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ABSTRACT ance (CBM), is defined as an approach for the health man-

The reliability and safety of industrial equipments are Oneagement. of system; based. F’”F“a“'y. on the dlag_nostlp,
rognostic and decision-making in maintenance. This phi-

of the main objectives of companies to remain competitiv cEsophy is relatively new since the PHM community

in sectors that are more and more exigent in terms of CO?merged in the early 2000s to form the PHM Society and

and security. Thus, an unexpected_ shutdown can lead BEE PHM. Following the researches of Niu et al. (2010),
physical injury as well as economic consequences. Thi

paper aims to show the emergence of the Prognostics a\aajloretto et al. (2009), Appleby (2003), Yu et al. (2007) and

Health Management (PHM) concept in the industry and t%g?;r;LﬂM(zaﬁg)s,othﬁ (;l?]jctlves behind the implementa-
describe how it comes to complement the different mainten- _p - phy-are. .
ance strategies. It describes the benefits to be expected bf better availability and, thus, a reduction in costs operat-
the implementation of signal processing, diagnostic anéd and maintenance through a policy of maintenance and
prognostic methods in health-monitoring. More specifically,l0gistics based on the monitoring of the health status of
this paper provides a state of the art of existing signfduipment or system in real time;

processing techniques that can be used in the PHM strate?y.A faster detection of degradation or loss of performance
This paper allows showing the diversity of possible techior an efficient operating; _ .
niques and choosing among them the one that will define -An improvement of the reliability and the security of criti-

framework for industrials to monitor sensitive componentsc@l components;

like bearings and gearboxes. - A reduction of logistics congestion and costs associated
with the maintenance materials, transportation, stock, and
1. INTRODUCTION maintenance personnel;

Prognostics and Health Management (PHM) is an emerg-~ failure reduction induced by maintenance; _
ing "philosophy" which extendsthe conceptof predictive - A forgcastlng and quantl_flcatlon of the. futu_re degradation
maintenance by optimizing the maintenance and the logistf® Provide a way to quantify the remaining life of systems.
supportto increasethe reliability and life expectancyof ~ 1his helps to identify those which are near their end of life
mechanical,structural and electronic systemswhile Life- ~ @nd require significant capital expenditures to differentiate
Cycle costsare reducedand operationalavailability is in-  them from those th"’}t do not require a simple restoration. '
creased (Kalgren et al., 2006, Kim et al., 2017). This philos- PHM allows maintenance to be performed more effi-
ophy, usually confused with the Condition Based Maintenciently by integrating PHM data (eg. the RUL "Remaining

Useful Life") from the prognostic and the location and iden-
Abdenour SOUALHI et al. This is an open-access article distributed undeification of failures resulting from the diagnostic and health
the terms of the Creative Commons Attribution 3.0 United States Llcens%lssessment derived from detection, maintenance data (re-

which permits unrestricted use, distribution, and reproduction in any me- . . . . .
dium, provided the original author and source are credited. sources and inventories), logistical constraints and informa-



tion on the planned mission. The historical failure provides So, the PHM associated with the CBM can significantly
a database of failure models. These models are used f@duce the costs of intervention and increase the dependabil-
assessing current equipment information to determine thiey of systems. These results are achieved only if all layers
likely cause for any anomalies detected in the equipmentomposing the CBM are operational. One of the most im-
The RUL database is used to construct life prediction modsortant layer is the signal processing. This implies a good
els. These models are used to analyze current equipmemtowledge of the different signal processing techniques
information to estimate its remaining useful service life.used to extract fault indicators. Hence, this paper details the
This is the typical architecture of a PHM system. It is usualsignal processing layer of the CBM architecture and pro-
ly formalized with the standard OSA-CBM (Open Systemvides an extensive state of the art of existing techniques
Architecture for Condition Based Maintenance) (seeused inthe PHM strategy. Thus, it lists the various possible
Bengtsson, 2003, Thurston, 2001a, Rasovska et al., 20@&chniques and establishes the choice that will represent a
and Swearingen et al., 2007). This architecture establishessalid framework for industrial applications using sensitive
framework communication between the monitoring systentomponents like bearings and gearboxBserefore, sec-
and the various experts concerned through industrial mairtions of this work revolve around the detailed presentation
tenance (Holmberg et al., 2010). of the different signal processing techniques and their cate-

