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We construct rational solutions of order N depending on 2N -2 parameters. They can be written as a quotient of 2 polynomials of degree 2N (N + 1) in x, t and 4N (N + 1) in y depending on 2N -2 parameters. We explicitly construct the expressions of the rational solutions of order 4 depending on 6 real parameters and we study the patterns of their modulus in the plane (x, y) and their evolution according to time and parameters a1, a2, a3, b1, b2, b3.

Introduction

Johnson introduced a new equation in a paper written in 1980, [START_REF] Johnson | Water waves and Kortewegde Vries equations[END_REF] to describe waves surfaces in shallow incompressible fluids [START_REF] Johnson | A Modern Introduction to the Mathematical Theory of Water Waves[END_REF]3]. This equation was later derived for internal waves in a stratified medium [START_REF] Lipovskii | On the nonlinear internal wave theory in fluid of finite depth[END_REF]. The Johnson equation is a dissipative equation and there is no soliton-like solution with a linear front localized along straight lines in the (x, y) plane. We consider the Johnson equation (J) in the following normalization

(u t + 6uu x + u xxx + u 2t ) x -3 u yy t 2 = 0, (1) 
where as usual, subscripts x, y and t denote partial derivatives.

Johnson constructed the first solutions in 1980 [START_REF] Johnson | Water waves and Kortewegde Vries equations[END_REF]. Golinko, Dryuma, and Stepanyants found other types of solutions in 1984 [START_REF] Golinko | Nonlinear quasicylindrical waves: Exact solutions of the cylindrical Kadomtsev-Petviashvili equation[END_REF]. A new approach to solve this equation was given in 1986 [START_REF] Lipovskii | connection between the Kadomtsev-Petvishvili and Johnson equation[END_REF] by giving a connection between solutions of the Kadomtsev-Petviashvili (KP) [START_REF] Kadomtsev | On the stability of solitary waves in weakly dispersing media[END_REF] and solutions of the Johnson equation. Another types of solutions were obtained by using the Darboux transformation [START_REF] Klein | Cylindrical Kadomtsev-Petviashvili equation: Old and new results[END_REF]. More recently, in 2013, extension to the elliptic case has been considered [START_REF] Khusnutdinova | On the integrable elliptic cylindrical K-P equation Chaos[END_REF].

In the following, we recall that the solutions can be expressed in terms of Fredholm determinants of order 2N depending on 2N -1 parameters. They can also be given in terms of wronskians of order 2N with 2N -1 parameters. These representations allow to obtain an infinite hierarchy of solutions to the Johnson equation, depending on 2N -1 real parameters. We use these results to build rational solutions to the equation, making go a parameter towards 0.

Here we construct rational solutions of order N depending on 2N -2 parameters without the presence of a limit.

That provides an effective method to build an infinite hierarchy of rational solutions of order N depending on 2N -2 real parameters. We present here only the explicit rational solutions of order 4, depending on 6 real parameters, and the representations of their modulus in the plane of the coordinates (x, y) according to the real parameters a We need to define some notations. First of all, we define real numbers λ j such that -1 < λ ν < 1, ν = 1, . . . , 2N which depend on a parameter ǫ which will be intended to tend towards 0; they can be written as

λ j = 1 -2ǫ 2 j 2 , λ N +j = -λ j , 1 ≤ j ≤ N, (2) 
The terms κ ν , δ ν , γ ν and x r,ν are functions of λ ν , 1 ≤ ν ≤ 2N ; they are defined by the formulas :

κ j = 2 1 -λ 2 j , δ j = κ j λ j , γ j = 1-λj 1+λj ,; x r,j = (r -1) ln γj -i γj +i , r = 1, 3, τ j = -12iλ 2 j 1 -λ 2 j -4i(1 -λ 2 j ) 1 -λ 2 j , κ N +j = κ j , δ N +j = -δ j , γ N +j = γ -1 j , x r,N +j = -x r,j , , τ N +j = τ j j = 1, . . . , N. (3) 
e ν 1 ≤ ν ≤ 2N are defined in the following way :

e j = 2i 1/2 M -1 k=1 a k (je) 2 k+1 -i 1/2 M -1 k=1 b K (je) 2 k+1 , e N +j = 2i 1/2 M -1 k=1 a k (je) 2 k+1 + i 1/2 M -1 k=1 b k (je) 2 k+1 , 1 ≤ j ≤ N, a k , b k ∈ R, 1 ≤ k ≤ N. (4) 
ǫ ν , 1 ≤ ν ≤ 2N are real numbers defined by :

