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Dedekind sums, mean square value of L-functions at s = 1 and upper bounds on relative class numbers. A survey and open problems

Introduction

Let p ≥ 3 be and odd prime. Let X - p be the set of the (p -1)/2 odd Dirichlet characters modulo p. Let h - Q(ζp) be the relative class number of the cyclotomic number field Q(ζ p ). Using (11) and the orthogonality relations for characters we obtain a mean square value formula (see [Wal] or ( 12)):

M (p, 1, {1}) := 2 p -1 χ∈X - p |L(1, χ)| 2 = π 2 6 1 - 1 p 1 - 2 p ≤ π 2 6 (p ≥ 3). ( 1 
)
Using the arithmetic-geometric mean inequality we deduce the following upper bound .

h - Q(ζp) = 2p
(2)

The aim of the paper is to give in Theorem 5 a fairly general mean square value formula and to present various settings in which it can be used to improve upon (2), see ( 20) and ( 26), or to generalize it to either cyclotomic fields, see ( 21) and ( 27), or to subfields of cyclotomic fields, see ( 25) and (31). (see [START_REF] Apostol | Modular functions and Dirichlet series in number theory[END_REF]Chapter 3,Exercise 11] or [START_REF] Rademacher | Dedekind sums[END_REF](26) 

s(1, d) = (|d| -1)(|d| -2) 12d = d 2 + 2 12d - d 4 (0 = d ∈ Z) (4) 
(see e.g. [START_REF] Louboutin | Quelques formules exactes pour des moyennes de fonctions L de Dirichlet[END_REF]Lemma (a)(i)]) and that we have a reciprocity law for Dedekind sums (see e.g. [START_REF] Apostol | Modular functions and Dirichlet series in number theory[END_REF]Theorem 3.7], [START_REF] Rademacher | Dedekind sums[END_REF](4)]) or [START_REF] Louboutin | Twisted quadratic moments for Dirichlet L-functions[END_REF](7) and ( 9)])

s(c, d) + s(d, c) = c 2 + d 2 -3|cd| + 1 12cd = c 2 + d 2 + 1 12cd - c d 4 (gcd(c, d) = 1), (5) 
which in using an Euclid-like algorithm makes the numerical computation of s(c, d) very easy on a microcomputer (see [START_REF] Apostol | Modular functions and Dirichlet series in number theory[END_REF]Chapter 3,Exercise 20]). By the Cauchy-Schwarz inequality, we have d,b) = 1 we have a reciprocity law for Dedekind-Rademacher sums (see e.g. [Rad] or [BR]) The desired result follows.

s(b, c, d) + s(d, b, c) + s(c, d, b) = b 2 + c 2 + d 2 -3|bcd| 12bcd = b 2 + c 2 + d 2 12bcd - b c d 4 . ( 6 
Throughout the paper we will use that for b, c ∈ Z we have 

1.2 A general twisted mean square value formula

For f > 2, let X f be the group of order φ(f ) of the Dirichlet characters modulo f . Let X - f := {χ ∈ X f and χ(-1) = -1} be the set of the φ(f )/2 odd Dirichlet characters modulo f . If H is a subgroup of the multiplicative group (Z/f Z) * which does not contain -1, we set

X - f (H) = {χ ∈ X - f ; χ /H = 1}.
Let L(s, χ) be the Dirichlet L-function associated with χ ∈ X f . Lemma 3. Let c be a given positive integer. Let f > 2 be such that gcd(f, c) = 1. Let H be a subgroup of order n of the multiplicative group

(Z/f Z) * . Assume that -1 ∈ H, which is the case if n is odd. Then #X - f (H) = φ(f )/(2n)
and we have the twisted mean square value formula

M (f, c, H) := 2n φ(f ) χ∈X - f (H) χ(c)|L(1, χ)| 2 = 2π 2 f h∈H s(ch, f ). ( 10 
)
Proof. We have (see [START_REF] Louboutin | Quelques formules exactes pour des moyennes de fonctions L de Dirichlet[END_REF]Proposition 1]):

L(1, χ) = π 2f f -1 a=1 χ(a) cot πa f (χ ∈ X - f ). ( 11 
)
Let H + = -1, H be the subgroup of order 2d generated by -1 and H. For any abelian group G of order m its group of characters Ĝ is also of order m and

1 m χ∈ Ĝ χ(g) = 1 if g = 1 G , 0 otherwise.
Applying this to the quotient group G = (Z/f Z) * /H of order φ(f )/d for which Ĝ = {χ ∈ X f ; χ /H = 1} and to the quotient group

G + := (Z/f Z) * /H + of order φ(f )/(2d) for which Ĝ+ = {χ ∈ X f ; χ /H + = 1}, we find that the set X - f (H), which is equal to Ĝ \ Ĝ+ , is of car- dinal φ(f )/(2d) and 2d φ(f ) χ∈X - f (H) χ(x) =      +1 if x ∈ H, -1 if -x ∈ H, 0 otherwise. Hence, (a, b) := 2d φ(f ) χ∈X - f (H) χ(a)χ(b) =      +1 if gcd(a, f ) = gcd(b, f ) = 1 and b = ah with h ∈ H, -1 if gcd(a, f ) = gcd(b, f ) = 1 and b = -ah with h ∈ H, 0 otherwise.
Using (11), we obtain

M (f, c, H) = π 2 4f 2 f -1 a=1 f -1 b=1 (ac, b) cot πa f cot πb f = π 2 2f 2 h∈H f -1 a=1 gcd(a,f )=1 cot πa f cot πach f
and the desired result.

Corollary 4. Let n be an odd divisor of p -1, where p ≥ 3 is an odd prime number. Let H n = h 0 be the only subgroup of order d of the multiplicative cyclic group (Z/pZ) * , where h n is any element of order n in the group (Z/pZ) * . Then #X - p (H n ) = (p -1)/(2n) and we have the mean square value formula

M (p, 1, H n ) := 2d p -1 χ∈X - p (Hn) |L(1, χ)| 2 = 2π 2 p S(H n , p) = π 2 6 1 + N (H n , p) p ,
where

S(H n , p) := h∈Hn s(h, p) = n-1 k=0 s(h k n , p)
and

N (H n , p) := 12S(H n , p) -p = 12 n-1 k=1 s(h k 0 , p) -3 + 2 p .
In particular, N (H

1 , p) = -3 + 2 p . (By Proposition 1, we have pN (H n , d) ∈ 1 + 2Z).
The following general result implies [Lou14a, Theorem 1], by choosing H = {1} and noticing that R(•, •, {1}) = 0, and [Lou15, Theorem 2] and [START_REF] Louboutin | Dedekind sums, mean square value of L-functions at s = 1 and upper bounds on relative class numbers[END_REF]Theorem 2], by choosing c = 1 and noticing that F (•, 1) = 0: Theorem 5. Let c be a given positive integer. Let f > 2 be such that gcd(f, c) = 1. Let H be a subgroup of order d of the multiplicative group (Z/f Z) * . Assume that -1 ∈ H, which is the case if d is odd. Then #X - f (H) = φ(f )/(2d) and we have the twisted mean square value formula

M (f, c, H) := 2d φ(f ) χ∈X - f (H) χ(c)|L(1, χ)| 2 = π 2 6c φ(f ) f   p|f 1 + 1 p - 3c f   -F (f, c) + R(f, c, H),
where

F (f, c) := 2π 2 f δ|f µ(δ) δ s(f /δ, c) = 4π 2 f φ(c) χ∈X - c χ(f )   p|f 1 - χ(p) p   1≤a<c/2 χ(a)s(a, c) and R(f, c, H) = 2π 2 f 1 =h∈H s(ch, f ) = 2π 2 f δ|f δ =f,f /2 µ(δ) δ 1 =h∈H s(ch, f /δ).
Proof. Using (10), we obtain

M (f, c, H) = 2π 2 f s(c, f ) + 2π 2 f 1 =h∈H s(ch, f ).
By ( 9), the desired result follows with the first expression for F (f, c) (noticing that s(•, 1) = s(•, 2) = 0). Finally, noticing that for gcd(b, c) = 1 we have

s(b, c) = c-1 a=1 s(a, c) 1 φ(c) χ∈Xc χ(a) χ(b), we obtain F (f, c) = 1 φ(c) χ∈Xc c-1 a=1 χ(a)s(a, c) χ(f ) d|f µ(d) d χ(d) = 1 φ(c) χ∈Xc χ(f )   p|f 1 - χ(p) p   c-1 a=1 χ(a)s(a, c). Noticing that c-1 a=1 χ(a)s(a, c) = 1≤a<c/2 (χ(a)s(a, c) + χ(c -a)s(c -a, c)) = (1 -χ(-1)) 1≤a<c/2 χ(a)s(a, c),
the second expression for F (f, c) follows.

Corollary 6. For c ∈ {1, 2} we have

M (f, c, H) = π 2 6c φ(f ) f   p|f 1 + 1 p - 3c f   + R(f, c, H).
In particular,

M (f, 1, {1}) = 2 φ(f ) χ∈X - f |L(1, χ)| 2 = π 2 6 φ(f ) f   p|f 1 + 1 p - 3 f   (12)
and

M (f, 2, {1}) = 2 φ(f ) χ∈X - f χ(2)|L(1, χ)| 2 = π 2 12 φ(f ) f   p|f 1 + 1 p - 6 f   (f > 2 odd). (13) 
For c ∈ {3, 4, 6} we have

M (f, c, H) = π 2 6c φ(f ) f   p|f 1 + 1 p - 3c f - (c -1)(c -2) f c (f ) p|f p -c (p) p -1   + R(f, c, H), where c (n) = 1 if n ≡ 1 (mod c) and c (n) = -1 if n ≡ -1 (mod c).

L-functions and relative class numbers of imaginary abelian number fields

We refer the reader to [Was,Chapters 3,4 and 11] for more background details. From now on, we let K be an imaginary abelian number field of degree m = 2n > 1 and conductor f K > 1 and let f > 1 be any integer such that f K divides f , i.e. we let K be an imaginary subfield of a cyclotomic number field Q(ζ f ) (Kronecker-Weber's theorem). Let w K be its number of complex roots of unity. Let Q K ∈ {1, 2} be its Hasse unit index. Hence, [START_REF] Lemmermeyer | Ideal class groups of cyclotomic number fields[END_REF]Example 5,page 352]). Let K + be the maximal real subfield of K of degree n fixed by the complex conjugation. The class number h

Q K = 1 if K/Q is cyclic (see e.g.
K + of K + divides the class number h K of K. The relative class number of K is defined by h - K = h K /h K + . Let d K and d K + be the absolute values of the discriminants of K and K + . For gcd(t, f ) = 1, let σ t be the Q-automorphism of Q(ζ f ) defined by σ t (ζ f ) = ζ t f . Then t → σ t a is canonical isomorphic from the multiplicative group (Z/f Z) * to the Galois group Gal(Q(ζ f )/Q). Set H = H K (f ) := Gal(Q(ζ f )/K) = {t ∈ (Z/f Z) * ; α ∈ K ⇒ σ t (α) = α},
a subgroup of (Z/f Z) * of index m and order φ(f )/m. Notice also that #X - f (H) = n. Now, -1 ∈ H (notice that σ -1 is the complex conjugation restricted to Q(ζ f )). Any χ ∈ X f is induced by a unique primitive Dirichlet character χ * of conductor f χ * dividing f . We have the relative class number formula

h - K = Q K w K (2π) n d K d K + χ∈X - f (H) L(1, χ * ). (14) 
In particular, if χ K is an odd primitive Dirichlet character modulo f K associated with an imaginary quadratic number field

K = Q( √ -f K ) of conductor f K , then L(1, χ K ) = 2πh - K w K √ f K . ( 15 
) Since d K /d K + = χ∈X - f (H) f χ * ≤ f n K , we obtain h - K ≤ Q K w K √ f K 2π (log f K + κ) n , (16) 
where

κ = 2 + γ -log π = 1.43248 • • • by [Lou96, Théorème 2] or κ = 5 -2 log 6 = 1.41648 • • • by [Ram, Corollary 1]. Noticing that L(1, χ * ) = L(1, χ) q|f 1 - χ * (q) q -1 (χ ∈ X f )
and using ( 14) and the arithmetic-geometric mean inequality, we obtain

h - K ≤ Q K w K Π(f, H) d K d K + M (f, 1, H) 4π 2 n/2 , (17) 
where

Π(f, H) := q|f χ∈X - f (H) 1 - χ * (q) q (18) 
(q runs over the prime divisors of f ). Notice that if f = p m is power of a prime, then Π(f, H) = 1.

Lemma 7. Let H be a subgroup of index m in the multiplicative group (Z/f Z) * , f > 2. Assume that -1 ∈ H. Let q ≥ 2 be a prime integer which does not divide f . Let r be the order of q in the multiplicative group G := (Z/f Z) * /H of order m. Then

χ∈X - f (H)
1 -χ(q) q = (1 + q -r/2 ) m/r if r is even and q r/2 = -1 in G, (1 -q -r ) m/2r otherwise.

In particular, if p ≥ 3 is prime then

Π(q) := χ∈X - p 1 - χ(q) q = (1 + q -r/2 ) (p-1)/r if r is even, (1 -q -r ) (p-1)/2r if r is odd.
In particular, if q ≡ 1 (mod p) then

Π(q) := χ∈X - p 1 - χ(q) q ≥ 1 - 1 p (p-1)/6 . ( 19 
)
Proof. We follow the proof of [START_REF] Louboutin | Quelques formules exactes pour des moyennes de fonctions L de Dirichlet[END_REF]LEMME (c)]. If g is of order r in an abelian multiplicative group G of order s,

then χ∈ Ĝ(1 -χ(g)X) = (1 -X r ) s/r
(see [START_REF] Serre | Cours d'arithmétique. Deuxième édition revue et corrigée[END_REF]Lemme 6 page 119]). We apply this result to G = (Z/f Z) * /H of order m and G + = (Z/pZ) * / -1, H of order m/2. Let r be the order of q in G and r + its order in G + . Clearly, r = r + or r = 2r + . We have

χ∈X - f (H) (1 -χ(q)X) = (1 -X r ) m/r (1 -X r + ) m/2r + = (1 + X r/2 ) m/r if r = 2r + , (1 -X r ) m/2r if r = r + .
Since r + = r/2 if and only if r is even and q r/2 = -1 in G the desired result follows.

Upper bounds on relative class numbers of cyclotomic number fields

This approach has mostly been used for cyclotomic number fields, i.e. with the choice K = Q(ζ f ) and H = {1}. In that case, thinks become easier. First, let p ≥ 3 be an odd prime and K = Q(ζ p ). Using (11) and the orthogonality relations for characters we obtain (1) and then (2).

Second, we can do even better by noticing that

K = Q(ζ p ) = Q(ζ 2p
), i.e. by taking f = 2p and H = {1}. Noticing that {χ * ; χ ∈ X - 2p } = X - p and using ( 12) and ( 19), we obtain

M (2p, {1}) = π 2 8 1 - 1 p , Π(2p, {1}) = χ∈X - p 1 - χ(2) 2 = Π(2) ≥ 1 - 1 p (p-1)/4 and h - Q(ζp) ≤ 2p Π(2p, {1})) p 4π 2 M (2p, {1} (p-1)/4 ≤ 2p p 32 (p-1)/4 . ( 20 
)
See also [START_REF] Louboutin | Quelques formules exactes pour des moyennes de fonctions L de Dirichlet[END_REF], [Met] and see also [Feng], [START_REF] Louboutin | Quelques formules exactes pour des moyennes de fonctions L de Dirichlet[END_REF] and [START_REF] Louboutin | Mean values of L-functions and relative class numbers of cyclotomic fields[END_REF] for even better upper bounds.

(see [START_REF] Louboutin | Quelques formules exactes pour des moyennes de fonctions L de Dirichlet[END_REF]Th. 2 and 3], [START_REF] Louboutin | Mean values of L-functions and relative class numbers of cyclotomic fields[END_REF]Prop. 5], [Qi] and [START_REF] Louboutin | A twisted quadratic moment for Dirichlet L-functions[END_REF] for generalizations).

Third, let p ≥ 3 be and odd prime and

K = Q(ζ 4p ). Taking f = 4p, noticing that 2n = φ(4p) = 2(p -1), d Q(ζ 4p ) /d Q(ζ 4p ) + = 2 p-1 p p-2 , M (4p, {1}) = π 2 8 1 - 1 p 1 + 1 2p ≤ π 2 8 1 - 1 p 1/2 , Π(4p, {1}) = χ∈X - 4 1 - χ(p) p χ∈X - p 1 - χ(2) 2 = 1 - (-1) p-1 2 p χ∈X - p 1 - χ(2) 2 ≥ 1 - 1 p p+5 6
, by ( 19), and by ( 12), we obtain

h - Q(ζ 4p ) ≤ 2 • 4p Π(4p, {1}) 2 p-1 2 p p-2 2 M (4p, {1}) 4π 2 (p-1)/2 ≤ 8 √ p p 16 (p-1)/2 (21) (see [Lou14b, Theorem 2]). Indeed, for 3 ≤ p ≤ 11 we have Π(4 • 3, {1}) = 2 ≥ 1, Π(4 • 5, {1}) = 1, Π(4 • 7, {1}) = 1 and Π(4 • 11, {1}) = 9/8 ≥ 1, by Lemma 7, and if p ≥ 13 then 1 -1 p 1 + 1 2p p-1 2 Π(4p, {1}) ≤ 1 - 1 p p-1 4 -p+5 6 = 1 - 1 p p-13 12 ≤ 1.
Notice that (2) is a much better bound than the one implied by ( 16). In some cases upper bounds better than (2) are known. Indeed, completely different analytic methods yield:

h - Q(ζp) ≤ p 8 √ 2π p 4π 2 (p-1)/4 log 7 p (p > 200) (22) 
and see [START_REF] Masley | Cyclotomic fields with unique factorization[END_REF]Theorem 1], and see [Deb] for even (conditional) better results.

Upper bounds on relative class numbers of some imaginary abelian number fields of prime conductors

Let K be a proper imaginary subfields of Q(ζ p ) of degree 2 ≤ 2n < p -1. Since w K = 2 and the mean square value of L(1, χ), χ ∈ X - p , is asymptotic to π 2 /6, by (1), we might expect to have bounds close to

M (p, 1, H) ≤ π 2 /6 and h - K ≤ 2(p/24) n/2 (23) 
(notice that the analytic methods developed in [Deb] and [MM] do not readily apply in this setting). However, it is hopeless to expect such a universal mean square upper bound. Indeed, it is likely that there are infinitely many imaginary abelian number fields of a given degree m = 2n and prime conductors p for which

M (p, 1, H) = 1 n χ∈X - p (H) |L(1, χ)| 2 ≥ χ∈X - p (H) L(1, χ) 2/n (log log p) 2
(e.g. see [CK] and [MW]). Nevertheless, we proved ( 23) for some non-cyclotomic numbers fields:

Lemma 8. (See [Lou16, Lemma 4]). Assume that f = a 2 + ab + b 2 > 3, where a, b ∈ Z and gcd(a, b) = 1. Then gcd(a, f ) = gcd(b, f ) = 1, h 0 = a/b is of order 3 in the multiplicative group (Z/f Z) * , s(h 0 , f ) = s(h 2 0 , f ) = f -1 12f and if H 3 = a/b is the subgroup of order 3 of the multiplicative group (Z/f Z) * , generated by h 0 , then S(H 3 , f ) = c∈H 3 s(c, f ) = (f -1)/12. Consequently, if p ≡ 1 (mod 6
) is a prime integer then for any h ∈ (Z/pZ) * of order 3 in this group we have s(h, p) = p-1 12p and if H 3 is the only subgroup of order 3 of the multiplicative group (Z/pZ) * , then S(H 3 , p) = c∈H 3 s(c, p) = (p -1)/12. Theorem 9. (See [Lou16, Theorem 1]). Let p ≡ 1 (mod 6) be a prime integer. Let K be the imaginary subfield of degree (p -1)/3 of the cyclotomic number field Q(ζ p ). Let H 3 be the only subgroup of order 3 of the multiplicative cyclic group (Z/pZ) * . Then #X - p (H 3 ) = (p -1)/6, N (H 3 , p) = -1 and we have the mean square value formula (compare with (1))

M (p, 1, H 3 ) := 6 p -1 χ∈X - p (H 3 ) |L(1, χ)| 2 = π 2 6 1 - 1 p . ( 24 
)
Hence, the expected bounds ( 23) hold true, i. e. M (p, 1, H 3 ) ≤ π 2 /6 and (compare with (2))

h - K ≤ 2 pM (p, 1, H 3 ) 4π 2 p-1 12 ≤ 2 p 24 (p-1)/12 , (25) 
by ( 17) (note the misprint in the exponent in [START_REF] Louboutin | Dedekind sums, mean square value of L-functions at s = 1 and upper bounds on relative class numbers[END_REF](8)]).

Proof. Let h 0 of order 3 be a generator of H. Since s(h 2 0 , p) = s(h -1 0 , p) = s(h 0 , p), Applying corollary 4 with d = 3 and noticing that N (H 3 , p) = 24s(h 0 , p)-3+2/p, Lemma 8 gives N (H 3 , p) = -1 and the desired result.

For p = 7 we have H 3 = {1, 2, 4} and the only χ in X

- 7 (H 3 ) is the Legendre symbol χ(n) = n 7 for which L(1, χ) = π/ √ 7, by (15) applied to K = Q( √ -7) for which h K = h - K = 1.
Hence (24) holds true for p = 7.

Remark 10. It seems difficult to find other situations where results similar to those in Lemma 8 would hold true. According to our numerical computations, there is no simple formula for s(h 0 , f ) for h 0 for f a product of t > 1 prime numbers equal to 1 modulo 6 and h 0 of order 3 in the multiplicative group (Z/f Z) * . Indeed, in that situation there are 3 t -1 elements h 0 of order 3 in the multiplicative group (Z/f Z) * and s(h 0 , f ) is not independent of the choice of h 0 . According to our numerical computations, for a given prime number q > 3, there is also no such simple formula for s(h 0 , p), where p ≡ 1 (mod 2q) is prime and h 0 if of order q in the multiplicative group (Z/pZ) * . Indeed, in that situation there are q -1 elements h 0 of order q in the multiplicative group (Z/pZ) * and s(h 0 , f ) is not independent of the choice of h 0 .

1.6 A mean square value formula taking into account a given finite set of primes and upper bounds on relative class numbers of cyclotomic number fields taking into account the behavior of a given finite set of primes

Bearing on [Lou11, Lemma 3], we have a more satisfactory version of [Lou94, Théorème 6]:

Theorem 11. Let χ 0 be the trivial Dirichlet character modulo a given f 0 ≥ 2. For gcd(f 0 , d) = 1, set

A(f 0 , d) = A∈(Z/f 0 Z) * A =B∈(Z/f 0 Z) * cot πdA f 0 -cot πdB f 0 cot π(B -A) f 0 ∈ Q. Let f > 2 be such that gcd(f 0 , f ) = 1. Take H = {t ∈ (Z/f 0 f Z) * ; t ≡ 1 (mod f )} of order φ(f 0 ), the kernel of the surjective canonical morphism from (Z/f 0 f Z) * onto (Z/f Z) * . Then X - f 0 f (H) = {χ 0 χ; χ ∈ X - f } and M (f 0 f, 1, H) = 2 φ(f ) χ∈X - f |L(1, χ 0 χ)| 2 = π 2 6 p|f 0 f 1 - 1 p 2 - π 2 φ(f 0 ) 2 φ(f ) 2f 2 0 f 2 + π 2 2f 2 0 f 2 T (f 0 , f ),
where

T (f 0 , f ) := a∈(Z/f 0 f Z) * 1 =h∈H 1 + cot πa f 0 f cot πah f 0 f = f d|f µ(d) d A(f 0 , f /d) ∈ Q.
Proof. Theorem 5 with c = 1 yields

M (f 0 f, 1, H) = π 2 6 p|f 0 f 1 - 1 p 2 - π 2 2f 0 f φ(f 0 f ) f 0 f + π 2 2f 2 0 f 2 1 =h∈H a∈(Z/f 0 f Z) * cot πa f 0 f cot πah f 0 f and use 1 =h∈H a∈(Z/f 0 f Z) * 1 = (#H -1)φ(f 0 f ) = (φ(f 0 ) -1)φ(f 0 f ). Let u, v ∈ Z be such that uf 0 + vf = 1. Then φ : (x, y) ∈ Z/f 0 Z × Z/f Z → φ(x, y) = uf 0 y + vf x ∈ Z/f 0 f Z is a ring isomorphism. Hence, (x, y) ∈ (Z/f 0 Z) * × (Z/f Z) * → φ(x, y) = uf 0 y + vf x ∈ (Z/f 0 f Z) * is bijective and H = φ((Z/f 0 Z) * × {1}). Moreover, for x, y, x -y ∈ πZ we have 1 + (cot x)(cot y) = (cot x -cot y) cot(y -x) = 2i 1 e 2ix -1 - 1 e 2iy -1 cot(y -x).
Hence, setting

ζ f 0 f = exp(2πi/f 0 f ), we have T (f 0 , f ) = 2i x∈(Z/f 0 Z) * y∈(Z/f Z) * 1 =z∈(Z/f 0 Z) * F (x, y, z),
where

F (x, y, z) :=   1 ζ φ(x,y) f 0 f -1 - 1 ζ φ(x,y)φ(z,1) f 0 f -1   cot π(φ(x, y)φ(z, 1) -φ(x, y)) f 0 f . Now, φ(x, y)φ(z, 1) -φ(x, y) = φ(xz, y) -φ(x, y) = φ(xz -x, 0) = vf (xz -x) and φ(x, y)φ(z, 1) = φ(xz, y). Hence, F (x, y, z) = 1 ζ uy f ζ vx f 0 -1 - 1 ζ uy f ζ vxz f 0 -1 cot πv(xz -x) f 0 .
Since for λ = 1 and gcd(l, u) = 1 we have

l-1 k=0 1 ζ k l λ -1 = l λ l -1 (evaluate the logarithmic derivative of x l -1 at x = λ -1 , if λ = 0), we have y∈(Z/f Z) * 1 ζ uy f λ -1 = d|f µ(d) f /d-1 k=0 1 ζ uk f /d λ -1 = f d|f µ(d) d 1 λ f /d -1 and T (f 0 , f ) = f d|f µ(d) d x∈(Z/f 0 Z) * 1 =z∈(Z/f 0 Z) *   2i ζ vxf /d f 0 -1 - 2i ζ vxzf /d f 0 -1   cot πv(xz -x) f 0 .
Finally, since 2i e 2it -1 = cot t -i we obtain

T (f 0 , f ) = f d|f µ(d) d x∈(Z/f 0 Z) * 1 =z∈(Z/f 0 Z) * cot vxf /d f 0 -cot vxzf /d f 0 cot πv(xz -x) f 0 .
The desired result follows by the change of variables A = vx and B = vxz.

For example, taking K = Q(ζ p ), f = p and f 0 = 6 and noticing that A(6, 1) = -4 and A(6, 5) = 4 yield T (6, p) = 4 -4p p 3 , by Theorem 11, we obtain

M (6p, 1, H) = π 2 9 1 - 1 p 2 - π 2 18p 1 - 1 p + π 2 72p 2 T (6, p) = π 2 9 1 - 1 + p 3 2p ≤ π 2 9 and h - Q(ζp) ≤ 1 • 2p Π(6p, H) pM (6p, H) 4π 2 p-1 4 ≤ 2p Π(2)Π(3) p 36 p-1 4 (26) 
(see [START_REF] Louboutin | Quelques formules exactes pour des moyennes de fonctions L de Dirichlet[END_REF]). Taking K = Q(ζ 4p ), f = 4p and f 0 = 3 and noticing that A(3, 1) = 4/3 and A(3, 2) = -4/3 yield T (3, 4p) = 8p p 3 -8, by Theorem 11, we obtain

M (12p, 1, H) = π 2 9 1 - 1 p 2 - π 2 36p 1 - 1 p + π 2 288p 2 T (3, 4p) = π 2 9 1 - 1 -p 3 4p - 1 p 2 ≤ π 2 9 , h - Q(ζ 4p ) ≤ 2 • 4p Π(12p, H) 2 p-1 2 p p-2 2 M (12p, H) 4π 2 p-1 2 ≤ 8 √ p Π(12p, H) 1 - 1 p 2 p 18 p-1 2
and (compare with (21)) 

h - Q(ζ 4p ) ≤ 6 √ p 1 + 1 p p 18 p-1 2 ≤ 6 √ ep p 18 p-1 2 ≤ 10 √ p p 18 p-1 2 . ( 27 
M (f, 2, H 3 ) := 6 φ(f ) χ∈X - f (H 3 ) χ(2)|L(1, χ)| 2 = π 2 12 φ(f ) f   p|f 1 + 1 p - 6 f   + 2π 2 f δ|f µ(δ) δ s(2h 0 , f /δ) + s(2h 2 0 , f /δ) .
Moreover, for f > 1 dividing f we have s(2h

0 , f ) = s(2a, b, f ) and s(2h 2 0 , f ) = s(2a 2 , b 2 , f ) = s(2a 3 , ab 2 , f ) = s(2b 3 , ab 2 , f ) = s(2b, a, f ). In particular, if f = a 2 + ab + b 2 = p > 3 is prime, we have M (p, 2, H 3 ) := 6 p -1 χ∈X - p (H 3 ) χ(2)|L(1, χ)| 2 = π 2 12 1 + 24s(2a, b, p) + 24s(2b, a, p) -6 p + 5 p 2 .
Proposition 12. Let f > 3 be an odd integer of the form

f = a 2 + ab + b 2 with a, b ∈ Z odd and gcd(a, b) = 1. Then s(2a, b, f ) + s(2b, a, f ) = - a 8b + 1 12 - 5 24f + s(2a, b) -s(a, 2b), (28) 
where the rational number s(2a, b) -s(a, 2b) which depends only on a modulo b is equal to 0 for b = 1 and is equal to -1 3 a 3 for b = 3 (Legendre's symbol). Therefore, if f = p > 3 is prime and H 3 is the unique subgroup of order 3 of the multiplicative cyclic group (Z/pZ) * , then

M (p, 2, H 3 ) = π 2 12 1 - 3a + 4 p if p is of the form p = a 2 + a + 1 with a ∈ Z odd and M (p, 2, H 3 ) = π 2 12 1 - a + 4 -8 p 3 p if p is of the form p = a 2 + 3a + 3 with a ∈ Z odd. Proof. Noticing that f ≡ a 2 (mod b) and f ≡ b 2 (mod 2a) imply s(f, 2a, b) = s(a 2 , 2a, b) = s(a, 2, b) and s(b, f, 2a) = s(b, b 2 , 2a) = s(1, b, 2a) = s(b, 2a), we have s(2a, b, f ) = 4a 2 + b 2 + f 2 -6|ab|f 24abf -s(a, 2, b) -s(b, 2a) (by (6)) = 4a 2 + b 2 + f 2 -6|ab|f 24abf -s(a, 2, b) - 4a 2 + b 2 -6|ab| + 1 24ab -s(2a, b)
(by ( 5)).

In the same way, using (6) twice, we have

s(2b, a, f ) = 4b 2 + a 2 + f 2 -6|ab|f 24abf -s(b, 2, a) -s(a, 2b) = 4b 2 + a 2 + f 2 -6|ab|f 24abf - b 2 + 2 2 + a 2 -6|ab| 24ab -s(a, b, 2) -s(2, a, b) -s(a, 2b).
Hence, using s(•, •, 2) = 0 and noticing that s(a, 2, b) = s(2, a, b), we obtain (28).

For example, for a = 3 and b = 1, we have p = 13, H 3 = {1, 3, 9}, g = 2 is a generator of (Z/13Z) * and X - 13 (H 3 ) = {χ, χ}, where

χ(2) = ζ 4 . Hence, M (13, 2, H 3 ) = χ(2)|L(1, χ)| 2 + χ(2)|L(1, χ)| 2 = (χ(2) + χ(2))|L(1, χ)| 2 = 0, as predicted.
3 Some imaginary abelian number fields of prime conductors p ≡ 1 (mod q) and degree (p -1)/q, q ≥ 3 a prime

It is probably hopeless to find a statement as neat as Theorem 9 for subgroups H of (Z/pZ) * of odd order d greater than 3. Even for d = 5 and p ≡ 1 (mod 10) we could not find a generalization of Theorem 9, i.e. a formula for M (p, 1, H 5 ), where H 5 is the only subgroup of order 5 of the multiplicative cyclic group (Z/pZ) * . These prime integers p ≡ 1 (mod 10) are the prime integers that split completely in the cyclotomic number field Q(ζ 5 ) of class number one, therefore are the prime integers p = 5 of the form p = P (a, b, c, d)

:= N Q(ζ 5 )/Q (a -bζ 5 -cζ 2 5 -dζ 3 5 ), a, b, c, d ∈ Z.
The first problem is that we could not find a closed formula for an element h 0 of order 5. Even for the prime integers p = 5 of the form

p = N Q(ζ 5 )/Q (a -bζ 5 ) = a 4 + a 3 b + a 2 b 2 + ab 3 + b 4
, for which h 0 = a/b is of order 5 in the multiplicative group (Z/pZ) * , we could not find a generalization of Lemma 8, i.e. closed formulas for s(a, b, f ) and s(a 2 , b 2 , f ). At least, for b = 1, i.e. for the prime integers p = 5 of the form p = N Q(ζ 5 )/Q (a -ζ 5 ) = a 4 + a 3 + a 2 + a + 1 we will have Theorem 14.

Lemma 13. For m ≥ 3 an odd integer and -1, 0, 1 = a ∈ Z, set f = (a m -1)/(a -1), an odd positive integer. Then

6 m-1 k=1 s(a k , f ) = f -m-1 2 a(a + 1) -1 a -1 + 1 - 1 f . Proof. Assume that 1 ≤ k ≤ m -1. Set N k := (a k -1)/(a -1). Notice that f ≡ N k (mod a k ). Using (7) with a = a k , b = f ≡ N k (mod a) and b = N k , and noticing that a k ≡ 1 (mod N k ) yields s(a k , N k ) = s(1, N k ), we obtain 6s(a k , f ) = (N k -f )(a 2k -N k f + 1) 2a k N k f + N 2 k -3N k + 2 2N k = (a m-k + a k ) f + a -1 2(a -1)f - a(a + 1) 2(a -1) .
The desired formula follows.

Theorem 14. (Generalization of [START_REF] Louboutin | Dedekind sums, mean square value of L-functions at s = 1 and upper bounds on relative class numbers[END_REF]Theorem 5]). Let q ≥ 3 be an odd prime number. Let p = q be an odd prime number of the form

p = a q -1 a -1 = a q-1 + • • • + a 2 + a + 1 ≡ 1 (mod 2q).
Let H q := a be the only subgroup of order q of the multiplicative cyclic group (Z/pZ) * . Let K be the imaginary subfield of degree (p -1)/q of the cyclotomic number field Q(ζ p ). Then #X - p (H q ) = (p -1)/(2q) and we have the mean square value formula (compare with (1) and ( 24)):

M (p, 1, H q ) := 2q p -1 χ∈X - p (Hq) |L(1, χ)| 2 = 2π 2 p d-1 k=0 s(a k , p) = π 2 6 1 + N (H q , p) p , (29) 
where

N (H q , p) := 12 q-1 k=0 s(a k , f ) -p = 12 q-1 k=1 s(a k , f )-3+ 2 p = 2p -((q -1)a + 1)(a + 1) a -1 ∈ Z. (30)
Hence, for a ≤ -2, we have N (H q , p) ≤ 0 and the expected bounds (23) hold true, i. e. M (p, 1, H q ) ≤ π 2 /6 and (compare with (2) and ( 25))

h - K ≤ 2 pM (p, 1, H q ) 4π 2 p-1 4q ≤ 2 p 24 p-1 4q (31) 
by ( 17) (note the misprint in the exponent in [START_REF] Louboutin | Dedekind sums, mean square value of L-functions at s = 1 and upper bounds on relative class numbers[END_REF]THEOREM 5], where q = 5).

Proof. Applying Corollary 4 with d = q and h 0 = a and using Lemma 13, we obtain (30) and then (29). Finally, if a ≤ -2, then 2p -((q -1)a + 1)(a + 1) ≥ 0 is equivalent to 2(a q -1) ≤ ((q -1)a + 1)(a 2 -1), hence to (2a q-3 -(q -1))a 3 -a 2 + (q -1)a -1 ≤ 0 which clearly holds true, noticing that 2a q-3 ≥ 2 • 2 q-3 = 2 q-2 ≥ q -1 for q ≥ 3 odd and a ≤ -2.

For example, for p = 11 we have H 5 = {1, 3, 4, 5, 9} and the only χ in X - 11 (H 5 ) is the Legendre symbol χ(n) = n 11 for which L(1, χ) = π/ √ 11, by (15) applied to K = Q( √ -11) for which h - K = 1. Hence (29) holds true for p = 11 and q = 5.

Open problems

1. As explained in Section 3 it seems hopeless for a given odd d > 3 to obtain an explicit formula for M (p, 1, H) that would hold true for all the prime integers p ≡ 1 (mod 2d), where H is the only subgroup of order d of the multiplicative cyclic group (Z/pZ) * . Nevertheless, it would be worth obtaining an asymptotic

M (p, 1, H) = π 2 6 (1 + o(1)). 2. Since 6s(1, f ) = (f -1)(f -2) 2f
, by (4), from Lemma 13 and noticing that

a k -a a -1 + a k -a 2 ≡ a k -a a -1 -(a k -a) ≡ (2 -a)a a k-1 -1 a -1 ≡      0 (mod 3) if a ≡ 0 (mod 3) k -1 (mod 3) if a ≡ 1 (mod 3) 0 (mod 3) if a ≡ 2 (mod 3) we deduce that if f = a m-1 + • • • + a + 1, then 6 m-1 k=0 s(a k , f ) = m-1 k=2 a k -a a -1 + a k -a 2 ∈ 1 + 3Z if 3 | m and a ≡ 1 (mod 3) 3Z otherwise.
Numerical computations suggest the following stronger conjecture:

Conjecture 15. For m ≥ 2, a, b ∈ Z with gcd(a, b) = 1 and

f = a m -b m a -b = a m-1 + a m-2 b + • • • + ab m-2 + b m-1 > 1 we have S(f ) := 6 m-1 k=0 s(a k , b k , f ) ∈ 1 + 3Z if 3 | m and a ≡ b (mod 3) 3Z otherwise.
For m = 2, we have S(f ) = 0. For m = 3, we have S(f ) = (f -1)/2, by (4) and Lemma 8.

Conjecture 16. For a given odd integer n ≥ 3, let p range over the odd prime integers p ≡ 1 (mod 2n). Let H n be the only subgroup of order n of the multiplicative cyclic group (Z/pZ) * . Then the rational integers S(H n , p) := h∈Hn s(h, p) are asymptotic to p/12 as p goes to infinity and we have N (H n , p) = 12S(H n , p) -p ≤ 0 with a positive probability greater than or equal to 1/2.

If n ≥ 2 is even, then h ∈ H n → -h ∈ H n being a bijection, we have S(H n , p) = 0. If p ≡ 1 (mod 6) then S(p, H 3 ) = (p-1)/6 and N (H 3 , p) = -1 (Theorem 9). Hence, Conjecture 16 holds true for n = 3.

Taking into account the behavior of the prime 2

For cyclotomic fields of prime conductors, the bound (2) was improved in (20) (see [Feng] and [START_REF] Louboutin | Mean values of L-functions and relative class numbers of cyclotomic fields[END_REF]). It would be worth having a similar improvement on (25), i.e. proving that if K is the imaginary subfield K of degree (p -1)/3 of the cyclotomic number field Q(ζ p ), whrere p ≡ 1 (mod 6), then h - K ≤ 2 (p/32) (p-1)/12 (note the misprint in the exponent in the second displayed formula in [START_REF] Louboutin | Dedekind sums, mean square value of L-functions at s = 1 and upper bounds on relative class numbers[END_REF]Section 6]).

Theorem 17. Let p ≡ 1 (mod 6) be a prime integer of the form p = a 2 + ab + b 2 with a, b ∈ Z odd. Let K be the imaginary subfield K of degree (p-1)/3 of the cyclotomic number field

Q(ζ p ) = Q(ζ 2p ).
Let H be the only subgroup of order 3 of the multiplicative cyclic group (Z/2pZ) * . We have the following mean square value formula:

M (2p, 1, H) := 6 p -1 χ∈X - 2p (H) |L(1, χ)| 2 = π 2 8 1 + 2a + b bp + 16 s(a, 2b) -s(2a, b) p ,
where the rational number s(a, 2b) -s(2a, b) which depends only on a modulo b is equal to 0 for b = ±1, by (8). Therefore, by ( 17), for p a prime of the form p = a 2 -a + 1, a ≥ 3 odd, we have the upper bound

h - K ≤ 1 • 2 Π(2p, H) pM (2p, 1, H) 4π 2 p-1 12 ≤ 2 p 32 (p-1)/12
.

Proof. Let h 0 of order 3 be a generator of H. Theorem 5 applied with f = 2p and d = 3 gives

M (2p, 1, H) = π 2 8 1 - 1 p + 2π 2 p s(h 0 , 2p) - 1 2 s(h 0 , p)
where we used that s(h 2 0 , δ) = s(h 0 , δ) for any divisor δ of 2p. Now, s(h 0 , p) = (p -1)/(12p), by Lemma 8, and s(h 0 , 2p) is given by Lemma 18. Finally, assume that p = a 2 -a + 1, a ≥ 3 odd. Then

M (2p, 1, H) = π 2 8 1 - 2a -1 p ≤ π 2 8 .
If r is the order of 2 in (Z/pZ) * /H, then 2 r ∈ H. Hence 2 r ≥ a, r ≥ 2 and

Π(2p, H) = q|2p χ∈X - 2p (H) 1 - χ * (q) q = χ∈X - p (H) 1 - χ(2) 2 ≥ 1 - 1 a p-1 6r ≥ 1 - 1 a p-1 12
.

Noticing that 1 -2a-1 p ≤ 1 -1 a for a ≥ 3, the desired bound follows.

Lemma 18. Let f > 3 be an odd integer of the form f = a 2 + ab + b 2 with a, b ∈ Z odd and gcd(a, b) = 1. Then h 0 = a/b is of order 3 in the multiplicative group (Z/2f Z) * and 2b, a). Therefore, (6) yields

s(h 0 , 2f ) = s(a, b, 2f ) = a 8b + 1 6 - 1 24f + s(a, 2b) -s(2a, b). Proof. Since 2f ≡ 2a 2 (mod b), we have s(2f, a, b) = s(2a 2 , a, b) = s(2a, 1, b) = s(2a, b). Since 2f ≡ 2b 2 (mod a), we have s(b, 2f, a) = s(b, 2b 2 , a) = s(1, 2b, a) = s(
s(h 0 , 2f ) = s(a, b, 2f ) = a 2 + b 2 + 4f 2 -6|ab|f 24abf -s(2a, b) -s(2b, a). Since s(2b, a) = 4b 2 + a 2 -6|ab| + 1 24ab -s(a, 2b),
by ( 5), the result follows.

6 Imaginary abelian number fields of degree p -1 and conductor 4p

Let p ≥ 5 be an odd prime. Let K be the subfield of

Q(ζ 4p ) = Q(ζ p , ζ 4 ) fixed by the subgroup H := -1 -2p of order 2 of the multiplicative group (Z/4pZ) * = Gal(Q(ζ 4p )/Q). Let Q(ζ p ) + = Q(cos(2π/p
)) be the maximal real subfield of degree (p -1)/2 of the cyclotomic number field

Q(ζ p ). Then K = Q(ζ p ) + (ζ 4 ) (notice that σ -1-2p (ζ 4 ) = ζ 4 and σ -1-2p (ζ p ) = ζ -1 p = ζ p )
, and K is an imaginary abelian number field of degree p -1, of conductor f K = 4p and we have w K = 4, Q K = 1 (see [START_REF] Lemmermeyer | Ideal class groups of cyclotomic number fields[END_REF]Example 4,page 352]). (For p = 3 we have K = Q(ζ 4 ), of conductor 4). Notice that K and Q(ζ p ) are the only imaginary subfields of degree p -1 of Q(ζ 4p ).

Lemma 19. Let χ 4 be the odd primitive Dirichlet character modulo 4. We have

Π K (4p) := q|4p φ∈X - K 1 - φ(q) q = 1 - χ 4 (p) p = 1 -1/p if p ≡ 1 (mod 4), 1 + 1/p if p ≡ 3 (mod 4). Moreover, d K /d K + = φ∈X - K f φ = 4(4p) (p-3)/2
and by ( 17) we have

h - K ≤ 2 4(4p) (p-3)/2 (2π) (p-1)/2 M (4p, H) (p-1)/4 Π K (4p) . Proof. Notice that X - K = {χ 4 } ∪ {χ 4 χ; 1 = χ ∈ X + p }, hence that φ ∈ X - K implies φ(2) = 0 and that χ 4 = φ ∈ X - K implies φ(p) = 0 and f φ = 4p.
Lemma 20. For f ≥ 1 an integer we have s(-

1 -2f, 4f ) = -2f 2 -6f +1 24f .
Proof. Using ( 7) with a = -1 -2f , b = 4f = -2a -2 and b = -2, and using s(•, -2) = -s(•, 2) = 0, we obtain s(-

1 -2f, 4f ) = -(2f 2 -6f + 1)/(24f ) + s(-1 -2f, 2) = -(2f 2 -6f + 1)/(24f ).
Theorem 21. Let p ≥ 3 be an odd prime integer. Let H := h 0 be the subgroup of order 2 in (Z/4pZ) * generated by h 0 = -1 -2p. We have the following mean square value formula:

M (4p, H) := 2 p -1 χ∈X - 4p (H) |L(1, χ)| 2 = π 2 8 1 - 1 p 2 (32) (the sum in M (4p, H) runs over (p -1)/2 characters). Moreover, for p ≥ 5, let K := Q(ζ p ) + (ζ 4
), be the only imaginary abelian number field of degree p -1 and conductor f = 4p. We have

h - K ≤ 2 √ p p -(-1) p-1 2 p 8 1 - 1 p 2 (p-1)/4 . Proof. Theorem 5 applied with f = 4p, d = 2 and H = h 0 = {1, h 0 } for which S(f /δ, H) = s(h 0 , f /δ), gives M (4p, H) = π 2 8 p -1 p 1 + 1 2p + π 2 2p s(h 0 , 4p) - s(h 0 , 2p) 2 - s(h 0 , 4) p . Now, h 0 ≡ 1 (mod 4) yields s(h 0 , 4) = s(1, 4) = 1/8, h 0 ≡ -1 (mod 2p) yields s(h 0 , 2p) = -s(1, 2p) = -(2p -1)(2p -2)/(24p)
, by (4), and s(h 0 , 4p) is given by Lemma 20. Finally, by Lemma 19, we the desired uper bound follows.

For p = 3 the only χ ∈ X - 12 such that χ(-7) = 1 is the quadratic character of conductor 12 defined by χ(n) = (-1) (n-1)/2 , gcd(n, 12) = 1. It is induced by the odd primitive quadratic Dirichlet character φ of conductor 4 associated with the imaginary quadratic number field

L = Q( √ -1). Since Q L = 1, w L = 4, d L = 4 and h - L = h L = 1, we have L(1, φ) = π/4, by (15). Hence, L(1, χ) = (1 -φ(3)
3 )L(1, φ) = π/3 and |L(1, χ)| 2 = π 2 /9, as predicted by (32). For p = 5 we have

K = Q( √ -1, √ 5) for which h K + = 1, h K = h - K =?
? and the only χ ∈ X - 20 such that χ(-11) = 1 are χ 1 , induced modulo 20 by the primitive character χ - 4 modulo 4 associated with the imaginary quadratic number field Q( √ -1) of class number 1, and χ 2 the primitive character modulo 20 associated with the imaginary quadratic number field Q( √ -5) of class number 2. Now,

L(1, χ 1 ) = 1 - χ - 4 (5) 5 L(1, χ - 4 ) = 4 5 π 4 = π 5 and L(1, χ 2 ) = π √ 5 , by (15) 
. Hence,

M (20, H) = 2 4 |L(1, χ 1 )| 2 + |L(1, χ 2 )| 2 = 1 2 π 2 25 + π 2 5 = 3π 2 25 = π 2 25 1 - 1 25 ,
as predicted by (32).

7 Some imaginary abelian number fields of conductor p ≡ 1 (mod 5) and degree (p -1)/5

Proposition 22. Assume that

F 5 (a, b) := a 5 -b 5 a -b = a 4 + a 3 b + a 2 b 2 + ab 3 + b 4 = F (-a, -b) > 5,
with a, b ∈ Z \ {0} and gcd(a, b) = 1. Let H 5 = a/b be the subgroup of order 5 of the multiplicative group (Z/f Z) * generated by h 0 = a/b, of order 5 in the group (Z/f Z) * . Assume that a ≡ ±1 (mod b), which is always the case for b ∈ {1, 2, 3, 4, 6}. Then

N (H 5 , f ) := 24s(a, b, f ) + 24s(a 2 , b 2 , f ) -3 + 2 f = P (a, b) + R(a, b),
where

P (a, b) = 2a 3 b + 2a 2 (b 2 + 1) + 2ab 3 + 2b 4 -5b 2 + 2 b 2 and where R(a, b) = 24(a, b 3 ) -24s(a(a + b), b 2 ) -24s(a(1 + b 2 ) + b, b 3 ).
is a rational number which depends only on a modulo b 3 . In particular, (i) since R(a, 1) = 0 for a ∈ Z, we have

N (F 5 (a, 1), H 5 ) = 2a(a + 1) 2 -1,
as in [START_REF] Louboutin | Dedekind sums, mean square value of L-functions at s = 1 and upper bounds on relative class numbers[END_REF]Theorem 5], and (ii) since R 2 (a) := 24s(a, 8) -24s(a 2 + 2a, 4) -24s(5a + 2, 8) = 24, -6, 0 and -6 for a ≡ 1, 3, 5 and 7 (mod 8), respectively, we have

N (F 5 (a, 2), H 5 ) = 2a 3 + 5a 2 + 8a + 7 2 +            24 if a ≡ 1 (mod 8) -6 if a ≡ 3 (mod 8) 0 if a ≡ 5 (mod 8) -6 if a ≡ 7 (mod 8).
Hence, N (F 5 (a, 1), H 5 ) and N (F 5 (a, 2), H 5 ) are odd rational integers. 6), ( 5) and ( 4), we have

Remark 23. By Proposition 1 we know that R(a, b) is a rational number in 4 b 3 Z. Numerical computation suggest that is always is in 4 b 2 Z.
s(a, b, f ) = f 2 + a 2 + b 2 12abf - a b 4 -s(1, b) -s(b 3 , a) = f 12ab + a 2 + b 2 12abf - a b 4 - b 2 + 2 12b - b 4 - a 2 + b 6 + 1 12ab 3 - a b 4 -s(a, b 3 ) and s(a, b, f ) = f 12ab - a 2 + b 6 + 1 12ab 3 + a 2 + b 2 12abf - b 2 + 2 12b + b 4 + s(a, b 3 ). Second, f ≡ a 3 (a+b) (mod b 2 ) and f ≡ b 3 (a+b) (mod a 2 ) yield s(f, a 2 , b 2 ) = s(a 3 (a+b), a 2 , b 2 ) = + b), 1, b 2 ) = s(a(a + b), b 2 ) and s(b 2 , f, a 2 ) = s(b(a + b), a 2
). Thus, using ( 6) and (5) we have

s(a 2 , b 2 , f ) = f 2 + a 4 + b 4 12a 2 b 2 f - 1 4 -s(a(a + b), b 2 ) -s(b(a + b), a 2 ) = f 12a 2 b 2 + a 4 + b 4 12a 2 b 2 f - 1 4 -s(a(a + b), b 2 ) - a 4 + (a + b) 2 b 2 + 1 12(a + b)a 2 b - a+b b 4 -s(a 2 , b(a + b)) Now, set D = a + b + b 2 . We have a 2 ≡ D (mod b(a + b)) and b(a + b) ≡ -b 3 (mod D). Hence, using Lemma 1 (with a → D, b → b(a + b) and b → -b 3 for which b -b → -bD) we have s(a 2 , b(a + b)) = s(D, b(a + b)) = D 2 + b 4 (a + b) + 1 12b 3 (a + b) - D ( b + b a+b ) 4 -s(D, b 3 ) = (a + b) 2 + b 4 + 1 12b 3 (a + b) + b 2 + 2 12b -a+b+b 2 b 4 -a+b+b 2 b a+b 4 -s(a(1 + b 2 ) + b, b 3 ),
where we have used s(D, b 3 ) = s(a

+ b + b 2 , b 3 ) = s(a + b + ab 2 , b 3 ) for a ≡ 1 (mod b). Hence, we obtain s(a 2 , b 2 , f ) = f 12a 2 b 2 + a 4 + b 4 12a 2 b 2 f + (1 -b 2 )a 3 + (b 3 + b)a 2 + (1 -b 4 )a -b 5 -b 12a 2 b 3 + b 2 + 2 12b - 1 + b + λ b 4 -s(a(a + b), b 2 ) -s(a(1 + b 2 ) + b, b 3 ), where λ = -1 -a+b + a+b+b 2 + a+b+b 2 a+b = ( a+b+b 2 -1)( a+b + 1) = 0.
Third, we therefore obtain

N (F 5 (a, b), H 5 ) = 24s(a, b, f ) + 24s(a 2 , b 2 , f ) -3 + 2 f = 24 f 12ab - a 2 + b 6 + 1 12ab 3 + a 2 + b 2 12abf + 24 f 12a 2 b 2 + a 4 + b 4 12a 2 b 2 f + (1 -b 2 )a 3 + (b 3 + b)a 2 + (1 -b 4 )a -b 5 -b 12a 2 b 3 - 1 4 -3 + 2 f + R(a, b).
Noticing that 24 a 2 +b 2 12abf + 24

a 4 +b 4 12a 2 b 2 f = 2 f -a 2 b 2 a 2 b 2 f = 2 a 2 b 2 -2 f , we obtain P (a, b) = 2f ab -2 a 2 + b 6 + 1 ab 3 + 2f a 2 b 2 + 2 (1 -b 2 )a 3 + (b 3 + b)a 2 + (1 -b 4 )a -b 5 -b a 2 b 3 -9,
and the desired expression for N (F 5 (a, b), H 5 ) follows.

8 On the denominator of Dedekind sums

Let H n denote a subgroup of order n of the multiplicative group (Z/f Z) * . Let h 0 denote the cyclic subgroup of (Z/f Z) * generated by h 0 ∈ (Z/f Z) * . We set

S(H n , f ) := c∈Hn s(c, f ) ∈ Q and Z/dZ T (H n , f ) := c∈Hn c. (33) 
Hence, 2f gcd(3, f )S(H n , f ) ∈ Z (Proposition 1). If d is even, then c ∈ H n implies c odd and (c 2 -1)/2 ∈ Z and we also set

Z/dZ T (H n , d) := c∈Hn c -c * c 2 -1 2 - d 2 ≡ n(1 -d/2) (mod 2) ( 34 
)
(if d is even then c * and c are odd and (c 2 -1)/2 is an even rational integer. Moreover, for a given rational integer a the application c → a c 2 -1

2 modulo d is d-periodic. Hence, T (H n , d) is well defined modulo d for c ∈ H n ).
Lemma 24. Let H n denote a subgroup of order n > 1 of the multiplicative group Proof. For (i), notice that c ∈ H n → -c ∈ H n is a bijection and that s(-c, f ) = -s(c, f ). For (ii), notice that for any c 0 ∈ H we have (1-c 0 )T (H n , d) = T (H n , d)-T (H n , d) = 0 (as c ∈ H → c 0 c ∈ H is a bijection). For (iii), we clearly have 2T n (H n , d) ≡ c∈Hn (c + c * ) ≡ 2T (H n , d) (mod d). For (iva) and (ivb), notice that the group (Z/f Z) * is cyclic of even order whose only element of order 2 is -1, hence -1 ∈ H n for n even. For (ivc) we use point (ii) which readily gives T (H n , p) = 0 and T (H n , 2p) ∈ {0, 2, p}. Since T (H n , 2p) ≡ n ≡ 1 (mod 2), we get T (H n , 2p) = p and T (H n , 2p) ∈ {0, p} and T (H n , 2p) ≡ 0 (mod 2), by point (iii). Hence, we do have T (H n , 2p) ≡ 0 (mod 2p). Let us finally prove point (v). For the first assertion, it suffices to prove that S :

(Z/f Z) * . (i) If -1 ∈ H n then T (H n , d) = 0 in Z/dZ and S(H n , f ) = 0 in Q. (ii) If n > 1, then gcd(d, T (H n )) > 1. (iii) Assume that d is even. Then T (H n , d) = T (H n , d) or T n (H n , d) = T (H n , d) + d/2. Moreover, T (H n , d) ≡ n (mod 2) and T (H n , d) ≡ n(1 -d/2) (mod 2). (iv) Assume that f = p k or f = 2p k ,
= c∈Hn c * c 2 -1 2 = 0 in Z/dZ. Clearly, 2S = T (H n , d) -T (H n , d) = 0. Hence S = 0 or S = d 2 .
Since clearly S = [s] d fin Z/dZ for some s ∈ 4Z, if we had S = d/2 then we would have 4s ≡ d 2 (mod d) and the contradictions 4s ≡ 1 (mod 2) for d ≡ 2 (mod 4) and 4s ≡ 2 (mod 4) for d ≡ 4 (mod 8). Now, if n is odd then T (H n , d) ≡ n ≡ 1 (mod d) is odd whereas T (H n , d) ≡ n(1 -d/2) (mod 2) is even for d ≡ 2 (mod 4) and odd for d ≡ 4 (mod 8). 

= -2W p,c + p-1 2 = c 2 +1 6c and 2pS(H, p) = c∈H 2ps(c, p) = c∈H c 2 +1 6c = 0. Hence, 2pS(H, p) ∈ Q ∩ π p Z[ζ p ] = pZ, 2S(H, p) ∈ Z and 2S(H, p) ≡ 2pS(H, p) ≡ c∈H 2ps(c, p) ≡ c∈H p-1 2 ≡ p-1 2 #H ≡ p-1 2 (mod 2
). The proof of the second point is complete.

A key ingredient of the proof is that T (H, p) = 0 for H a subgroup of order n > 1 in the group (Z/pZ) * . This does not necessarily hold true in general. For f = 91 = 7 • 13 there are 4 subgroups of order 3 in (Z/f Z) * and we respectively have 

(c, d) = (d -1)(2d -1) 3/δ c -δ d(d -1) 2 -2δ d-1 n=1 n nc d ∈ Z (36) 
(the two fractions that appear in this formula are in Z).

Proof. For x ∈ R we write x = [x] + {x} with [x] ∈ Z and 0 ≤ {x} < 1. By d-periodicity of both sides of (36), we may assume that 1 ≤ c ≤ d -1. According to [START_REF] Apostol | Modular functions and Dirichlet series in number theory[END_REF]Chapter 3,(31) and Exercice 11] and since n d = 0 for 1 ≤ n ≤ d -1, we have

s(c, d) = d-1 n=1 n d - n d - 1 2 nc d - nc d - 1 2 = d-1 n=1 n 2 c d 2 - n(c + 1) 2d + 1 4 + 1 2 nc d - n d nc d . Using d-1 n=1 nc d = d-1 n=1 n d = d-1 n=1 n d for gcd(c, d) = 1, we obtain d-1 n=1 nc d = d-1 n=1 nc d - nc d = d-1 n=1 n(c -1) d = (d -1)(c -1) 2 (37)
and the desired result follows. 

(d -1)(2d -1) 3/δ c -δ d(d -1) 2 -c * (d -1)(2d -1)(c 2 -1) 6/δ -c * δd (d -1)(c -1) 2 ∈ Z (38)
(since c is odd whenever d is even, the four fractions that appear in this formula are all in Z).

Proof. By (36), we have

2dδs(c, d) ≡ (d -1)(2d -1) 3/δ c -δ d(d -1) 2 -2δc * d-1 n=1 nc nc d (mod 2δd), (39) 
where cc * ≡ 1 (mod d). Since 2x

[x] = x 2 -{x} 2 + [x] 2 and d-1 n=1 nc d 2 = d-1 n=1 n d 2 = d-1 n=1 n 2 d 2 (gcd(c, d) = 1), we have 2 d-1 n=1 nc d nc d = d-1 n=1 n 2 (c 2 -1) d 2 + d-1 n=1 nc d 2 = (d -1)(2d -1)(c 2 -1) 6d + d-1 n=1 nc d 2 .
Therefore, using nc d 2 ≡ nc d (mod 2) and ( 37), we obtain

2δ d-1 n=1 nc nc d ≡ (d -1)(2d -1)(c 2 -1) 6/δ + δd (d -1)(c -1) 2 (mod 2δd) and 2δ d-1 n=1 nc nc d ≡ (d -1)(2d -1)(c 2 -1) 6/δ (mod d).
Using (39), the desired result follows.

Lemma 29.

(i) If d ≡ 1 (mod 2), then 2dδs(c, d) ≡ G(c, d) ≡ (d -1)/2 (mod 2). (ii) If d ≡ 2 (mod 4), then 2dδs(c, d) ≡ G(c, d) ≡ d/2 -1 (mod 4) and dδs(c, d) is therefore a rational integer. Proof. If d ≡ 1 (mod 2), then (d-1)(2d-1) 3/δ ≡ 0 (mod 2), δ d(d-1) 2 ≡ δ d-1 2 ≡ d-1 2 (mod 2) and (d-1)(2d-1) 6/δ ≡ δ d-1 2 ≡ d-1 2 (mod 2). Hence, G(c, d) ≡ - d -1 2 (1 + c * (c 2 -1) + c * (c -1)) ≡ - d -1 2 (1 + c * (c(c + 1) -2)) ≡ d -1 2 (mod 2).
If d ≡ 2 (mod 4), then d = 2d with d odd. Since c is odd, we have c 2 -1 ≡ 0 (mod 8) and

(d-1)(2d-1)(c 2 -1) 6/δ ∈ 4Z. Hence, G(c, d) ≡ (d -1)(2d -1) 3/δ c -δd (d -1) -c * δd (d -1)(c -1) ≡ δc -δd -δd c * (c -1) ≡ δc(1 -d ) ≡ c(1 -d ) ≡ 1 -d (mod 4),
where we have used d ≡ 2 (mod 4) and c * (c -1) ≡ c -1 (mod 4) (as c and c * are odd).

Theorem For example, for f = 3 k and H 3 = 3 k-1 + 1 = {1, 3 k-1 + 1, 2 • 3 k-1 + 1} we have T (H 3 , f ) = 3 and Theorem 30 predicts that 2f S(H 3 , f ) ∈ Z, which is indeed the case, by Proposition 25.

Corollary 31. Let p > 3 be a prime and let n > 1 divide p -1. (i) If H n is the only subgroup of order n > 1 of the multiplicative group (Z/pZ) * , then T (H n , p) = 0 and S(H n , p) = 0 is n is even, whereas 2S(H n , p) is an odd rational integer of the same parity as (p -1)/2 if n is odd. (ii) If H n is the only subgroup of order n > 1 of the multiplicative group (Z/2pZ) * , then T (H n , 2p) = p and S(H n , 2p) = 0 is n is even, whereas 2S(H n , 2p) is an odd rational integer of the same parity as (p -1)/2 if n is odd.

Proof. Clearly, the last assertions of points 2a and 2b follow from Lemma 24. Indeed, in case 2b we have T (H n , 2p) = 0

We have Theorem 32. For 3 < p ≡ 3 (mod 4) we have S(H (p-1)/2 , p) = h 2 K /2, i.e. the odd rational integer 2S(H (p-1)/2 , p) is the square of the class number h K of the imaginary quadratic number field K = Q( √ -p).

S(H

Proof. By Theorem 26 we already know that 2S(H (p-1)/2 , p) is an odd rational integer. Now, The proof is complete.

H (p-

1. 1

 1 Dedekind and Dedekind-Rademacher sums For c, d ∈ Z and |d| > 1 such that gcd(c, d) = 1, the Dedekind sum is defined by s(c, d)

  ]). It depends only on c modulo d. We also set s(c, 1) = s(c, -1) = 0 for c ∈ Z. Notice that s(c * , d) = s(c, d) whenever cc * ≡ 1 (mod d) (make the change of variables n → nc in s(c * , d)). For 0 = x ∈ Z we set x = x/|x| ∈ {±1}. (3) Hence, s(c, d) = c s(|c|, d) = d s(c, |d|) = c d s(|c|, |d|). Recall that

  |s(c, d)| ≤ s(1, |d|) = (|d| -1)(|d| -2) 12|d| (d ≥ 1). For b, c, d ∈ Z and |d| > 1 such that gcd(b, d) = gcd(c, d) = 1, the Dedekind-Rademacher sum is defined by s(b, c, d) c, b, d). We also set s(b, c, 1) = s(b, c, -1) = 0. Notice that s(c, d) = s(1, c, d) = s(c, 1, d), that s(b, c, d) = s(ab, ac, d) for any a ∈ Z with gcd(a, d) = 1 and that s(c 1 , c 2 , d) = s(c 1 c * 2 , d) for gcd(c 1 , d) = gcd(c 2 , d). From (5) we deduce (by induction) that s(b, c, d) ∈ Q. In fact, we have Proposition 1. (See [RG, Theorem 2 page 27]). We have 2d gcd(3, d)s(b, c, d) ∈ Z. Hence, 2ps(c, p) ∈ Z for p > 3 a prime integer and c ∈ Z with gcd(c, p) = 1. For b, c, d ∈ Z and gcd(b, c) = gcd(c, d) = gcd(

  ) Clearly, s(a, b) = s(a , b) for a ≡ a (mod b). We give a formula relating s(a, b) to s(a, b ) for b ≡ b (mod a): Lemma 2. Let x be as in (3). For a, b, b ∈ Z \ {0}, gcd(a, b) = 1 and b ≡ b (mod a) we haves(a, b) = (b -b)(a 2 -bb + 1) 12abb + a ( bb ) 4 + s(a, b ). (7)Proof. Noticing that s(b, a) = s(b , a) and using (5) twice we obtains(a, b) = a 2 + b 2 -3|ab| + 1 12ab -s(b , a) = a 2 + b 2 -3|ab| + 1 12ab -b 2 + a 2 -3|b a| + 1 12b a -s(a, b ) = b (a 2 + b 2 -3|ab| + 1) -b(b 2 + a 2 -3|b a| + 1) 12abb + s(a, b ).

  s(c, -2) = s(c, -1) = s(c, 1) = s(c, 2) = s(b, c, -2) = s(b, c, -1) = s(b, c, 1) = s(b, c, 2) = 0. (8) For d > 1 and gcd(c, d) = 1, set s(c, d) , d/δ),by the Möbius inversion formula and the convention that s(c, 1) = 0 for c ∈ Z. Using (5

  ) 2 A twisted mean square value for H 3 Assume that f > 3 if of the form f = Q(a, b) := a 2 +ab+b 2 , where gcd(a, b) = 1. Then a or b is odd and since f = Q(a + b, -b), we may assume that both a and b are odd. Let H 3 := h 0 = {1, h 0 , h 2 be the subgroup of order d = 3 of the multiplicative group (Z/f Z) * generated by the element h 0 = a/b of order 3. Then

Proof.

  To simplify the notation, we set f = F 5 (a, b) > 5. Notice that a = 0, a = -b and D := a + b + b 2 = 0, except for (a, b, f ) = (-2, 1, 11), in which case it is easy to check that our stement holds true. Since F 5 (a, b) = F 5 (-a, -b), P (a, b) = P (-a, -b) and R(a, b) = R(-a, -b), we may assume that a ≡ 1 (mod b). First, f ≡ a 4 ≡ 1 (mod b), a ≡ 1 (mod b) and f ≡ b 4 (mod a) yield s(f, a, b) = s(1, 1, b) = s(1, b) and s(b, f, a) = s(b 3 , a). Using (

  where p ≥ 3 is a prime integer and k ≥ 1. (iva) There exists at most one subgroup of order n in (Z/f Z) * . (ivb) If n is even, then -1 ∈ H n and hence S(H n , f ) = 0 and T (H n , f ) = 0. (ivc) If n is odd and k = 1, then T (H n , p) = 0, T (H n , 2p) = p and T (H n , 2p) = 0. (v) If d ≡ 2 (mod 4) or d ≡ 4 (mod 8), then T (H n , d) = T (H n , d) if n is even but T (H n , d) = T (H n , d) + d 2 if n is odd. In particular, if n is odd, then gcd(T (H n ), d) = 2 gcd(T (H n ), d) if d ≡ 2 (mod 4) and gcd(T (H n ), d) = gcd(T (H n ), d) if d ≡ 4 (mod 8).

  (i) We have S(8, H 2 ) = 1/2 = 0 for H 2 = 2 and S(87, H 14 ) = 89/9 = 0 for H 14 = 4 . (ii) We also have T (H 2 , 4p) = 2+2p = 0 and S(H 2 , 4p) = s(1, 4p)+s(1+2p, 4p) = (5p-1)(p-1) 12p = 0 for H 2 = 1+2p (use (4) and 7 with a = 1+2p, b = 4p and b = -2 to obtain s(1+2p, 4p) = 2p 2 -6p+1 24p ). (iii) If f = 28 and H 3 = 9 = {1, 9, 25}, a subgroup of order 3 in (Z/28Z) * , then S(H 3 , f ) = 9/8. If f = 35 and H 3 = 11 = {1, 11, 16}, a subgroup of order 3 in (Z/35Z) * , then S(H 3 , f ) = 23/10. Hence, we have some but not complete cancelation on the common denominator 2f gcd(3, f ) of the s(c, f )'s (Proposition 1) when we sum over all the elements c of a subgroup of odd order n > 1 of the multiplicative group (Z/f Z) * . Here is a general example with little cancelation: [ζ p ]/π 3 p Z[ζ p ]). Hence, π 2 p divides w p,c in Z[ζ p ], i.e. w p,c = π 2 p W p,c with W p,c = p-1 4 -ps(c, p) ∈ Q ∩ Z[ζ p ] = Z, 2ps(c, p) = -2W p,c + p-1 2 ∈ Z and 2ps(c, p) ≡ p-1 2 (mod 2). The proof of the first point is complete. Moreover, W p,c = -c 2 +3c+1 12c in Z[ζ p ]/π p Z[ζ p ] and T (H, p) = c∈H c = c∈H 1/c = 0 in Z/pZ, by Lemma 24. Hence, in Z[ζ p ]/π p Z[ζ p ] we have 2ps(c, p)

  (i) S({1, 9, 81}, 91) = 15/2 and T ({1, 9, 81}, 91) = 0, (ii) S({1, 16, 74}, 91) = 15/2 and T ({1, 16, 74}, 91) = 0, (iii) S({1, 22, 29}, 91) = 97/14 and T ({1, 22, 29}, 91) = 52 = 4 • 13, and (iv) S({1, 53, 79}, 91) = 171/26 and T ({1, 53, 79}, 91) = 42 = 6 • 7. Theorem 30 will clarify the appearance of these various denominators. Lemma 27. For d ≥ 1, c ∈ Z with gcd(c, d) = 1 and δ := gcd(3, d), we have 2dδs

Lemma 28 .

 28 For d ≥ 1, c ∈ Z and gcd(c, d) = 1 we have 2dδs(c, d) ≡ G(c, d) (mod 2δd), where δ = gcd(3, d) and G(c, d) :=

  The first point follows by noticing that if d is even then c is odd.We setD := (d -1)(2d -1) 3/δ ∈ Z. Since 3 δ D -(d -3)d = 1, we have gcd(D, d) = 1. 1. First, assume that d is odd. Then, (d-1)(2d-1) 6/δ∈ Z, the second and fourth terms in the right hand side of (38) are in dZ and 2c-c * (c 2 -1) ≡ c + c * (mod d). Hence, 2dδs(c, d) ≡ (d -1)(2dn , d) ≡ DT (H n , d) (mod d). Therefore, 2dδS(H n , d) is in gcd(d, T (H n , d))Z,as asserted. Since gcd(D, d) = 1, the rational number 2δS(H n , d) is in Z if and only if d divides T (H n , d), as asserted. Finally, by Lemma 29, we have 2dδS(H n , d) = c∈Hn 2dδs(c, d) ≡ n d -1 2 (mod 2). Using the oddness of gcd(d, T (H n , d)) we obtain 2δ d gcd(d, T (H n , d))S(N n , d) Second, assume that d is even. Then c is odd, c 2 -1 is even, D is odd, the fourth term in the right hand side of (38) is in dZ and its second term is equal to d/2 modulo d. Hence,2dδs(c, d) ≡ (d -1)(2d -1) 3/δ (c -c * c 2 -1 2 ) -d 2 ≡ D(c -c * c 2 -1 2 -d 2 ) (mod d) and 2dδS(H n , d) = c∈Hn 2dδs(c, d) ≡ DT (H n , d) (mod d).(40)Therefore, 2dδS(H n , d) is in gcd(d, T (H n , d))Z, as asserted. Since gcd(D, d) = 1, the rational number 2δS(H n , d) is in Z if and only if d divides T (H n , d), as asserted. Assume that d ≡ 2 (mod 4). Write d = 2d with d odd. Then T (H n , d) ≡ 0 (mod 2), by (34). Hence, gcd(d, T (H n , d)) = 2 gcd(d , T (H n , d)) and the oddness of gcd(d , T (H n , d)) gives 2 d gcd(d, T (H n , d)) δS(H n , d) = d gcd(d , T (H n , d)) δS(H n , d) ≡ dδS(H n , d) (mod 2). By Lemma 29 we have dδs(c, d) ∈ Z, dδS(H n , d) ∈ Z and dδS(H n , d)

  p) = -S(H p-1 , p) and S(H p-1 , p) = 0.More generally S(Hn , f ) = 0 is -1 ∈ H n ≤ (Z/f Z) * . Therefore,S(H (p-1)/2 , p) = 0 for p ≡ 1 (mod 4).If p ≡ 3 (mod 4), then X - p (H (p-1)/2 ) = • p (Legendre's symbol) and therefore, class number formula applied to the imaginary quadratic field K = Q( (p-1)/2 , p) = h 2 K /2 for p ≡ 3 (mod 4), where K = Q( √ -p).

  s(p -c, p) = -s(c, p) and pclass number formula applied to the imaginary quadratic field K = Q( s symbol) and formula (11) for the evaluation at s = 1 of Dirichlet L-functions associated with odd characters yields

  30. 1. (Compare with [RG, Theorem 2 page 27]). For d ≥ 1, c ∈ Z and gcd(c, d) = 1, the rational number 2d gcd(3, d)s(c, d) is a rational integer of known parity, namely T (H n , d)) S(H n , d) ∈ Z and 2 gcd(3, d)S(H n , d) ∈ Z ⇔ d | T (H n , d).

	2d gcd(3, d)s(c, d) ≡ 2. Let H n be a subgroup of order n of the multiplicative group (Z/dZ) * . Let T (H n , d) and 0 (mod 2) if d ≡ 1, 2 (mod 4) 1 (mod 2) if d ≡ 0, 3 (mod 4). T (H n , d) be as in (33) and (34). (a) Assume that d is odd. Then 2 gcd(3, d) d gcd(d, T (H n , d)) 2 gcd(3, d) d gcd(d, Moreover, if d ≡ 2 (mod 4), then 2 gcd(3, d) d gcd(d, T (H n , d)) S(H n , d) is a rational integer of the same parity as n d/2-1 2 . Proof. By Lemma 27 and (36), we have 2dδs(c, d) ∈ Z and S(H (b) Assume that d is even. Then 2dδs(c, d) ≡ (d -1)c + d(d -1) 2 (mod 2).

n , d)

is a rational integer of the same parity as n d-1 2 and

2 gcd(3, d)S(H n , d) ∈ Z ⇔ d | T (H n , d).

Proposition 25. Set f = 3 k , k ≥ 2. Let H 3 = h 0 be the subgroup of order 3 of (Z/f Z) * generated by h 0 = 1+3 k-1 . Then S(H 3 , f

) and f ≡ -3 (mod h 0 ), using (7) (with a → h 0 , b → f and b → -3) and noticing that s(h 0 , -3) = -s(h 0 , 3) = -s(1, 3) = -1 18 , we obtain

the desired result follows.

We prove that for p > 3 a prime integer we have more systematic cancelation (for p ≡ 1 (mod 6) we already know that 2S(H 3 , p) = (p -1)/6 ∈ Z, by Lemma 8) Theorem 26. Let p > 3 be a prime integer.

1. If p c, then 2ps(c, p) is a rational integer of the same parity as (p -1)/2.

2. Let H be a subgroup of odd order #H > 1 in the multiplicative group (Z/pZ) * . Then 2S(H, p) is a rational integer of the same parity as (p -1)/2 and N (H, p) = 12S(H, p) -p is an odd rational integer.

Proof. We have

and S = 0. Hence, [Was,Lemma 1.3]. We obtain

Now, in the quotient ring

and, therefore, we have