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Abstract. We propose a physics-informed Echo State Network (ESN)
to predict the evolution of chaotic systems. Compared to conventional
ESNs, the physics-informed ESNs are trained to solve supervised learning
tasks while ensuring that their predictions do not violate physical laws.
This is achieved by introducing an additional loss function during the
training of the ESNs, which penalizes non-physical predictions without
the need of any additional training data. This approach is demonstrated
on a chaotic Lorenz system, where the physics-informed ESNs improve
the predictability horizon by about two Lyapunov times as compared to
conventional ESNs. The proposed framework shows the potential of using
machine learning combined with prior physical knowledge to improve the
time-accurate prediction of chaotic dynamical systems.

Keywords: Echo State Networks · Physics-Informed Neural Networks
· Chaotic Dynamical Systems.

1 Introduction

Over the past few years, there has been a rapid increase in the development of
machine learning techniques, which have been applied with success to various
disciplines, from image or speech recognition [2, 5] to playing Go [14]. However,
the application of such methods to the study and forecasting of physical systems
has only been recently explored including some applications in the field of fluid
dynamics [4,6,13,15]. One of the major challenges for using machine learning al-
gorithms for the study of complex physical systems is the prohibitive cost of data
acquisition and generation for training [1,12]. However, in complex physical sys-
tems, there exists a large amount of prior knowledge, which can be exploited to
improve existing machine learning approaches. These hybrid approaches, called
physics-informed machine learning, have been applied with some success to flow-
structure interaction problems [12], turbulence modelling [6] and the solution of
partial differential equations (PDEs) [12].
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In this study, we propose an approach to combine physical knowledge with a
machine learning algorithm to time-accurately forecast the evolution of a chaotic
dynamical system. The machine learning tools we use are based on reservoir
computing [9], in particular, Echo State Networks (ESNs). ESNs have shown to
predict nonlinear and chaotic dynamics more accurately and for a longer time
horizon than other deep learning algorithms [9]. ESNs have also recently been
used to predict the evolution of spatiotemporal chaotic systems [10, 11]. In the
present study, ESNs are augmented by physical constraints to accurately forecast
the evolution of a prototypical chaotic system, i.e., the Lorenz system [7].

Sections 2 details the method used for the training and for forecasting the dy-
namical systems, both with conventional ESNs and the newly proposed physics-
informed ESNs. Results are presented in section 3 and final comments are sum-
marized in section 4.

2 Methodology

The Echo State Network (ESN) approach presented in [8] is used here. Given a
training input signal u(n) of dimension Nu and a desired known target output
signal y(n) of dimension Ny, the ESN has to learn a model with output ŷ(n)
matching y(n). n = 1, ..., Nt is the discrete time and Nt is the number of data
points in the training dataset covering a discrete time from 0 until time T = (Nt−
1)∆t. In the particular case studied here, where the forecasting of a dynamical
system is of interest, the desired output signal is equal to the input signal at the
next time step, i.e., y(n) = u(n+ 1).

The ESN is composed of an artificial high dimensional dynamical system,
called a reservoir, whose states at time n are represented by a vector, x(n),
of dimension Nx, representing the reservoir neuron activations. This reservoir is
coupled to the input signal, u, via an input-to-reservoir matrix, Win of dimension
Nx × Nu. The output of the reservoir, ŷ, is deduced from the states via the
reservoir-to-output matrix, Wout of dimension Ny×Nx, as a linear combination
of the reservoir states:

ŷ = Woutx (1)

In this work, a non-leaky reservoir is used, where the state of the reservoir evolves
according to:

x(n+ 1) = tanh (Winu(n) + Wx(n)) (2)

where W is the recurrent weight matrix of dimension Nx×Nx and the (element-
wise) tanh function is used as an activation function for the reservoir neurons.