ǫ j = 1, ǫ N +j = 0 1 ≤ j ≤ N. (5) 
Let I be the unit matrix and D r = (d jk ) 1≤j,k≤2N the matrix defined by :

d νµ = (-1) ǫν η =µ γ η + γ ν γ η -γ µ exp(κ ν x + ( κ ν y 12 -2δ ν )yt + 4iτ ν t + x r,ν + e ν ). (6) 
Then we recall the following result1 :

Theorem 2.1 The function v defined by v(x, y, t) = -2 |n(x, y, t)| 2 d(x, y, t) 2 (7) 
where

n(x, y, t) = det(I + D 3 (x, y, t)), (8) 
d(x, y, t) = det(I + D 1 (x, y, t)), (9) 
and D r = (d jk ) 1≤j,k≤2N the matrix

d νµ = (-1) ǫν η =µ γ η + γ ν γ η -γ µ exp(κ ν x + ( κ ν y 12 -2δ ν )yt + 4iτ ν t + x r,ν + e ν ). ( 10 
)
is a solution to the Johnson equation ( 1), depending on 2N -1 parameters a k , b h , 1 ≤ k ≤ N -1 and ǫ.

We recall another result on the solutions to the Johnson equation obtained recently by the author in terms of wronskians. We need to define the following notations :

φ r,ν = sin Θ r,ν , 1 ≤ ν ≤ N, φ r,ν = cos Θ r,ν , N + 1 ≤ ν ≤ 2N, r = 1, 3, (11) 
with the arguments

Θ r,ν = -iκν x 2 + i( -κν y 24 + δ ν )yt -i xr,ν 2 + 2τ ν t + γ ν w -i eν 2 , 1 ≤ ν ≤ 2N. ( 12 
)
We denote W r (w) the wronskian of the functions φ r,1 , . . . , φ r,2N defined by

W r (w) = det[(∂ µ-1 w φ r,ν ) ν, µ∈[1,...,2N ] ]. ( 13 
)
We consider the matrix D r = (d νµ ) ν, µ∈[1,...,2N ] defined in [START_REF] Ablowitz | On the evolution of packets of water waves[END_REF].

Then we have the following statement : 

Theorem 2.2 The function v defined by v(x, y, t) = -2 |W 3 (φ 3,1 , . . . , φ 3,2N )(0)| 2 (W 1 (φ 1,1 , . . . , φ 1,2N )(0))
φ r,ν = sin( -iκν x 2 + i( -κν y 24 + δ ν )yt -i xr,ν 2 + 2τ ν t + γ ν w -i eν 2 ), 1 ≤ ν ≤ N, φ r,ν = cos( -iκν x 2 + i( -κν y 24 + δ ν )yt -i xr,ν 2 + 2τ ν t + γ ν w -i eν 2 ), N + 1 ≤ ν ≤ 2N, r = 1, 3, κ ν , δ ν , x r,ν , γ ν , e ν being defined in(3), (2) and (4). 
From those two preceding results, we can construct rational solutions to the Johnson equation as a quotient of two determinants. We use the following notations :

X ν = -iκ ν x 2 + i( -κ ν y 24 + δ ν )yt -i x 3,ν 2 + 2τ ν t + γ ν w -i e ν 2 , Y ν = -iκ ν x 2 + i( -κ ν y 24 + δ ν )yt -i x 1,ν 2 + 2τ ν t + γ ν w -i e ν 2 ,
for 1 ≤ ν ≤ 2N , with κ ν , δ ν , x r,ν defined in (3) and parameters e ν defined by (4). We define the following functions :

ϕ 4j+1,k = γ 4j-1 k sin X k , ϕ 4j+2,k = γ 4j k cos X k , ϕ 4j+3,k = -γ 4j+1 k sin X k , ϕ 4j+4,k = -γ 4j+2 k cos X k , (14) 
for 1 ≤ k ≤ N , and

ϕ 4j+1,N +k = γ 2N -4j-2 k cos X N +k , ϕ 4j+2,N +k = -γ 2N -4j-3 k sin X N +k , ϕ 4j+3,N +k = -γ 2N -4j-4 k cos X N +k , ϕ 4j+4,N +k = γ 2N -4j-5 k sin X N +k , (15) 
for 1 ≤ k ≤ N . We define the functions ψ j,k for 1

≤ j ≤ 2N , 1 ≤ k ≤ 2N in the same way, the term X k is only replaced by Y k . ψ 4j+1,k = γ 4j-1 k sin Y k , ψ 4j+2,k = γ 4j k cos Y k , ψ 4j+3,k = -γ 4j+1 k sin Y k , ψ 4j+4,k = -γ 4j+2 k cos Y k , (16) 
for 1 ≤ k ≤ N , and

ψ 4j+1,N +k = γ 2N -4j-2 k cos Y N +k , ψ 4j+2,N +k = -γ 2N -4j-3 k sin Y N +k , ψ 4j+3,N +k = -γ 2N -4j-4 k cos Y N +k , ψ 4j+4,N +k = γ 2N -4j-5 k sin Y N +k , (17) 
for 1 ≤ k ≤ N .

The following ratio q(x, t)

:= W 3 (0) W 1 (0)
can be written as

q(x, t) = ∆ 3 ∆ 1 = det(ϕ j,k ) j, k∈[1,2N ] det(ψ j,k ) j, k∈[1,2N ] . (18) 
The terms λ j depending on ǫ are defined by λ j = 1 -2jǫ 2 . All the functions ϕ j,k and ψ j,k and their derivatives depend on ǫ. They can all be prolonged by continuity when ǫ = 0. We use the following expansions

ϕ j,k (x, y, t, ǫ) = N -1 l=0 1 (2l)! ϕ j,1 [l]k 2l ǫ 2l + O(ǫ 2N ), ϕ j,1 [l] = ∂ 2l ϕ j,1 ∂ǫ 2l (x, y, t, 0), ϕ j,1 [0] = ϕ j,1 (x, y, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N -1, ϕ j,N +k (x, y, t, ǫ) = N -1 l=0 1 (2l)! ϕ j,N +1 [l]k 2l ǫ 2l + O(ǫ 2N ), ϕ j,N +1 [l] = ∂ 2l ϕ j,N +1 ∂ǫ 2l (x, y, t, 0), ϕ j,N +1 [0] = ϕ j,N +1 (x, y, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N -1.
We have the same expansions for the functions ψ j,k .

ψ j,k (x, y, t, ǫ) = N -1 l=0 1 (2l)! ψ j,1 [l]k 2l ǫ 2l + O(ǫ 2N ), ψ j,1 [l] = ∂ 2l ψ j,1 ∂ǫ 2l (x, y, t, 0), ψ j,1 [0] = ψ j,1 (x, y, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N -1, ψ j,N +k (x, t, ǫ) = N -1 l=0 1 (2l)! ψ j,N +1 [l]k 2l ǫ 2l + O(ǫ 2N ), ψ j,N +1 [l] = ∂ 2l ψ j,N +1 ∂ǫ 2l (x, y, t, 0), ψ j,N +1 [0] = ψ j,N +1 (x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, N + 1 ≤ k ≤ 2N..
Then we get the following result :

Theorem 2.3 The function v defined by v(x, y, t) = -2 | det((n jk) j,k∈[1,2N ] )| 2 det((d jk) j,k∈[1,2N ] ) 2 (19) 
is a rational solution to the Johnson equation ( 1), where

n j1 = ϕ j,1 (x, y, t, 0), 1 ≤ j ≤ 2N n jk = ∂ 2k-2 ϕj,1 ∂ǫ 2k-2 (x, y, t, 0), n jN +1 = ϕ j,N +1 (x, y, t, 0), 1 ≤ j ≤ 2N n jN +k = ∂ 2k-2 ϕj,N+1 ∂ǫ 2k-2
(x, y, t, 0),

d j1 = ψ j,1 (x, y, t, 0), 1 ≤ j ≤ 2N d jk = ∂ 2k-2 ψj,1 ∂ǫ 2k-2 (x, y, t, 0), d jN +1 = ψ j,N +1 (x, y, t, 0), 1 ≤ j ≤ 2N d jN +k = ∂ 2k-2 ψj,N+1 ∂ǫ 2k-2 (x, y, t, 0), 2 ≤ k ≤ N, 1 ≤ j ≤ 2N (20)
The functions ϕ and ψ are defined in ( 14),( 15), ( 16), [START_REF] Gaillard | From finite-gap solutions of KdV in terms of theta functions to solitons and positons[END_REF].

Proof : In each column k (and N + k) of the determinants appearing in q(x, t), we can successively eliminate the powers of ǫ strictly inferior to 2(k -1); then each common term in the numerator and denominator is factorized and simplified; in the end, we take the limit when ǫ goes to 0. First of all, the components j of the columns 1 and N + 1 are respectively equal by definition to

ϕ j1 [0] + 0(ǫ) for C 1 , ϕ jN +1 [0] + 0(ǫ) for C N +1 of ∆ 3 , and ψ j1 [0] + 0(ǫ) for C ′ 1 , ψ jN +1 [0] + 0(ǫ) for C ′ N +1 of ∆ 1 . So we can replace the columns C k by C k -C 1 and C N +k by C N +k -C N +1 for 2 ≤ k ≤ N , for ∆ 3 ;
the same changes for ∆ 1 are made. Each component j of the column C k of ∆ 3 can be rewritten as

N -1 l=1 1 (2l)! ