measuring the displacement field of the honeycomb sandwich beam. The structure is

mounted on a shaker at location x0 = 0.048 m, a scanning laser vibrometer estimates the transverse displacement field.

0 1000 2000 3000 4000
0

500

1000

1500

f [Hz]

∆
f
[H

z]

20

40

60

80

100

koptc [rad/m]

Figure 13: Optimal cutoff wavenumber koptc versus frequency

f and width criterion ∆f for the experimental validation.

The optimal wavenumber does not depend on the width cri-

terion ∆f .
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Figure 14: Optimal cutoff wavenumber koptc versus frequency

at ∆f = 312.5 Hz for the experimental validation. The linear

behaviour of the wavenumber is typical of a beam presenting

an important shear deformation.

important shear contribution. A local error in the estimation of koptc is visible at f = 1390 Hz and is due

to a coupling effect between flexural mode and a torsional mode ; this case can’t be interpreted using a one

dimensionnal beam theory.

Regarding the multi-frequency analysis, the width criterion is chosen as ∆opt
f = 312.5 Hz with respect to

the objective function detailed in section 3.4.3 and presented in Fig. 15.

Based on this configuration (∆opt
f = 312.5 Hz) the equivalent homogenized elastic parameters are identi-

fied as shown in Fig. 16. The Young’s modulus estimated with the Euler-Bernoulli model decreases rapidly

from 6 GPa to 1 GPa (Fig. 16(a)) while the loss factor ηE grows up from 1% to 4% as frequency increases

(Fig. 16(d)). Regarding the Timoshenko model the Young’s modulus varies around 7.5 GPa and finally

decreases for f > 3000 Hz (Fig. 16(b)) but its respective loss factor ηE cannot be estimated (Fig. 16(e)). It
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Figure 15: Optimized width criterion for the multi-frequency analysis applied to the experimental case.

may be implied by a too small dissipation associated to bending, its estimation could be impossible because

of measurement noise. On the other hand the shear modulus is found to be constant around 45 MPa in

the whole frequency range (Fig. 16(c)) and its associated loss factor ηG roughly grows up from 1% to 4%

when frequency increases (Fig. 16(f)). One can also distinguish a singularity at f = 1390Hz for the shear

modulus and the Young’s modulus, due to a coupling between a torsional mode and a flexural mode, a case

that is not taken into account in the considered beam theories ; the optimal cut-off wavenumber koptc can’t

be well estimated (see Fig. 14) nor the elastic parameters.

The general trend of the elastic parameters leads to three major observations.

First the Euler-Bernoulli model clearly appears to be too simple for estimating the elastic parameters of

such sandwich beam. The important drop of the Young’s modulus depicts a high shear effect (low shear

modulus) interpreted as a progressive decrease of flexural stiffness.

Second the loss factors ηE and ηG identified with the Timoshenko model highlights the major contribution

of the core in the dissipation of energy, while the Euler-Bernoulli theory only gives information about the

global damping capacity of the material.

Third the Young’s modulus estimated with the Timoshenko problem tends to decrease for high frequencies

although the shear modulus keeps a stable behaviour. This trend may be associated to potential Lamb

waves that would imply an important dynamic in the core and a weak contribution of the glass fibre faces,

accompanied with a flexural stiffness decrease.

4.3.1. Comparison with static tests

The elastics parameters estimated with the Timoshenko beam model are now confronted with classical

methods implying a three points bending test.

The sandwich beam is placed on an INSTRON 8801 three points flexural bending test bench as the

one presented in Fig. 17 and a progressive load (from 0 to 25 N) is applied at its center for different
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Figure 16: Elastic parameters estimated for the sandwich beam with ∆opt

f
= 312.5 Hz. (a) Young’s modulus E and (d) elastic

loss factor ηE identified with the Euler-Bernoulli model. (b) Young’s modulus E, (e) elastic loss factor ηE , (c) shear modulus

G and (f) shear loss factor ηG identified with the Timoshenko model.

distances between the supports (15 to 25 cm). The resultant displacement acquired by an INSTRON LVDT

equipment at the center of the beam, the distance d, and the load P measured with a 10 kN force sensor are

used to compute the flexural and shear rigidities. The latter are then interpreted using different approaches

leading to estimations of E and G. The Berthelot model [39] considers an equivalent homogeneous structure,

the Zenkert theory [40] allows to identify the Young’s modulus of the face sheets and the shear modulus of

the core, under assumptions of thin faces (tf ≪ tc) and a weak stiffness of the core (Ef ≫ Ec). Finally

the standard method NF 54-606 leads to estimation of the static shear modulus of the inner core. The

results derived from these three quasi-static approaches are summed up in Table 2 and compared with the

elastic parameters identified with the proposed method. The shear modulus G is always within the same

range of values, but the Timoshenko model identifies a higher modulus that matches the one given by the

Plascore data sheet. Concerning the Young’s modulus E the Zenkert model is quite coherent for such a glass

fibre / epoxy matrix. The proposed method considers stiffness of the whole sandwich, which is obviously

lower because of the presence of the honeycomb core, this behaviour corroborates with the Young’s modulus

obtained with the homogeneous Berthelot model.
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Figure 17: Experimental set-up for the three points flexural

bending test. The beam is simply supported on two cylin-

ders and a gradually increasing static load is assigned to the

structure.

Figure 18: Experimental set-up for measuring the local dis-

placement field of the honeycomb sandwich with free bound-

ary conditions. A mini-hammer is impacting the beam at the

location of a mini-accelerometer.

Method E [GPa] G [MPa]

FAT Timoshenko ≈ 7.5 (homogeneous) ≈ 45 (homogeneous)

Berthelot 7.8 (homogeneous) 31.6 (homogeneous)

Zenkert 28.8 (faces) 31.5 (core)

NF 54-606 31.5 (core)

Plascore data sheet 49 (core)

Table 2: Comparison between the identified values of the Young’s modulus E and shear modulus G from the present method

(FAT Timoshenko), the Plascore data sheet and from the 3 points bending test with different approaches : Berthelot model

[39] considering equivalent homogeneous beam, Zenkert model [40] for Young modulus of the faces and shear modulus of the

core, and the standard NF 54-606 [41] for the shear modulus of the core.

21



4.3.2. Synthesis of displacement field with homogenized beam

To confirm the validity of the suggested method, the identified elastic parameters are used to compute the

displacement field of a beam with free boundary conditions. The elementary stiffness and mass matrices are

taken from the works of Zienkiewicz [42]. The simulation variables are directly taken from the experimental

case (Lx, Ly, Lz, ρ, S, I) and the finite element formulation is solved for every frequency with the associated

values of E(f), ηE(f), G(f) and ηG(f) estimated previously, using a Euler-Bernoulli or a Timoshenko finite

element model respectively. Besides a measurement is conducted on the free sandwich beam by use of an

accelerometer PCB 352C23 (sensitivity of 5.23 mV/g) and a PCB 086E80 mini hammer with a steel tip

(sensitivity of 23.76 mV/N), as presented in Fig. 18. The sensors are plugged on a National Instruments

USB 4431 acquisition card. The hammer hits the bottom of the beam at the location of the accelerometer

and a frequency response is calculated.

The frequency responses obtained from measurements and from the finite element model using the

homogeneous elastic parameters identified from Fig. 16 are presented in Fig. 19. The Euler-Bernoulli

model doesn’t fit the experimental frequency response because of its simplicity. On the other hand one can

remark a very satisfactory agreement between the measurement on the real structure and the reconstructed

displacement of the equivalent homogeneous Timoshenko beam. The matching is almost perfect from 500

Hz to 2700 Hz, except around 1390 Hz because of singularities observed on the estimated elastic parameters.

Finally the divergence that appears slowly for f > 3000 Hz could be explained by a lack of convergence

of the finite element model for high frequencies (even if the mesh refinement is at least 40 elements per

wavelength) and/or by the presence of the accelerometer for the experimental case which could dissipate

energy as frequency increases.

Still the general concept of modelling multi-layer structures as homogeneous one with equivalent elastic

parameters appears as a smart alternative to static approaches, modal theory or FEM models. It reduces

complexity in describing the dynamic behaviour of these materials, but also decreases the number of DOFs

when implementing numerical models. Moreover the experimental set up is clearly simplified. The use of

an inverse problem suppresses the consideration of boundary conditions and the homogenization approach

removes the need of characterizing each layer separately, the sandwich material is considered as a whole.