In the conventional ESN approach, illustrated in Fig. 1a, the input and re-
current matrices, Win and W , are randomly initialized once and are not further
trained. These are typically sparse matrices constructed so that the reservoir ver-
ifies the Echo State Property [3]. Only the output matrix, Wout, is then trained
to minimize the mean-square-error, Ed, between the ESN predictions and the
data defined as:

Ed =
1

Ny

Ny∑
i=1

1

Nt

Nt∑
n=1

(ŷi(n)− yi(n))2 (3)
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The subscript d is used to indicate the error based on the available data.
In the present implementation, following [11], Win is generated such that

each row of the matrix has only one randomly chosen nonzero element, which
is independently taken from a uniform distribution in the interval [−σin, σin].
W is constructed to have an average connectivity 〈d〉 and the non-zero elements
are taken from a uniform distribution over the interval [−1, 1]. All the coeffi-
cients of W are then multiplied by a constant coefficient for the largest absolute
eigenvalue of W to be equal to a value Λ.

Input layer
Win

W

Output layer
Wout

Reservoir

u(n)
y(n)^

(a)
y(n)=u(n+1)

Prediction

Training

-

Input layer
Win

W

Output layer
Wout

Reservoir

u(n)

(b)

ŷ(n)=u(n+1)^^

Training

Fig. 1. Schematic of the ESN during (a) training and (b) future prediction. The phys-
ical constraints are imposed during the training phase (a).

After training, to obtain predictions from the ESN for future time t > T , the
output of the ESN is looped back as the input of the ESN and it then evolves
autonomously as represented in Fig. 1b.

2.1 Training

As discussed earlier, the training of the ESN consists of the optimization of
Wout. As the outputs of the ESN, ŷ, are a linear combination of the states, x,
Wout can be obtained by using a simple Ridge regression:

Wout = Y XT
(
XXT + γI

)−1
(4)

where Y and X are respectively the column-concatenation of the various time
instants of the output data, y, and associated ESN states x. γ is the Tikhonov
regularization factor, which helps avoid overfitting. Explicitly, the optimization
in Eq. (4) reads:

Wout = argmin
Wout

1

Ny

Ny∑
i=1

(
Nt∑
n=1

(ŷi(n)− yi(n))2 + γ||wout,i||2
)

(5)

where wout,i denotes the i-th row of Wout. This optimization problem penal-
izes large values of Wout, generally improves the feedback stability and avoids
overfitting [8].



4 N.A.K. Doan et al.

In this work, following the approach of [12] for artificial deep feedforward
neural networks, we propose an alternative approach to training Wout, which
combines the data available with prior physical knowledge of the system under
investigation. Let us first assume that the dynamical system is governed by the
following nonlinear differential equation:

F(y) ≡ ∂ty +N (y) = 0 (6)

where F is a general non-linear operator, ∂t is the time derivative and N is a
nonlinear differential operator. Eq. (6) represents a formal equation describing
the dynamics of a generic nonlinear system. The training phase can be reframed
to make use of our knowledge of F by minimising the mean squared error, Ed,
and a physical error, Ep, based on F :

Etot = Ed + Ep, where Ep =
1

Ny

Ny∑
i=1

1

Np

Np∑
p=1

|F(ŷi(np))|2 (7)

Here, the set {ŷ(np)}Np

p=1 denotes “collocation points” for F , which are defined
as a prediction horizon of Np datapoints obtained from the ESN covering the
time period (T +∆t) ≤ t ≤ (T +Np∆t). Compared to the conventional approach
where the regularization of Wout is based on avoiding extreme values of Wout,
our proposed method regularizes Wout by using our prior physical knowledge.
Equation (7), which is a key equation, shows how to constrain our prior phys-
ical knowledge in the loss function. Therefore, this procedure ensures that the
ESN becomes predictive because of data training and the ensuing prediction is
consistent with the physics. It is motivated by the fact that in many complex
physical systems, the cost of data acquisition is prohibitive and thus, there are
many instances where only a small amount of data is available for the training
of neural networks. In this context, most existing machine learning approaches
lack robustness: Our approach better leverages on the information content of the
data that the machine learning algorithm uses. Our physics-informed framework
is straightforward to implement because it only requires the evaluation of the
residual, but it does not require the computation of the exact solution.

3 Results

The approach described in section 2 is applied for forecasting the chaotic evo-
lution of the chaotic Lorenz system, which is described by the following equa-
tions [7]:

du1
dt

= σ(u2 − u1),
du2
dt

= u1(ρ− u3)− u2,
du3
dt

= u1u2 − βu3 (8)

where ρ = 28, σ = 10 and β = 8/3. These are the standard values of the Lorenz
system that spawn a chaotic solution [7]. The size of the training dataset is
Nt = 1000 and the timestep between two time instants is ∆t = 0.01.
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The parameters of the reservoir both for the conventional and physics-informed
ESNs are taken to be: σin = 0.15, Λ = 0.4 and 〈d〉 = 3. In the case of the con-
ventional ESN, the value of γ = 0.0001 is used for the Tikhonov regularization.
These values of the hyperparameters are taken from previous studies [10,11].

For the physics-informed ESN, a prediction horizon of Np = 1000 points is
used and the physical error is estimated by discretizing Eq. (8) using an explicit
Euler time-integration scheme. The choice of Np = 1000 gives equal importance
to the error based on the data and the error based on the physical constraints.
The optimization of Wout is performed using the L-BFGS-B algorithm with the
Wout obtained by Ridge regression (Eq. (4)) as the initial guess.

The predictions for the Lorenz system by conventional and physics-informed
ESNs are compared with the actual evolution in Fig. 2, where the time is nor-
malized by the largest Lyapunov exponent, λmax = 0.934, and the reservoir has
200 units. Figure 2d shows the evolution of the normalized error, which is defined
as

E(n) =
||u(n)− û(n)||
〈||u||2〉1/2

(9)

where 〈·〉 denotes the time average. The physics-informed ESN shows a remark-
able improvement of the time over which the predictions are accurate. Indeed,
the time for the normalized error to exceed 0.2, which is the threshold used
here to define the predictability horizon, improves from 4 Lyapunov times to
approximately 5.5 with the physics-informed ESN. The dependence of the pre-

Fig. 2. Prediction of the Lorenz system (a) u1, (b) u2, (c) u3 and (d) E using the
conventional ESN (dotted red lines) and the physics-informed ESN (dashed blue lines).
The actual evolution of the Lorenz system is shown using full black lines.
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dictability horizon on the reservoir size is estimated as follows (Fig. 3). First,
the trained physics-informed and conventional ESNs are run for an ensemble of
100 different initial conditions. Second, for each run, the predictability horizon
is calculated. Third, the mean and standard deviation of the predictability hori-
zon are computed from the ensemble. It is observed that the physics-informed
approach provides a marked improvement of the predictability horizon over con-
ventional ESNs and, most significantly, for reservoirs of intermediate sizes. The
only exception is for the smallest reservoir (Nx = 50). In principle, it may be
conjectured that a conventional ESN may have a similar performance to that of a
physics-informed ESN by ad-hoc optimization of the hyperparameters. However,
no efficient methods are available (to date) for hyperparameter optimization [9].
The approach proposed here allows us to improve the performance of the ESN
(optimizing Wout) by adding a constraint on the physics, i.e., the governing
equations, and not by ad-hoc tuning of the hyperparameters. This suggests that
the physics-informed approach is more robust than the conventional approach.

Fig. 3. Mean predictability horizon of the conventional ESN (dotted line with circles)
and physics-informed ESN (dashed line with crosses) as a function of the reservoir size
(Nx). The associated gray lines indicate the standard deviation from the mean.

4 Conclusions and future directions

We propose an approach for training echo state networks (ESNs), which con-
strains the knowledge of the physical equations that govern a dynamical system.
This physics-informed approach is shown to be more robust than purely data-
trained ESNs: The predictability horizon is markedly increased without requiring
additional training data. In ongoing work, (i) the impact that the number of col-
location points has on the accuracy of the ESNs is thoroughly assessed; (ii) the
reason why the predictability horizon saturates as the reservoirs become larger
is investigated; and (iii) the physics-informed ESNs are applied to high dimen-
sional fluid dynamics systems. Importantly, the physics-informed framework we
propose will be exploited to minimize the data required for training. This work
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opens up new possibilities for the time-accurate prediction of the dynamics of
chaotic systems by constraining the underlying physical laws.
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