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The dynamics of a 3D bimodal turbulent wake downstream a square-back Ahmed body are exper-
imentally studied in a wind-tunnel through high-frequency wall pressure probes mapping the rear of
the model and a horizontal 2D velocity field. The barycenters of the pressure distribution over the
rear part of the model and the intensity recirculation are found highly correlated. Both described
the most energetic large-scale structures dynamics, confirming the relation between the large-scale
recirculation bubble and its wall pressure foot-print. Focusing on the pressure, its barycenter tra-
jectory has a stochastic behavior but its low frequencies dynamics exhibit the same characteristics
as a weak strange chaotic attractor system, with two well defined attractors. The low frequencies
dynamics associated to the large-scale structures are then analyzed. The largest Lyapunov expo-
nent is first estimated, leading to a low positive value characteristic of strange attractors and weak
chaotic systems. Afterwards, analyzing the autocorrelation function of the time-series, we compute
the correlation dimension, larger than two. The signal is finally transformed and analyzed as a
telegraph signal showing that its dynamics correspond to a quasi-random telegraph signal. This is
the first demonstration that the low frequencies dynamics of a turbulent 3D wake are not a purely
stochastic process but rather a weak chaotic process exhibiting strange attractors. From the flow-
control point of view, it also opens the path to more simple closed-loop flow control strategies aiming
at the stabilization of the wake and the control of the dynamics of the wake barycenter.

PACS numbers: 47.27.Cn

INTRODUCTION

It is well-known that the turbulent wakes downstream
3D bluff-bodies can be very complex, exhibiting large-
scale and small-scale coherent structures with strongly
intermittent behaviors. Among the various 3D bluff-
bodies, one of the most famous is the so-called “Ahmed
body” which is a model used in automotive aerodynam-
ics to study the wake of a very simplified passenger car
[1]. Depending on the geometry of the rear part, the
overall structure of the wake changes together with the
aerodynamic drag coefficient. One can find a competition
between large-scale streamwise longitudinal vortices [2],
spanwise Kelvin-Helmholtz vortices, recirculation bub-
bles or toröıdal vortices. If the time-averaged velocity
fields are relatively simple and well-defined, the instan-
taneous velocity fields are very complex and exhibits to-
gether large and small-scale structures leading to one of
the most complex 3D turbulent flows. Recently, it has
been shown experimentally [3] and numerically [4] that
square-back Ahmed body at high Reynolds numbers ex-
hibits a peculiar behavior with a bimodal wake, which
was first observed in the laminar regime [5]. Indeed, de-
pending on the geometric parameters (aspect ratio of the
bluff-body’s cross-section [6], underbody flow [7]), one
can observe a right-left oscillation of the global wake,
defining the so-called Reflectional Symmetry Breaking
(RSB) modes.

The large-scale dynamics of another wake, which is 3D
turbulent axisymmetric, has been captured by [8], using
a deterministic model for the persistent laminar insta-
bilities coupled with a stochastic representation of the
turbulent fluctuations. For such dynamics two different
time scales are notable: a short one is associated to the
vortex shedding process whereas the symmetry breaking
are characterized by a long time scale [3, 9]. We are
interested here in the characterization of the bimodal os-
cillation of the near wake in the framework of dynamical
systems theory and, more precisely, as a chaotic system.

A classic example of a chaotic system is the Lorenz
attractor and corresponding Lorenz system, whose char-
acteristic butterfly shape is famous [10]. The so-called
Lorenz system is a simplified “weather model” defined
by the set of three ordinary differential equations:

ẋ = σ(y − x)

ẏ = x(R− z)− y
ż = xy − βz

. (1)

With the correct choice for the three parameters (σ = 16,
R = 45.92 and β = 4), the trajectory plotted in the
(x, y, z) space exhibits a chaotic behavior, circling in an
apparent random manner between two stable attractors.

Since the pioneering work of Lorenz, it has been shown
that many biological, natural or artificial systems, either
at very small or very large scales, follow a chaotic dy-
namics. The brain wave activity (EEG) [11] or the heart
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rate activity (ECG) [12] can exhibit chaotic behaviors.
In some cases chaotic excitations can be used to study
the response of a mechanical systems. A variation in
correlation dimensions can be used as an indicator of a
fracture in the overall structure [13]. Chaotic behavior
has been found in trading market time-series [14]. One
can also find chaotic behavior for large-scale phenomena
like earthquakes [15].