In fact, it is suitable to expose the evolution of maintengorization. The next section present in detgil the different
ance types (Elghazel et al., 2015). The earlier shape dayers composing the CBM. The secti.on 3 will be d§d|cated
maintenance is corrective maintenance which consists & the presentation of the different signal processing tech-
reacting only when the equipment fails. Thus, this strategP!dues.
will lead to sudden breakdowns. So, the time-based or pPre- |\p. EMENTATION OF A CONDITIONAL BASED MAIN-
ventive malnte_nance was myented. The P_revent|ve Main- TENANCE (CBM)
tenance is defined as a "Maintenance carried out at prede- ] )
termined intervals or according to prescribed criteria and A conditional based maintenance is composed of seven
intended to reduce the rate of failure or degradation d@yers: data acquisition, signal processing, health assess-
equipment” (SS-EN 13306, 2001, p.14). Preventive mainent, diagnostic, prognostic and decision support. The se-
tenance includes two types of maintenance plans: systematgnth layer is called the human-machine interface (HMI). It
preventive maintenance and condition based maintenané® not essential for the CBM but allows displaying vital
(SS-EN 13306, 2001). Systematic maintenance is scheduléformation about the health status of the system. The (MI-
and planned without the occurrence of any monitoring activMOSA) "Machinery Information Management Open Stan-
ity. It could be based on the number of hours of use, thdard Alliance” has been proposed as a standardized architec-
number of times that a system is used, the number of kildure for the CBM described in six functional layers: from
meters of use, depending on prescribed dates and so ¢Re data acquisition to the decision support module (Thurs-
This type of service is best suited for a component that hd@n., 2001b).
visible signs of wear and where maintenance tasks can beLayer 1 - The data acquisition module provides access to
performed at a time that will prevent a system failure (Starrsignals (digital data) from sensors. The data acquisition
1997). According to Yam et al. (2001) and Starr (1997)covers different disciplines such as mechanical measure-
systematic maintenance is sometimes called "time-basetlents (Wang & McFadden, 1996, Holroyd, 2005, Roemer
maintenance” and "planned preventive maintenance”. Sin@& Kacprzynski, 2000, Hountalas, 2000), electrical mea-
time-based maintenance doesn’t take into account the statarements (Tsoumas et al., 2005, Kar & Mohanty, 2006),
of the system, it was necessary to come up with conditiotribology (Walter & Lee, 2004) and non-destructive mea-
based maintenance discussed in nineties (Heng et al., 2008urements (Mba, 2006). The mechanical measurements
Condition based maintenance (CBM), in contrast to thénclude mechanical vibration, acoustic emission, pressure,
systematic maintenance, is not based on planned actionsflhw, temperature, and stress, while the electrical measure-
is carried out according to the needs identified by the systements are current, voltage, phase and flux. Tribology is
health (Yam et al., 2001). It is based on parameters (fe@specially interested in the machinery lubrication and oil
tures) that can detect the current health and used to predatalysis of debris. The non-destructive control uses visual
possible failures before their real occurrence. The monitolinspection or non-contact measurement.
ing of these features can provide an indication of an im+ Layer 2 — The signal processing module receives signals
pending failure as well as emerging defects that can lead tfieom the data acquisition module. The outputs of this mod-
system or its components to deviate from an acceptablde are health indicators extracted from signal processing
level of performance or in the worst case, cause its degradechniques: temporal analysis, spectral analysis, time-
tion. Among the advantages of the CBM, making the righfrequency analysis.
maintenance actions which avoids stopping a healthy system Layer 3 - The health assessment module receives data
functioning (Heng et al., 2009), its ability to detect an im-from the signal processing module and other monitoring
minent fault and accuracy predicting failures (Soualhi et al.modules. The aim is to compare the extracted health indica-
2014). It also contributes to fault diagnosis because it ifors with reference values to assess the condition of the
relatively easy to associate a specific defect in the system tnachine. The health assessment module generates alarms
the monitored features.



based on predefined operating limits (eg, low level of dewherex; is thei-th sample of the recorded signdt) andN
gradation, natural degradation level and advanced stage isfthe number of samples.
degradation).
+ Layer 4 - The diagnostic module receives data from the
signal processing and health assessment modules. Based-oke standard deviation which measure the dispersion of
the obtained indicators, this module determines whether tHBe signalx(t). This indicator is often used as a metric in
state of the monitored system or component is degraded elassifiers such as dynamic Bayesian networks (Wang et al.,
not and identify the element responsible of this degradation2007) and neural networks (Laerhoven et al., 2001).
+ Layer 5 - The prognostic module considers informationr The RMS is the most interesting measure of vibration
provided from all previous layers to estimate the remainingmplitudes. In addition of taking into account the evolution
useful life (RUL) of the system. The RUL is obtained byof the signal over time, the calculation of the RMS value is
extrapolating a series of measurements (time series) fromrglated to the vibratory energy and therefore to the "poten-
health indicator acquired until a present tirtfetd a horizon  tial for deterioration” of the vibration signal. In practice, the
of prediction defined by+RUL. t+RUL corresponds to the positive and negative instantaneous values of the signal are
moment where the extrapolated time series reached tisgluared. The average of these values is then calculated over
threshold of system’s degradation. a certain period of time. The result is put under the square
+ Layer 6 - The decision support module receives datéoot to obtain the RMS. Recently, the RMS was used to
from the diagnostic and prognostic modules. This modul&erify the effectiveness of exploiting only a selection of the
gives recommend maintenance actions and alternativedoration signals instead of the original ones. Results
related to the management of the system. showed that when RMS is applied after the selection step, it
ives more significant information about the faulty cases
Feng et al., 2017).
In Hemmati et al. (2016), authors investigate the effec-
3. SIGNAL PROCESSING tiveness of this parameter to detect bearing faults compared
As said in the introduction section, the signal processin{g‘; other statistical paramet(_ers like peak Va"%?n kurtosis, crest
is one of the most important module of the CBM. This ctor and skewness. Bearing fau!ts are art_|f|C|aIIy produced
1 an outer race using an engraving machine tool to control

module analyzes and transforms the input signal to extra ; . .
indicators of defects (Seryasat et al., 2010, Chen et af e shape and depth of the faults. In this experimentation,

2012, Prieto et al., 2013). From the literature severaﬁfefem size, rotating speed, and radial load have been consi-
! o s ‘ red as the most critical parameters that may influence the

; ; : ; e
rocessing techniques, like temporal analysis, frequency . . -
P g 4 P Y g agé[fanstlcal parameters. Results showed that since in many

analysis and time-frequency analysis can be used to extr . . ;
efficient health indicators (Tobon-Mejia et al., 2012, Niu &practlcal cases the rotating speed of the shaft is constant,
' ' RMS is a strong candidate for identifying defective rolling

Yang, 2010, Tsui et al., 2015). element bearings

3.1. Temporal analysis - The Skewness, commonly called the moment of order 3, is
The temporal analysis extracts indicators of defect fron’in""t.he.mat'C"’IIIy defined by_the the ratio of the average cubed
- gt gt ) deviation from the mean divided by the cube of the standard
raw signals. These features are called "statistical indicators; .~ . X L !
because they represent the temporal characteristics of t 8V|at|on: This d.ef'r."t'o.n represents.the dlsgymmetry rate of
recorded signal. Table 1 shows a list of the most commo e amplitude distribution of the signal with respect to a
indicators used in the time-domain: maximum (whose abscissa corresponds to the mean in the
' case of a Gaussian). The measurement of this dissymmetry

The most popular indicators used in literature are:

In the next section, the main focus will be on the secon
layer, which is the signal processing .