5. Conclusion

The analysis of vibratory behaviour of composite structures is a struggling problem with classical ap-

proaches such as finite element methods or modal testing. Achieving specific boundary conditions or mod-

elling interactions between the different layers may be tricky.

This study dealt with characterization of composite beams using an inverse vibratory method based on

the local verification of the equation of motion applied to the Timoshenko beam. This novel approach con-
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Figure 19: Frequency response (receptance) of the sandwich beam obtained by measurements and with computation of a finite

element model using the identified parameters from Fig. 16.

siders the composite material as an homogeneous one, leading to the determination of equivalent viscoelastic

parameters.

After introducing the general concept some simulations highlighted an instability of the Timoshenko

equation when studying single frequencies. The use of a multi-frequency analysis allows a recovery of stability

and convenient estimations of the elastics parameters. An experimental validation is also conducted on a

sandwich beam presenting glass fibre skins and a honeycomb core. A comparison of the identified values

with three points bending test and a reconstruction of the displacement field with equivalent homogeneous

parameters confirms the reliability of this novel approach and allows efficient reduction of the numbers of

degrees of freedom.

Since the method relies on a local identification, it does not depend on the boundary conditions, its

application is simple and allows developments for structural health monitoring or implemented analysis on

a production line. As perspective a development on plates could be efficient too. Finally an extension to

flaw detection is of interest since the kind of defect may be identified through the cartographies of elastic

parameters. For instance a fibre breakage could change only the Young’s modulus, a delamination might

mostly influence the shear modulus, while a Barely Visible Impact Damage would increase local dissipation

and so the damping coefficients.
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Appendix A. Finite differences approximation

The spatial derivatives involved in the equation of motion are estimated using a fourth order finite

difference scheme and are defined as follows :

δ2x =
1

12∆2
x

[

−1 16 −30 16 −1
] [

Wi−2 Wi−1 Wi Wi+1 Wi+2

]t

, (A.1)

δ4x =
1

6∆4
x

[

−1 12 −39 56 −39 12 −1
] [

Wi−3 Wi−2 Wi−1 Wi Wi+1 Wi+2 Wi+3

]t

,

(A.2)

where ∆x is the spatial step between the discrete measurement points on the structure, and W the displace-

ment field. This approximation implies the loss of 3 points on each side of the beam, the computation of

the inverse problem is then applied on a mesh of Nx − 6 points.

Appendix B. Expression of the spatial window and the low-pass filter response

The regularization procedure first implies a windowing achieved by a Hanning window ψ as :

ψ(x) =











0.5
[

1− cos
(

2πx
L

)]

∀x ∈ [0;L],

0 ∀x ∈]−∞; 0[∪]L; +∞[,

(B.1)

with L = Lx − 6∆x the ”reduced” studied beam area. A representation of the Hanning window ψ(x) is

available in Fig. B.20.

Secondly a low-pass filter, described by its spatial impulse response H (Eq. (B.2)), is applied to the

windowed noisy data :

H(x) =
1

λc
sinc

(

2πx

λc

)(

1 + cos

(

πx

βx

))

∀x ∈ [−βx;βx], (B.2)
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Figure B.21: Impulse response of the low-pass filter obtained for a form factor of fx = 1.

where βx = fxλc and fx defines the form factor of the impulse response (fx ∈ N). The higher fx the wider

H(x). In this paper the regularizing procedure is always applied with fx = 1. The Fig. B.21 depicts the

typical impulse response obtained for fx = 1.

Lastly the filtered data can be mathematically described by the following equation :

Xfiltered(x) = ([Xnoisy · ψ] ∗H) (x). (B.3)
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[22] M.-C. Djamaa, N. Ouelaa, C. Pézerat, J.-L. Guyader, Reconstruction of a distributed force applied on a thin cylindrical

shell by an inverse method and spatial filtering, Journal of Sound and Vibration 301 (3–5) (2007) 560–575. doi:10.1016/

j.jsv.2006.10.021.

URL http://www.sciencedirect.com/science/article/pii/S0022460X06007991
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