In the following, we will first show how the 3D full tur-
bulent wake dynamics can be characterized by the single
trajectory of its projected barycenter. After recovering
the classic chaotic pattern, we will analyze more thor-
oughly the inner characteristics of the large-scale dynam-
ical system. We will, in particular, evaluate the family of
random process to which it belongs, the largest Lyapunov
exponent of the system and the correlation dimension.

EXPERIMENTAL SET-UP

Ahmed body

The bluff body is a 0.7 scale of the original Ahmed
body (L = 0.731 m long, H = 0.202 m high and W =
0.272 m wide), as described in [16]. The rear part of the
model is a square-back geometry with sharp edges.

Wind-tunnel

Experiments are carried out in the PRISME laboratory
wind-tunnel (Orléans, France). The model is mounted
on a raised floor with a properly profiled leading edge
and an adjustable trailing edge to avoid undesired flow
separations. The ground clearance is set to C = 5 cm.
In the following, the free-stream velocity is U∞ = 30
m.s−1, which corresponds to a Reynolds number based
on the height of the model ReH = U∞H/νair = 3.9×105

where νair is the kinematic viscosity of the air at ambient
temperature. The origin is located on the rear of model
(x = 0), in the vertical symmetry plane (y = 0) and
on the raised floor (z = 0). Nondimensionalization is
applied to distances such as x∗ = x/H, y∗ = y/H and
z∗ = z/H.

Sensors

The wall-pressure over the rear part of the model is
studied using a set of 95 pressure vinyls defining an area
denoted Sp and covering 70% of the entire surface Sr, as
shown on Fig. 1. Each vinyl is 2 cm away from each of its
neighbors and is connected to a 32-channels microDAQ
pressure scanner insuring an accuracy of ±17 Pa located
inside the body. The number of samples per acquisition
is unfortunately bounded to N = 3 × 104, making the

sampling frequency for the pressure fP dependent on the
acquisition time TP : fP = N/TP . A typical instanta-
neous pressure field is shown on Fig. 2 (a). From these
instantaneous pressure fields, a global indicator of the
state of the wake can be inferred, as it will be detailed in
the following section.

The velocity fields are obtained using a standard PIV
(Particle Image Velocimetry) set-up based on a double-
frame 14.50 Hz TSI camera streaming snapshots on a
computer and synchronized with a double-cavity pulsed
YaG laser. The investigated PIV plane is the near wake
horizontal plane at z∗ = 1.

The 2D velocity fields are computed at the frequency
fPIV = 4 Hz using an optical flow algorithm imple-
mented on a GPU. The interrogation window size is
16×16 pixels and the calculation is based on three itera-
tions for each of the three pyramid reduction levels. One
can find more details on this measurement method in
[17–21] which rigorously demonstrate its offline accuracy
as well as its online efficiency in closed-loop flow control
experiments. An example of a 2D instantaneous velocity
field is shown on Fig. 2 (b). One can see the complexity
of the turbulent wake, with large and small-scale strongly
fluctuating vortices.

FIG. 1. Upper view (top figure) and side view (lower left fig-
ure) and view from behind (lower right figure) of the Ahmed
body. The PIV measurement plane is shown on top (green
rectangle) and lower left (green line) figure. The rear part
of the model is mapped with 95 pressure sensors (red circles
on lower right figure). The bluff-body is fixed on the aero-
dynamic balance through a supplementary leg (grey part on
lower figures).

The bluff body is linked to an aerodynamic balance
through a cylindrical leg of diameter 32 mm localized at
the center of the bottom face. This leg does not modify
the reflectional symmetry of the squareback body but
it has certainly an influence on the near wake, which is
discussed in the following section. The aerodynamic data
are not used in the present study.
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FIG. 2. Typical (a) instantaneous pressure field over the rear
part of the model and (b) instantaneous 2D velocity field in
the horizontal plane shown on Fig. 1. The diamond (white)
is the instantaneous barycenter position of respectively (a)
the rear pressure Gp and (b) the intensity recirculation Grec,
which are introduced and dicussed in the following section.