Peak is given in t_able 1. It_ _is a dimens_ionless quqntity. The
value f(:vs{u'ﬂ X | Crest |ci= K ch.k?\{\énet.ss w]lllthbe p05|t|tvethor pelgtatlv? ff{]lependmtg c:n tk;e
e PRSI istribution of the curve to the right or left, respectively, o
Mean Y=ii>ﬁ indicator WL (%) the mean value. If the Skewness is equal to 0, the distribu-
Ni= tion is symmetric. If the Skewness is smaller than 0, the
\/m distribution_is shifted to the left conjpa_lred_ to i_ts mean. If the
Standard| __ [ 1 & | Shape === Skewness is greater than 0, the distribution is shifted to the
deviation |~ ﬁ;(‘ =X | indicator NI | right. It was proven in the paper of Hemmati et al. (2016)
that the Skewness is a good indicator for diagnosing bearing
Root T3 P faults.
mean | RMS=,[=>(x? 'ngjpmse M =g - The kurtosis represents the relation between the statistical
square N Indicator WNLI% | moment of order 4 and the square of the statistical moment
ZN:(X P _ i(’ﬁ —%) of order 2. For a Gaussian distribution, the Kurtosis is equal
Skewness . _& Kurtosis | | _& to 3 (case of a healthy bearing or gear). When the signal
(N-1)o° (N-)o* becomes non-Gaussian (appearance of a fault) the kurtosis

becomes greater than 3 (see table 2). The Kurtosis is an

Table 1. Statistical features (Chen et al., 2012). indicator of impulsivity, it is independent of the amplitudes



and it allows possible establishing a criterion of severity for To improve the effectiveness of these indicators, a tem-
the diagnosis of machines (Thomas, 2002). For the sake pbral analysis tool called the time synchronous average
comparison, Pang et al. (2018) used the Kurtosis for th€T'SA) was introduced by Bennett (1958). The TSA was
same fault case but before and after the improved version applied for cyclostationary vibration signals for fault detec-
the proposed framework and found out that it gives signifition of gearbox. The TSA consists of dividing a vibration
cant values in the second case. signal into time-segments and carrying out a mean of these
Severity segments to eliminate the noise. In Bonnardot (2004), the
angular synchronous average (ASA) was proposed. The
ASA consists of dividing a vibration signal into angular-
segments. This approach was tested in a gearbox and the
obtained results are better than the TSA.

Table 2. quantification of the severity according to kurtosis.  another method has been proposed in Hong and Dhupia
- The crest indicator is the ratio between the peak amplitud@014). It consists of combining the fast-dynamic time
of the signal and the RMS. A system in a good conditiorwarping (Fast DTW) and the correlated kurtosis (CK) tech-
generates a low amplitude signal as well as in the peak valuméques to detect and identify the faulty gear. Considering
and the RMS. The crest factor remains low (between 2 antlat the faulty gear tooth generates periodic impulses in the
6). A localized defect generates a high peak amplitude andbration signal, the fast DTW extracts these impulses by
low RMS amplitude, so an important peak factor (greateusing a reference signal at the same frequency of the nomin-
than 6). However, as the RMS increases for progressival gear mesh harmonic. It is based on vibration signals ob-
failure, the crest indicator decreases (Dron et al., 2004).  tained from a healthy and steady functioning of the system.
Then, the subsequent signal is resampled for the diagnostic

The Kurtosis, Skewness, Cl and RMS have been ex- : X . .
) . . - y the CK technique which aims to isolate the gearbox fault
tracted from vibration signals to detect the degradation . S
ally by analyzing the periodic effect of the fault.

the gearbox. The degradation test was done for a duration oF
12 days. These indicators are given in fig.1: Another method was developed in Do and Chong (2011).
It consists of transforming a vibration signal (one-
dimensional domain) into an image (two-dimensional) by
translation. The indicators are deduced by the scale invariant
feature transform (SIFT) to detect faults by affecting the
vibration signal to the corresponding fault category (diagno-
sis level). For the translation (see fig. 2), the amplitude
Time samples of the signal are normalized to obtain values in the
2 4 6 s 10 12 @3¥9) range [0-255]. These values are putted in a matrix M*N
where the coordinate of tiBelement in the vibration signal
b is the pixel [,k) in the matrix withj = floor (i/N) andk =
modulo {/N). Then the SIFT algorithm is applied on this
(b) image to obtain 128-dimension vectors. Finally, each indica-
tor vector is compared to each centroid of the fault category
- dictionary to obtain a histogram of similarity between the
ime . .
‘ ‘ | (days) indicator vectors and the fault category. The fault category
4 6 8 0 12 of the vibration signal corresponds to the highest similarity.

Figure 1. a) Curves of the kurtosis, skewness, Cl and RMgigure 3 gives an example of this method.
of a faulty gearbox. b) A zoom on RMS curve. Pixel [0,0]

These curves show the beginning of the degradation after
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the 8" day followed by an increase until the apparition of 3 ° 1
the degradation in the {2lay. 2 2
Another indicator called the Entropy can be added to ta- §
ble 1. The different types of the entropy have been devel-E [ [T 1 LU
oped in Han et al. (2009) for the indicator extraction. Table Vel
3 shows the most used entropy types: 0123 N NeL 0123 N
Shannon entropy —Z 2 Iog(>g 2) Signal in time domain Image (size(MxN)
~ Figure 2. Vibration signal to image translation scheme
Log energy entropy Z'Og(xi 2) (Averbuch & Zheludev, 2002).

Table3. Entropy feature.
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Figure 3. An example of vibration signal translated into the 0.5 l‘k
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An important concept widely used in bearing and gear Figure 4. Spectrum of the acceleration signal of a faulty
diagnostic is the cyclostationarity. It was applied to helicop- gearbox.
ter gearbox in Antoni and Randall (2002) in order to sepa- Another tool was proposed in Feng and Liang (2014)
rate the periodic components of the signal from the randomhich is the demodulated spectra of the amplitude envelope.
ones. This leads to the definition of first-order cyclostatio-This tool detects and localizes faults by applying the FFT on
narity (CS1) related to deterministic signals such as gedhe envelope of the signal. However, the Fourier transform
signals and second-order cyclostationarity (CS2) related tg limited by the resolution (the frequency differences are
random signals such as bearing signals. Very recently, Caauch smaller than the inverse of the number of observed
soli et al. (2018) applied the angular synchronous averagmints). To resolve this problem, the algorithm MUSIC
on the acceleration signals and decomposed it into CS1 af@lultiple signal characterization) was proposed in Schmidt
CS2 for fault detection of hydraulic axial piston pumps and1986). MUSIC estimates the frequency content of a signal
studied the impact of faults on both indicators. This hypousing an eigen space method. This method assumes that a
thesis will generate new indicators that will be incorporatedignal,x(t), consists ofo complex exponentials in the pres-
into diagnostic tools and prognosis to improve the PHM.  ence of Gaussian white noise. Recently, Ma et al. (2018)
. . . used the Teager energy spectrum which is obtained by the
The extraction of features plays a major role in the eﬁecé lication of the EET on the Teader eneray operator of the
tiveness of the monitoring method. Therefore, researchefa N gy op

decided to mix different types of features. This is the case (}/f,lbranon signal and aims at envelope demodulation to

Bleakie et al. (2013), where statistical features and Olynamachleve fault diagnosis of bearing. This operator calculates

features such as rise-time, overshoot and steady state Va'é?ﬁgesgzrr%g; the signal at each time by using the data of

were chosen for system degradation prediction. The defini-
tion of some dynamic features related to the time response In an analogous way with the spectrum, another tool aims
of the system was given in detail by Franklin et al. (2010) . to detect system defects by the cepstrum (Oppenheim &

The main advantage of the extracted indicators fro Schafer, 2004). It is defined as the inverse Fourier transform
9 IFT) of the spectrum logarithm:

temporal analysis is their capability to detect the degrada-

tion of the system. However, the main drawback is their cepstrum of sianat | | the si 1
incapacity to identify the origin of the degradation. The P ¢ Fﬁ_ dg F(T 99‘)%' @

frequency analysis tackles this point more efficiently than cepstrum analysis is used for fault extraction as it capa-
temporal analysis. ble to notice the periodic families in the frequency spectrum
3.2. Frequency analysis and represent it .by _specific peaks in the cepstrum. The first
peaks are good indicators as they reflects a large amount of
The spectrum analysis of a signal is the most commoRarmonics (Niu, 2017). This was previously exploited by
teChniqUe used to |dent|fy faults in electro-mechanical SySproposing an indicator noteﬂt) and called the normalized
tems. This technique is based on the fact that a localizeglfferential cepstral indicator (NDCI) was introduced by El
defect generates a periodic signal with a unique characterigadaoui (1999). This NDCI uses the relative difference
tic frequency (Tandon & Choudhury, 1999). In contrast tohetween the two cepstral pics in order to insure invariance
the temporal analysis, the frequency analysis identifies thigsgarding the additional noise. Figure 5 shows experimental
fault by locating the characteristic frequency of the faultyesults extracted from a gear box operating 12 days. As the
This technique is generally used during the steady state gfim of the energy of the two pics is constant, the amplitude
the system (Didier, 2004). A classic tool among these tecttorresponding to the gear defect increases while the other
niques is the fast Fourier transform (FFT). Figure 4 showgne decreases. From the NDCI curve, and giving that the
an example of a faulty gearbox where the defect is locatedpc] tends to 1 when the pinion is faulty and to -1 when
on the pinion with a series of pics separated with the piniothe gear wheel is faulty, this shows the appearance of a
frequencyFp. pinion fault at the 8th day. This fault continues to increase
until the total spalling on all teeth.



3.3. Time-frequency analysis

(1034 T

L10.114 . . . .

The time-frequency analysis covers both the time domain
JL"‘/ and the frequency domain. Non-stationary signals are better

RO —— i | i described by a time-frequency distribution to show the dis-

b) 0 NDCI tribution of the signal energy over the two-dimensional
Time space-time-frequency (Burgess & Shimbel, 1995). The most

Figure 5. A zoom on the first 2 pics in the cepstrum of a) commonly used techniques for time-frequency analysis is

day 1 b) day 8 c) day 12 temporal signals. the short-time Fourier transform (STFT), the Wigner Ville

Recentlv. a techniaue called cepstrum editin rOCedurdistribution (WVD), wavelet transform (WT) and Hilbert—
Y q P 9p ang transform (HHT). For example, the STFT method

(CEP) was automated in Peeters et al. (2018). This methqg . L .
allows following the changing in frequency content in func-

\z;l\llmsha(t:asr?%aera\};nrg Sg;;ﬂg'rsi(;:r'%nzlSrgg?]wo:%ndog (t-)r?eeiﬁbn of time. This means that the defect becomes localizable
y g 9, time. Although, this method needs high computational

components can be |§9Iated from thpse of gears or Shaﬁ%\pacity when the quality of resolution matters. Since STFT
characterized by explicit peaks. In this paper, results werg . ; : ) .
S IS based on windowing the signal around a particular time
compared before and after the application of the automate . ) )
: and calculating the Fourier transform for each time (see
CEP (ACEP) as a pre-processing step for envelope analy%s 7), this leads to make judicious choice of the window
and showed that adding ACEP helps for better interpretatiorp' ' J

of the bearing health. size with:

_ _ _ STFT(@.f )= [x () -7 )é "> dt )
The proposed signal processing techniques are generally i o
applied on vibration signals but recently research was inte¥here STFT can be interpreted as a similarity measure be-
ested to the use of electrical signals for fault detection antveen the signax(t) and the time-delayed and frequency-
diagnosis (Bellini et al, 2008, Gong & Qiao, 2013, Saidi etmodulated windovg(t-7).
al., 2012). A novel framework was developed in Leite et al. The time-frequency analysis makes a compromise be-
(2015). It consists of bearing fault detection of a three-phagaveen the time resolution and the frequency resolution. For
induction motor by the squared envelope spectrum (SE3She Wigner-Ville distribution, this compromise does not
applied on the stator current. In order to enhance thexist due to the absence of the window as we can see in the
envelope analysis, spectral kurtosis-based algorithms, wefellowing equation:
applied. Those algorithms are used in this method to resolve -
the problem of determining the filtering frequency band W (t, f):j X(t+7/2) X (t-7/2)&?" ¢ (3)
around the mechanical resonance of the machine (Barszcz & - i
Jablonski, 2011, Sawalhi, 2007). The SES is obtained by
applying the discrete Fourier Transform to the analytic sig-
nal got from the Hilbert transform. Figure 6 illustrates the
detection of a bearing outer race fault in an induction motor I
by the stator current SES where the outer race frequency 3 = E S IAL, E
A

and its harmonics are pointed by arrows.

x1C3 Outer race frequency g " (i ( e
= F s ) ou ) -
3 2 x Outer race frequency E \/ Il,f 2 - fJ (_//
§ ¥ \ \"| -\'-, \I| H"\I Time
é_ 2 3 x Outer race frequency = 3 Ar dr 5 =
< Figure 7. lllustration of short-time Fourier transform applied
to signalx(t).
0 ahoay, TIPS N N TPOPRPTVY YOO OO 1] A Ll A
0 50 100 150 200 250 300 350 400 The main drawback of this method is that it is bilinear in
Frequency (Hz) nature, introducing the cross terms in the WVD domain,

Figure 6. SES of the stator current from the motor with avhich make the transform difficult to interpret. The WVD

damaged bearing fault. _ L o
The main advantage of the frequency analysis is its capg-f the sum ofh signalsx(t) = ; X(9 is given by:

bility to locate the degraded component of the system.

However, the main drawback is their incapacity to identify X L
the origin of the degradation when the system is not statio- W,(t 1) —;V\Q ( f)+z Z ZR{WXM ¢.f )] “)

P . ! i k=11=k+1
nary. This implies the use of the time-frequency analysis. autocomponents cross. component

Cross terms could be reduced by processing the signal
with a sliding window of timéa(z) in (3). This will suppress



the WVD components that oscillate in the frequency direcsis criterion. Then, the features of the chosen PF are calcu-
tion. This method is called the pseudo Wigner-Ville distri-lated by the improved multiscale fuzzy entropy (IMFE). The
bution (PWVD). A further time-direction smoothing can be fuzzy entropy is defined to assess the complexity and irregu-
implemented by using an additional window in the frequeniarity of the time series. When it is applied on different scale
cy domainh(f). This extend is called the Smoothed Pseusdactors, it is called IMFE (Li et al., 2017). The more signifi-
Wigner Ville distribution (SPWVD) which realizes the best cant features are selected by using Laplacien score (LS)
trade-off between resolutions (time and frequency) and thalgorithm which chooses automatically the best factor scale
interferences. The SPWVD is considered as the compromige reduce the dimensionality of features vectors. These new
between STFT and WVD (Lee, 2013). feature vectors are the input of the improved support vector
machines to classify data into fault classes. This criterion
may change from a framework to another; for example, Ma
t al. (2018) used a correlation coefficient criterion between
he PFs and the original vibration signal in order to choose

Another time-frequency technique is the Hilbert-Huang
transform (HHT). The HHT is a combination of the empiri-
cal mode decomposition (EMD) and the Hilbert spectra
analysis (HSA). Th|s technllque performs an adaptive t'met'he efficient PEs.
frequency technique and in the same time removes the
noised signals to give useful information about the fault As discussed in the frequency analysis section, a novel
(Wang et al., 2014). The EMD uses the local characteristimethodology has been developed in Leite et al. (2015) for
time scales of a signal to extract the intrinsic mode functionfault diagnosis by the analysis of the electric current by first
(IMFs) (Lei et al., 2013). The IMFs are oscillatory functionsdetermining the optimal filtering frequency band. This is
with varying amplitude and frequency. They have the samdone by two types of the spectral Kurtosis (SK) algorithms:
length as the original signal and each IMF corresponds tofast kurtogram and Wavelet Kurtogram. The SK is the
determined frequency range. Moreover, when the degradéurth-order cumulant of each frequency component of a
tion is at an early stage, the EMD are buried by the noissignal (Millioz & Martin, 2011):
which constitutes the difficulty of earlier fault detection (Ali <H* (t, f ) >
et al., 2015). The Hilbert spectral analysis is applied to the SK(f) =—5++— -2 )

IMF to obtain the analytic form of the signal and after that, <H (t’ f)>

this signal is combined with the instantaneous frequency tohere H(f) represents the STFT of the concerned signal
obtain the Hilbert spectral density (HSD). In (Soualhi et al.and <> is the average value.

2015), authors used the Hilbert marginal spectrum in the |n order to resolve the problem of the heavy calculation,
IMF to extract bearing fault indicators by choosing the IMFthe fast kurtogram (FK) was introduced. The FK replaces
which corresponds to the bearing characteristic frequenciege STFT by a set of filters by dividing the frequency range
Furthermore, Zhu and Shen (2012) compared the Tim&n combinations of center frequen€yand bandwidthB,,.
frequency techniques for non-stationary signals. The resuliioreover, a set of Morlet wavelet filters replaced the STFT
of this comparison showed that the HHT is the most adapo form the wavelet kurtogram. The FK aims at dividing the
tive to non-stationary signals. The HHT expresses a loc@fequency in different bands. The chosen filter is the one
information and instantaneous frequency in a high timethat maximizes the SK.

frequency resolution. Another comparison has been made . )
by Li et al. (2016a). This paper compared different time- Another tlmg-frequency method is the wavelet transform
frequency techniques including STFT, WT, PWVD and(WT). There exist different types of wavelet transform:
HHT based on the quality representation but also on thg3 1. Continuouswavelet transform

execution time of each technique. The PWVD was the

slowest. A classical method of time-frequency analysis is the con-

tinuous wavelet transform (CWT). CWT projects a signal

In an analogous way with the EMD, local mean decomy(t) on elementary functions (EF) called wavelets drawn

position (LMD) was proposed as a self-adaptive timefrom mother wavelets by translations and dilatations to

frequency analysis method. LMD consists of decomposing fepresent it in two-dimensional plane (Auger & Flandrin,
signal into a set of product functions (PFs) where each PF @96). CWT is expressed as follows:

the product of a frequency modulated frequency and its 1 t-s S0 (~00, 0)
corresponding envelope component. Each PF is a mono- CWT(s b=—j ()w*(—j d { "7 (6)
component amplitude modulated - frequency modulated Jb b bO[0, o}

(AM-FM) signal. In Park et al. (2011), complex local MeaN, here s is the translation (the location parameter of the

decomposition (CLMD) was developed to process not Onl¥/vavele'[) ando is the scaling (dilation) parameter of the

real-valued signals but also complex valued signals. EXpev\'/avelet.z//* is the complex conjugate of the mother wavelet

rimental results showed that LMD is capable of revealin% (Yan et al., 2014). CWT can be defined as the sum over

information about amplitude and frequency with more accuf(i]me of the signal, multiplied by scaled and delayed versions

racy than EMD. This technique was also used in a metho :
Of the wavelet functiony.

for fault diagnosis in Li et al. (2016b). This method consists The WT, like the STFT, depends on a function of time

ngzpa?rmnsgellélc\:/{Dthzno:c)rliemle?nnlilFt(\)/vﬁit::tﬁ '&gi?nq?zcésﬂtjggt:?unrfoqnd scale but the window duration in that STFT is constant



while the WT uses a self-adaptive window given by a wavedetection and elimination of impulsive noise. In the context
let function which duration changes within the frequencyof PHM, recently, CWT was joined to a blind source separa-
inversely related to the scale factor(Giurgiutiu et al., tion technique to analyze the wavelet coefficients and the
2003). This difference is illustrated by fig.8. Whb}»1, the evolution of each independent source is used for health
wavelet is dilated and wheb|{1 the wavelet is compressed assessment (Benkedjouh et al., 2018).

(Hammond & White, 1996). In order to increase the effectiveness of the EMD, it has
A A been combined with the classic wavelet transform in Cao et
al. (2016) and called the empirical wavelet transform

(EWT). This method was applied for fault detection of the

wheel-bearing of trains. To ensure the efficiency of this

method, different faults were experimented (outer race fault,
roller fault, and the compound fault of outer race and roller)
and it showed satisfactory results.

Scale

Frequency (Hz)

» »
Time v Time »

STFT Wavelet Analysis 3.3.2. Discrete wavelet transform
Figure 8. Sampling of the time-frequency plane for STFT Another classical wavelet transform is the discrete wave-

.and wavelet analysis. let transform (DWT). DWT uses instead of the continuous
There are multiple shapes of wavelets. The most populaale and time, discretized parameters to adapt the sampling

is the Morlet wavelet : condition of the physical signald=2, s=k2'. Wherej is the
t—s) 1 i%(t;sj —[[%5)2/202} parameter about dilation, or the visibility in frequency &nd
w(_):_e ba (7 is the parameter about the translation. This can be very
b a powerful because it minimizes drastically the calculation

where wy is the central frequency of the mother wavelett'me'

(modulation parameter) andis the scaling parameter that  The DWT is expressed as follows:
affects the width of the window. _
t-k2’

In Nagaraju and Mallikarijuna Rao (2009), authprs- DWT(j,k):i,J‘x(t) v [—.jdt (8)
posed the addition of phase angle information into 3D CWT \/5 2/

plot to improve the crack detection in rotor systems. Moreo-

ver, in Ozturk et al. (2008), authors proposed the extractio-rgh's transfor_m can be achleved_ by mtegratmg_ a pair of low-
of the mean frequency from the scalogram to detect th ass and high-pass wavelet filters, respective{ly and

—(_ 1K1 | : ;
progression of pitting damage in gears. It is important t (=(-1)""h(1K). These filters are obtained from the

note that the scalogram is defined as the squared modulus\’%éjll"elejt functiort¥(t) and its scaling functio®(t) given by
the CWT which represents the energy of the signal in time( allat,1989):

scale plane. In Rafiee and Tse (2009), authors proposed the ©O(t) =Zh(k)x/§G)(2t— k) Zh(k) =2
autocorrelation of continuous wavelet coefficients for gear- K with k

box fault diagnosis instead of using the continuous wavelet lP(t) :ZQ(k)x/EO(Zt— k) ZQ(k) =0
coefficients (CWCs) themselves because they contain a lot k k

of information in e?‘Ch scale that can generate a big loss gi,q coefficientsh(k) are a sequence of real or complex
data after resampling. The autocorrelation of (CWC) over:

comes this drawback by reducing the size of the data Wi&gg;nnggrﬁltggl.led the scaling function coefficients (or the
keeping the content of information in each frequency band.

Wang et al. (2010a) developed a fault growth parameter
(FGP) for quantitative assessment based on the variation ]%

complex Morlet CWT amplitude at all the scales of the

©)

When applying these filters on the signal, low and high
guency elements are obtained:

transform under varying gearbox conditions. Authors pre- IO :Zajk'h(k) (Low frequency elements
sented in Kankar et al. (2011) a method based on the mini- A

mum Shannon entropy criterion (MSEC) to choose the most dyy = Zaj «9(K) (High frequency elemest
convenient mother wavelet and to define the scale that k

erea andd are called respectively the approximation

matches the characteristic defect frequency. The adequzc;\%
oefficient and the detail coefficient.

wavelet minimizes the Shannon entropy of the correspon

ing wavelet coefficients. Among all mother wavelets, the
selected wavelet is the complex Morlet wavelet (CMW) and
the results showed that it has satisfying results regardiqgo
bearing and gear fault detection. Lately, author proposed igr

In Kim et al. (2007), a comparative study was applied on
n-stationary vibration signals for fault detection of shaft-
Dai et al. (2016) a continuous wavelet transform approac acked during acceleration and deceleration._ This study
for eﬁeciive harmonic parameters estimation within the ompared the STFT, WVD and DWT. The obtained results
showed the efficiency of the DWT to extract good features.



Moreover, to take into account the noisy state of the envi- In Wang et al. (2010b), the authors made a comparison
ronment, authors developed in Omar and Gaouda (2012)keetween three techniques dedicated to denoising signal
novel method to detect and localize gear tooth defects. Thissing the NeighCoeff shrinkage method. These methods are
method uses the dynamic Kaiser’'s window in the wavelethe DWT, the second generation wavelet transform (SGWT)
domain where the shape, size and sliding rate are variabl@nd the DTCWT. The obtained results showed the efficien-
In Kumar and Singh (2013), authors underlined the difficul-cy of the DTCWT to diagnose composed faults of rolling
ty to assess bearing fault size. So, they proposed the useadéments bearing. First, the signdl) is transformed into
the Symlet wavelet to measure the width outer race defect tie wavelet domain. The noisy wavelet coefficients are
the roller bearing. grouped and filtered with thresholding coefficients. The
L . . denoised signal is obtained using the inverse wavelet trans-
The com_blnat|on_0f the WT with other techniques ha%orm. The DTCWT has a small drawback which is the diffi-
been experimented in many works. For instance, a new datgﬂlt of multi-resolution analysis of fault characteristic data
driven method for fault detection in air handling units was y e . -
developed in Yang and Nagarajaiah (2014). This method in high frequency band. This problem is resolved by using
i e e dual tree complex wavelet packet transform (DTCWPT).
based on the principal components analysis (PCA) and WT.

The WT decomposes the signal in approximations and dé&.3.4. Wavelet packet transform

tails coefficients by passing the signal and the coefficients As a generalization of the DWT, the wavelet packet trans-

through low-pasH, and high-pas$; filters thanks to a - . o
recursive algorithm. These coefficients are taken at differer{f) rm (WPT) was introduced for their better adaptability to

frequencies and the original signal at ke step of decom- non-stationary signals because it can perform an adaptive
TP . _ decomposition of the time-frequency axis (Serbes et al.,
position is given by: X(t) = & + dc + dcy +---+dy (see 2016) and used, for instance, for signal processing of vibra-

fig.9). d tion and acoustic emission signals. WPT is based on wavelet
o ™ % § filters and the coefficients at each level can be written as:
X — —> 0, 2K —\p/K
- N W =W ()" {2 9 -
«- I8 WEE =W (1 o2 1)
Figure 9. Two level wavelet decomposition tree. whereW refers to thejth decomposed level of the

where|2 denotes down sampling and means the numb‘i’)’/avelet packet coefficient at the frequency band lo{®

of coefficients is halved through the filters. The reconstitu- i : . : ) -
tion of the signal is done by filtering and up sampling (Whi-<k< 2-1) with h(-2n) andg(-2n) are the low-pass and high

tening the signal by filling with zeros between samples)pass filters respectively_ Whi-Ch depend Of- the mo_th_er wave-
. let. Actually, the approximations and details are divided into
. . . 'Small elements which increase the efficiency of WPT to-
and the perturbations which avoid false alarms. Featur%ards the CWT and DWT. The WPT is an efficient tool for

extracted from the .reconstructed signal are injected in thgnalyzing the bearing fault signal in different frequency
PCA for fault detection. bands. This advantage was applied by Hemmati et al. (2016)
3.3.3. Dual-tree complex wavelet transform for bearing fault detection. This method consists of calculat-

ing the kurtosis-to-Shannon entropy ratio to determine the
The WT technique has been used for signal denoising aﬁg by

undergoes improvements also like the case of Wang et al,, qtic emission signals of roller bearing. After this, the

(2010Db). In this paper, authors proposed to use dual-treg, e|one of acoustic emission signals is applied in the dif-
complex wavelet transform (DTCWT) for the enhancementy et frequency bands given by the WPT and the Kurtosis-

of signal denoising and multi-fault detection in rotating,,_shannon entropy ratio is calculated for each envelope in

machines. DTCWT was introduced by Kingsbury (1998). It qer o determine the optimal frequency band given by the

has properties that overcome some drawbacks of the DW ighest ratio and then the lowest Shannon entropy value.

such as shift-invariance and the selection of direction whichpep, " this hand pass is de-noised using adaptive threshold-
yields the possibility of using two or higher dimensions. . ) B )
The complex analytical wavelet considers only positivdd Method given bythr =2xIn(n) xs where n is the

frequency and is composed of two real-valued waveletdength of the discrete signal asds an estimate of the noise
V\F(t):Wh(t)+jWg(t) whereW,(t)=H[W;]. H[.] is the Hilbert level. Finally, the spectrum of squared Hilbert transform is
transform. Moreover, DTCWT is a combination of two applied under variable rotating speeds and loading condi-
parallel wavelet transforms which are represented by ations to estimate the time difference between the double
upper and lower tree corresponding, respectively, to real argcoustic emission impulses for estimating the defect size on
imaginary elements. rolling element bearings.

_ The DTCWT is almost s_hift invariant which means that it3'3.5. Second gener ation wavelet transform

is possible to detect transient effects. Furthermore, it reduc-
es frequency aliasing effects thanks to the property of ana- Another technique derived from the DWT is the second
Iytic filters. generation wavelet transform (SGWT) where the wavelets

timal mother wavelet and applying the WPT on the



functions are not designed by translations and dilations djy translating and modulating a simple windgft) ¢ L2(R).
the mother wavelet but designed by applying a liftingConsider the scalk > 0 , the frequency modulatidp and
scheme (Sweldens, 1998). In an analogous way to the DWihe translatiors. We notey= (b, s, fo)) ¢ I' =R*xR? and we
the lifting scheme aims, firstly, at decomposing the signatiefine a "time-frequency" atom as follows:

into approximation and detail coefficients. This can be

achieved by, firstly, splitting the signal into odd and even g,(t) :ig(t‘_sj it (12)
components where: v Jb b

sple(x() = ({ x(2t-3) { {23))
Xoaa =1{ X(2 t_l)} (11) energy of an atom
Xeven :{ X(2 t)} time-frequency’

———————— 1 1/b
with t=1,2,...n. Secondly, the detail coefficients are given -L_a_v
|
|

by D = Xoqq-Predict (Xeven WherePredictXeve) is a predic-

tion operator of adjacent even components. The prediction

operator can be an average of two even indexed neighbors. 0
In the same way, the approximation coefficients are given
by A = Xevent Update (detail) where Update (detalil) is an :
update operator based on previously calculated coefficientdT€duency
The P and U operators are analogoug tndh functions

used for the DWT. L
As shown in figure 11:

Many researches presented some enhancement on thg comparison with the time, the functig(t) is centered
SGWT. For instance, authors presented in Yuan et ahrounds and its energy is concentrated neawith a size
(2010) a novel method (see fig.10) for gear fault detectiony gportional tob.

This method consists of combining customized multiwave: |, comparison with the frequency, the Fourier transform

let schemes to a sliding window denoising. First, differenby(w) is centered arounig and its energy concentrated near
vector prediction and update operators with the desirablgyith a size proportional to i/

properties of biorthogonality, symmetry, short support an . - . .

vanishing moments are buiit, by using Hermite spline inter- 1he resulting dictionary is the family of vectobs =
polation (Averbuch & Zheludev, 2002). Then, the adequatéd(1),er- The dictionary is complete only if the linear com-
operators are chosen based on the minimum entropy prifi"ation of the vectors oD is dense in the Hilbert space,
ciple. Then, by considering the period nature of the gearbo&erel- (R).

signals, a multiwavelet sliding window is used to divide the Tq effectively represent a signet), we must select an

detail signal in segmentations to keep significant informagppropriate subset of atongs,(t)) neN with y, = (0o, S, for)
tion which leads to extract the fault features for fault identich as :

fication in gearbox signals. These segmentations undergo a
threshold denoising. Then the denoised signal is recon- <
Stiotod. J J x()= Y a,(g.(1) (13)

p Time

Figure 11.Representation of the energy of an atom "time-
according to the scale b, the frequency modula-
tion fy and the translation s.

n=—co

Input signal
_ : : The coefficientsa, depend on the atog),(t) chosen. The
SITER . | EEMEIEEE e siiding windo selected atoms and their corresponding coefficients provide
input (P and U determinin

the information about the time-frequency characteristics

v of the signal. This approach was proposed in the paper of

‘ Liu etal. (2002) to detect bearing failure. The vibration
B reatment signal is first decomposed into time-frequency atoms with

matching pursuit. Then, the vibration signature was ex-
tracted using high frequency atoms with small scales. Since
Wavelet transform performs as band pass filtering with dhe signature obtained this way contained less unrelated
constant relative-bandwidth. This is suitable to analyze&omponents to the defects than traditional band-pass filter-
some signals but restricts the adaptability of the transforning, it thus had a higher signal-to-noise ratio and gave more

To deal with more general situations, Mallat and Zhangexplicit information for the bearing failure detection.

(1993) proposed the matching pursuit algorithm and the

concept of time-frequency atoms. In fact, to extract informa; Table 4 allows d_|st|.ngwsh|ng two_types of tlme-_
; . ! . - .frequency representation: linear (WT, STFT) and quadratic
tion from a signal, it may be interesting to decompose thi

signal into a family of well-localized functions both in time f\/\hgner Ville distribution, HHT). The latter are more effi-

and in frequency. These functions, called "time-frequency'c'ent than the first in terms of time-frequency res_olutlon. On
. I the other hand, they suffer from problems of interference

atoms, are grouped in a dictionary. Mallat and Zhang pr between frequency components

pose to generate such a dictionary by modifying the scale, q y P )

Figure 10. The flow chart of the proposed method.
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