DYNAMIC OF THE WAKE BARYCENTER

Wake characterization

We are interested in the large-scale dynamics of the
global wake. This is the reason why we define the in-
stantaneous wall pressure barycenter which can be seen
as the footprint of the wake. Denoting the space average
of a quantity f over an area S as 〈f〉S , we compute the
pressure barycenter at x∗ = 0 as:

−−−−→
OGp(t) =

(
y∗p(t)
z∗p(t)

)
=

 〈y∗p(t)〉Sp

〈p(t)〉Sp

〈z∗p(t)〉Sp

〈p(t)〉Sp

 , (2)

where p(t) = p(y∗, z∗, t) is the local pressure measured
at time t. Thus the instantaneous barycenter of the de-
pression can be tracked at each time step. In the same
way we define the instantaneous recirculation intensity
barycenter from the velocity fields in the PIV horizontal
plane at z∗ = 1 as:

−−−−−−→
OGrec(t) =

(
x∗rec(t)
y∗rec(t)

)
=

 〈x∗urec(t)〉Arec(t)

〈urec(t)〉Arec(t)

〈y∗urec(t)〉Arec(t)

〈urec(t)〉Arec(t)

 , (3)

where urec(t) = urec(x
∗, y∗, t) and Arec(t) are respec-

tively the local streamwise component of the recirculation
velocity and the recirculation area at time t. An example
of the evolution in time is given in Fig. 3 for y∗p (a) and
y∗rec (c).

The probability density function (PDF) is then com-
puted from the spanwise position of both barycenters.
Figure 3 shows clearly the bimodality behavior of the tur-
bulent wake whether it is through the pressure barycenter
PDF Py∗p (b) or the recirculation barycenter PDF Py∗rec
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FIG. 3. Pressure barycenter spanwise position y∗P : (a) evo-
lution in time and (b) normalized PDF P ∗yp for TP = 1 min
(fP = 500 Hz). Recirculation intensity barycenter spanwise
position y∗rec: (c) evolution in time and (d) normalized PDF
Py∗

rec
for TPIV = 1 min. Red curves show the data smoothed

over one second.

(d). Indeed their PDFs have two peaks whose positions
are nearly symmetric with respect to the y-axis. The dif-
ference in the peaks value is due to the low acquisition
time as observed in [7]. Longer acquisitions only done
for the pressure show well two peaks of the same level.
The small amount of data regarding the PIV explains the
noisy aspect of Py∗rec . The two identified RSB modes are
the (y∗p < 0, y∗rec > 0) state and the (y∗p > 0, y∗rec < 0)
state.
Even if the barycenters seem to switch successively from
a mode to the other randomly, some characteristic time
scales and characteristic frequencies can be estimated.
The mean time spent in each of this mode is TRSB =
1.57 ± 0.32 s. The estimated switching frequency is
fswitch = 0.56 ± 0.08 Hz, whereas the switch itself lasts
for Tswitch = 0.30 ± 0.05 s. As expected these results
have a high dispersion: their respective standard devia-
tions are σTRSB

= 2.1 ± 0.3 s and σTswitch
= 0.11 ± 0.01

s.

Regarding the normal to the wall position z∗p and the
streamwise position x∗rec presented in Fig. 4 for the pres-
sure (a-b) and the recirculation intensity respectively (c-
d), these positions are stable. Indeed their respective
PDF, Pz∗p and Px∗

rec
, show only one mode.

Thus the same lateral symmetry breaking mechanism
is observed in our wake topology as the ones presented
without a central leg in [3, 7]. The effects of the
modified ground clearance on the wake reversal behind
a square-back bluff body have been studied by [22]. It
was reported in particular that the presence of a circular
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FIG. 4. Pressure barycenter spanwise position z∗P : (a) evo-
lution in time and (b) normalized PDF P ∗zp for TP = 1 min
(fP = 500 Hz). Recirculation intensity barycenter spanwise
position x∗rec: (c) evolution in time and (d) normalized PDF
Px∗

rec
for TPIV = 1 min. Red curves show the data smoothed

over one second.

cylinder, very similar to the central leg attached to the
aerodynamical balance in our experiments, changes only
the mode position for z∗p but does not cancel the lateral
bimodality.

The relation between the dynamics of the wake, char-
acterized by its instantaneous recirculation area, and
the dynamics wall pressure is not straightforward be-
cause of the complex 3D flow. To study their re-
lationship, the normalized cross-correlation of y∗P and
y∗rec has been computed for five one minute runs:
Γy∗p ,y∗rec(τ) = y∗p(τ)⊗ y∗rec(τ). The results show a strong
correlation and an almost non-existent delay between the
two measurements as illustrated by Fig. 5.
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FIG. 5. Normalized cross-correlation of y∗P and y∗rec.

The value of the peak is Γy∗p ,y∗rec(τ ∼ 0) = −0.84± 0.05
so both barycenters are in phase opposition. When the
depression is located in the negative part of the rear

surface (y∗p < 0), the recirculation bubble is located in
the positive one (y∗rec > 0) and vice versa. This behav-
ior was first observed in [23]. So the wake states can
be characterized either by the pressure barycenter or by
the recirculation intensity one. In the following we only
present results regarding y∗p for several independent ex-
periments of various lengths TP = {2; 5} min acquisition
runs (fP = 250 Hz and fP = 100 Hz respectively).

Coherent structures

As we are interested in the dynamics of the large-scale
structures, we analyze the spatio-temporal organization
of the wall pressure spatial distributions using the proper
orthogonal decomposition (POD). It is an efficient ap-
proach to detect coherent structures in turbulent flows
[24, 25]. Thus we apply the POD on the rear pressure
coefficient fluctuations C̃p:

C̃p(t) ∼
k∑
i=1

ai(t)Φi, (4)

where k is the number of POD modes Φi carrying most
of the coherent structures energy and ai are the corre-
sponding temporal coefficients. The energy distribution
of the first 25 POD modes is given on Fig. 6 showing
that the first five modes contain 75% of the total energy.
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FIG. 6. Energy distribution of the first 25 POD modes of the
rear pressure.

The power spectral density (PSD) is computed to ana-
lyze the dynamics of the first POD modes. For practical
comparisons we express the frequency f as the Strouhal
number based on the width bluff body: StW = fW/U∞.

The most remarkable results are that the first mode
Φ1 represents 43% of the total energy and that its spa-
tial organization exhibits the global symmetry breaking
presented on Fig. 7 (a). Moreover its spectral signature is
identical to the one of the pressure barycenter, displayed
on Fig. 7 (b): the low frequencies, StW < 0.02, contain
most of the power spectrum. Thus the pressure barycen-
ter is a direct measure of the most energetic large-scale
coherent structure governed by a long time scale.
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FIG. 7. (a) First POD mode Φ1 (43%) and (b) PSD of its
corresponding coefficient a1 (dashed red line) together with
the PSD of y∗p (solid blue line).

Quasi strange attractor dynamics

The positions of the pressure barycenter GP for three
successive stays in the RSB modes are displayed on Fig.
8 (a-b-c). We also plot the most probable position (red
square) near which Gp evolves during each stay.
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FIG. 8. Evolution in space of the pressure barycenter GP

(black line for the trajectory and blue circle for the last po-
sition) with the identified centers (red squares) for three suc-
cessives small intervals: (a) t ∈ [237; 247], (b) t ∈ [247; 251],
(c) t ∈ [251; 255] and (d) a larger interval t ∈ [237; 266] (red
cross for the standard deviation). (e) y∗p(t) for t ∈ [200; 270]
with the spanwise position of the two centers (dash-dotted
red lines). All intervals are in seconds and data are smoothed
for clarity. Movie available online.

Figure 8 (d-e) show longer tracking with the most prob-
able positions of each RSB mode, disclosing two y-axis
symmetric points which acts like the centers of a strange
attractor.
The two dimensional PDF of the pressure barycenter is

computed to analyze its most frequent positions on the
rear. We also calculate the positions of the identified
centers, denoted C1(y∗C1

, z∗C1
) and C2(y∗C2

, z∗C2
), as local

modes of the PDF Py∗p , such as:

−−→
OC1 =

 y∗p |max
y∗
p<0

Py∗
p

z∗p |max
y∗
p<0

Py∗
p

 and
−−→
OC2 =

 y∗p |max
y∗
p>0

Py∗
p

z∗p |max
y∗
p>0

Py∗
p

 .

(5)
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FIG. 9. Normalized two dimensional PDF of the pressure
barycenter GP with the two identified local maxima of the
PDF (black squares).

The results, shown in Fig. 9, reveal two areas highly
preferred by the barycenter, corresponding to red the two
RSB states. For each area a quasi-attractive center can
be identified, such as y∗C1

∼ −y∗C2
and z∗C1

∼ z∗C1
. Dur-

ing the switch between these two positions, the pressure
barycenter follows preferentially a trajectory along a well-
defined path. In the following section we characterize the
signal y∗p .

CHARACTERIZATION OF THE ATTRACTOR

Structure function

Analyzing the signal to know whether the dynamics
of the wake are chaotic or stochastic is of prime inter-
est. An effective approach is to study its self-affinity by
computing its first order (k = 1) [26] or its second order
(k = 2) [27] structure function Sk, defined as:

Sk(n) = 〈|y∗p(i+ n)− y∗p(i)|k〉i, (6)

where n is the lag and 〈.〉i stands for the average over
N−n points. According to [28], if y∗p is fractal, Sk follows
a scaling law for small n:

Sk(n) ∝ nkh, (7)
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where h is the so-called scaling exponent. If the signal
is chaotic then h = 1. If it is stochastic then its power
spectrum follows a power-law PSD(StW ) ∝ St−αW and
α = 2h+ 1.
However, Sk alone is not enough to conclude and the
structure function of the first derivative of the signal y∗p ,
denoted as Sk,d, needs to be computed [27]. Thus, if it is
stochastic then Sk,d is almost constant and if the signal
is chaotic then Sk,d(n) follows a scaling law for small n.
Figure 10 displays S2 and S2,d for the raw signal y∗p (a)
and for the signal on which we apply a low-pass (LP)
filter (b) to only select low frequencies modes which have
the highest magnitudes: StW < 10−3 (see Fig. 7 (b)).

100 102 104

n

10−4

10−3

10−2
(a)

∝ n1

S2

S2,d

100 102 104

n

10−11

10−8

10−5

10−2
(b)

∝ n2

S2 (LP)
S2,d (LP)

FIG. 10. (a) Second order structure functions of y∗p (dashed
blue line) and of its first derivative (solid black line). (b)
Second order structure functions of the LP filtered y∗p (dashed
blue line) and of its first derivative (solid black line). fp = 250
Hz.

The raw signal behaves clearly like a fractal noise with
h = 1/2 implying α = 2, which is in agreement with [3,
29]. Conversely the LP filtered data appear to be chaotic
since h = 1 and S2,d is not constant. It is noteworthy that
the same observations hold for k = 1.

Embedding dimension

As we only observe a part of the non-linear wake dy-
namics (rear body pressure and 2D-2C velocity fields of
the near-wake), we cannot experimentally access to its
complete phase space. But [30] and [31] provide the so-
called embedding methods to reconstruct a pseudo phase
space from time series. Thus, according to the pioneering
Takens’ time-delay embedding method [32], we build the
M state vectors {Yi}i=1...M :

Yi(m) =
[
y∗p(i) y∗p(i+ J) ... y∗p(i+ (m− 1)J)

]
, (8)

where m is the embedding dimension and J the re-
construction delay, implying M = N − (m − 1)J . J is
computed trough the mutual information process [33] us-
ing improved kernel density estimation algorithm [34, 35]
to avoid redundance (J too small) and irrelevance (J too
large) in phase space reconstruction [36]. We then deter-
mine the minimum value of m from y∗p , following Cao’s

method [37], which is based on the false nearest neighbor
algorithm of [38]. It should be noted that the values ob-
tained for J are also checked through improved Celluci’s
algorithm [39, 40].

Cao’s method is summarized here since it enables also
to distinguish deterministic and stochastic time series.
The idea is to evaluate how the mean distance between
close state vectors E(m) evolves with respect to m. Over
the real embedding dimension E(m) does not change any-
more. We look for the closest neighbor YN (i,m)(m) of
each state vector Yi(m):

min
N (i,m)6=i

‖Yi(m)− YN (i,m)(m)‖, i ∈ [[1;M ]], (9)

where ‖.‖ stands for the Euclidean distance. The ratio
of the distances in m and m+ 1 dimensions for Yi is:

ai,m =
‖Yi(m+ 1)− YN (i,m)(m+ 1)‖
‖Yi(m)− YN (i,m)(m)‖

. (10)

Finally E(m) is computed:

E(m) =
1

M

∑
i

ai,m. (11)

For convenience its evolution is evaluated through E1(m):

E1(m) =
E(m+ 1)

E(m)
, (12)

and if ∃ m \ ∀k ≥ m, E1(k + 1) = E1(k) then m is the
minimum embedding dimension. In parallel the mean
difference between the raw data E∗(m) is evaluated with
respect to m, relating to N (m) obtained in Eq. (9):

E∗(m) =
1

M

∑
i

|y∗p(i+mJ)− y∗p(N (i,m) +mJ)|. (13)

In the same manner as the Eq. (12), the evolution is
analyzed through E2(m):

E2(m) =
E∗(m+ 1)

E∗(m)
, (14)

and if ∃ k \ E2(k) 6= 1 then the signal is deterministic,
otherwise it is stochastic.

As shown by Fig. 11, the raw signal appears stochastic
but the LP filtered one is indeed deterministic, confirm-
ing the results obtained with the structure function. The
minimum embedding dimension seems to be m = 19. It
should be noted that a new delay J is computed for the
filtered data.
Thus the complete large-scale bimodal dynamics of such
a fully turbulent wake are well composed of a stochastic
part and a deterministic part as recently proposed by
[29]. In the following sections we characterize the chaotic
behavior of these dynamics through the analysis of the
LP filtered signal directly denoted as y∗p(t).
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FIG. 11. E1(m) (black circle) and E2(m) (blue square) com-
puted from raw (dashed line) and LP filtered (solid line) signal
y∗p . fp = 100 Hz. The large-scale dynamics associated with
the LP filtered signal show a chaotic signature.

Largest Lyapunov exponent

There are many ways to characterize and quantify
chaos. Among the most popular quantities, one can cite
the correlation dimension [41] which gives an estimate
of the system complexity and characteristic exponents
which give an estimate of the level of chaos in the dy-
namical system. In this section we focus on the Lya-
punov exponent. The spectrum of Lyapunov exponents is
well known for detecting and quantifying chaotic systems
from the experimental time series [42]. Indeed chaos ex-
ists if a system is sensitive to its initial conditions. Thus
the principle consists in following the evolution of the
distance d between two initial neighboring state vectors
in the phase space. For a chaotic attractor, the distance
d exponentially increases in time at an average rate equal
to the largest Lyapunov exponent (LLE) λ1 [43]:

d(t) = d(0) expλ1t . (15)

We apply Rosenstein’s algorithm [44, 45], rather than
Wolf’s algorithm [42], to our LP filtered N points time
series {y∗p(i)}i=1...N , due to its efficiency on small data
sets. We use the M state vectors {Yi}i=1...M and their
closest neighbor {YN (i)}i=1...M as previously. Then we
compute the distances evolution:

di(j) = ‖Yi+j − YN (i)+j‖, (16)

where j = [[fpt]] verifies i+ j ≤M and N (i) + j ≤M .
The distance d(t) is approximated by averaging over i
the distances di(j):

d(j) = 〈di(j)〉i. (17)

By taking the logarithm of Eq. (17) with respect to
j the slope, extracted through a least-square fit, gives
directly the LLE. The distance d(t) computed for our LP
filtered data is given in Fig. 12 and it appears to follow

0 10 20 30 40 50

t (s)

-2.6

-2.4

-2.2

-2

-1.8

〈l
n
(d
)〉

∝ e
0.018t

m = 19
m = 22
m = 25

FIG. 12. 〈ln(d(t))〉i=1..M and exponential approximation
e0.018t (black dashed line). fp = 100 Hz.

the Eq. (15) for small t, typically t ∈ [0; 1] (in second).
The LLE is thus computed in this range.

The estimated positive LLE is λ1 = 0.018± 0.003 s−1.
The relative error is due to the main difficulty to de-
fine the right linear region of the curve to fit. The low
frequencies dynamics associated to large-scale structures
can thus be considered as a weak chaotic strange attrac-
tor.

Correlation dimension

The fractal dimension (or Hausdorff dimension) D of
a strange attractor can be rigorously approximated by
its correlation dimension D2 which is directly computed
from experimental time series according to the works of
[41]. The previous M state vectors {Yi}i=1...M are also
used to compute the correlation integral function C(τ),
defined as:

C(τ) =
2

M(M − 1)

M∑
i=1

M∑
j=i+1

Θ(τ − ‖Yi − Yj‖), (18)

where Θ is the Heaviside function. The correlation
dimensionD2 can be derived from the correlation integral
function C(τ) which scales as a power-law for small τ :

C(τ) ∝ τD2 , (19)

The correlation integral function of our LP filtered
signal y∗p is computed using the Grassberger-Procaccia
method improved by [46] who normalize the Euclidean
distance in Eq. (18) by the embedding dimension m.
Figure 13 shows the resulting correlation integral func-
tion in logarithmic scale.

Regarding the whole experimental signals we obtain
D2 = 2.17 ± 0.01, which verifies D2 ≤ 2 logN [47]. The
correlation dimension is computed over two decades. Fur-
thermore we verify again the low-dimensional aspect of
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10−4 10−2 100

τ

10−10

100
C
(τ
)

∝ τ
2.17

m = 15
m = 17
m = 19

FIG. 13. Correlation integral function C(τ) of LP filtered y∗p
and power law approximation ∝ τ2.17 (black dashed line) in
logarithmic scale.

the dynamics using the phase randomization test pro-
vided by [27]: for a stochastic signal the correlation di-
mension does not change when its Fourier phases are ran-
domized.

10−4 10−2 100

τ

10−10

100

C
(τ
)

∝ τ
3.23

m = 15
m = 17
m = 19

FIG. 14. Correlation integral function C(τ) of LP filtered y∗p
after randomizing its Fourier phases and power law approxi-
mation ∝ τ3.23 (black dashed line) in logarithmic scale.

Displayed in Fig. 14, the computed correlation dimen-
sion after phase randomizing of our signal is clearly differ-
ent: D2,rand = 3.23± 0.01, which is indicative of chaotic
dynamics.

Telegraph-like signal

Another interesting way to characterize chaotic oscil-
lator is to analyze the properties of its autocorrelation
function (ACF). The ACF of a given function f(t) is de-
fined as Γf (τ) = 〈f(t)f(t+ τ)〉T , where 〈.〉T stands for
the time-averaging. The ACF is normalized by Γf (0).
The ACF of a random process has different properties
depending on the nature of the system. Among the most
popular models used to describe the behavior of many ap-
plied random systems, one can cite the noisy harmonic
oscillations and the telegraph signal [48]. The model of
telegraph signal is particularly well-suited to describe the
statistics of random switching of a bimodal system in
the presence of noise, which is a close description of the
bimodal wake. One can distinguish two main kinds of
telegraph signals, namely, the random and quasi-random

telegraph signals. The random telegraph signal is char-
acterized by a Poisson distribution of switching moments
while quasi-random telegraph signal corresponds to ran-
dom switching between two equi-probable states (proba-
bility of switching events equal to 1

2 ). For instance, the
latter is very well suited to the Lorenz attractor [48].

To characterize our time-series as telegraph signals, the
first step is then to define two states as the symmetric
spanwise positions of the pressure centers as y∗ = ±y∗C2

.
From our time-series, it is then possible to construct a
telegraph-like signal Y ∗p such as:

Y ∗p (t) =

{
−y∗C2

if y∗p(t) ≤ 0

y∗C2
if y∗p(t) > 0

. (20)

Figure 15 shows a part of the LP filtered signal y∗(t)
together with the resulting telegraph signal Y ∗p (t).

0 20 40 60 80 100 120

t (s)

-0.05

0

0.05

y
∗

y∗p(t)
Y ∗

p (t)

FIG. 15. Part of the telegraph signal Y ∗p (t) (blue) obtained
for the pressure barycenter spanwise position y∗p(t) (black).
For clarity the telegraph signal is plotted with a 0.25 factor.
Here, y∗C2

= 3.64× 10−2 ± 1× 10−4.

The normalized ACF Γy∗p (τ) and ΓY ∗
p

(τ) are computed
for the raw signal and the LP filtered one. According
to [48], the ACF approximation of a random telegraph
signal, ΨR(τ), is given by by the following function :

ΨR(τ) = e−2n1|τ |, (21)

where n1 corresponds to the mean switching frequency,
while the ACF of a random telegraph signal can be lin-
early approximated on short times by the following func-
tion ΨQR(τ):

ΨQR(τ) =

{
1− |τ |ξ0 if |τ | < ξ0

0 if |τ | ≥ ξ0
, (22)

where ξ0 corresponds to the minimal residence time in
one state, denoted Tmin. Γy∗p (τ), ΓY ∗

p
(τ) and the ACF

approximations are plotted in Fig. 16.
Figure 16 (a) shows that ΨR(n1 = 0.45) is a good

approximation of the ACF of the telegraph signal ob-
tained from the raw data. The computed mean switch-
ing frequency n1 = 0.45 Hz is close to the measured one
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0 1 2 3 4 5

τ (s)

0

0.5

1
(a)

Γy∗p

ΓY ∗

p

ΨR(n1=0.45)

0 2 4 6

τ (s)

0

0.5

1
(b)

Γy∗p (LP)

ΓY ∗

p
(LP)

ΨQR(ξ0=4.3)

FIG. 16. Normalized autocorrelation functions of the pres-
sure barycenter spanwise position Γy∗

p
(black solid line) and

of the resulting telegraph-like signal ΓY ∗
p

(blue dotted line)

for (a) the raw signal and (b) the LP filtered one, together
with their respective ACF approximations: ΨR(n1 = 0.45)
and ΨQR(ξ0 = 4.3) (red dashed line).

fswitch = 0.56 Hz. One can see on Fig. 16 (b) that,
the ACF of the telegraph-like signal extracted from the
LP filtered time-series is well approximated by the linear
function ΨQR(ξ0 = 4.3). From the linear approximation
we find ξ0 = 4.3 s, which is similar to our filtered exper-
imental results Tmin = 3.6 s. The same ACF approxi-
mation is obtained for the Lorenz attractor described by
Eq. 1 [48].

FIG. 17. (a) PDF of the switching time tswitch for the raw
data (black solid line) together with a Poisson distribution
(parameter set to 0.86, blue dashed line) and (b) probabilities
of switching at times T multiple to ξ0 = 4.3 for the LP filtered
signal.

Furthermore the PDF of the switching times tswitch of
the raw time series is given in Fig. 17 (a), revealing itself
close to a Poisson distribution whose parameter is 0.86
s. The mean switching time, which is the parameter of
the Poisson distribution, is of the same order as the res-
idential time TRSB seen previously. Regarding the cor-
responding LP filtered data, the probability of switching
P (T ) occurring at times T multiple to ξ0 is computed
in Fig. 17 (b). The results show that the probability
of switching at time T = ξ0 is P (ξ0) = 0.56, agreeing
with the ACF approximation of Eq. (22). [48] obtained
P (ξ0) = 0.52 for the Lorenz system of Eq. 1, which is
also close to 0.5 as expected for such a strange chaotic
attractor.

CONCLUSIONS AND PERSPECTIVES

The dynamics of the near wake behind a squareback
bluff body are characterized by the time-evolution of
its intensity recirculation barycenter and the spatially-
averaged rear pressure barycenter. Both quantities track
large-scale structures and exhibit strong bimodal distri-
butions characteristic of a random switching process be-
tween two states. Their respective spanwise dynamics are
highly anti-correlated (phase opposition). Plotting the
trajectories of the pressure barycenter over the rear-part
of the model, similar to a Poincaré section, stochastic be-
havior is first observed. But applying the same process to
the low frequencies signal reveal a chaotic aspect of the
dynamics. The instantaneous pressure barycenter circles
around two stable areas acting like strange attractors and
randomly switches from one attractor to the other. We
characterize the chaotic dynamics of these barycenters
by reconstructing their phase space and computing the
largest Lyapunov exponent and the correlation dimen-
sion. All of these elements tend to describe the dynamics
of a complex 3D turbulent wake as a weak chaotic system.
Apart from its fundamental interest, this result is also of
great practical interest. Indeed, if the wake dynamics can
be modeled as a chaotic attractor, it opens the path to
many closed-loop control strategies which have been first
tested on simple chaotic systems such as the Lorenz sys-
tem [49, 50]. Recently, a machine learning control based
on the low pass filtered signal of the rear pressure of the
Ahmed body has been successfully performed [51] and a
similar one based on the low frequencies dynamics of the
wake can be envisioned [52].
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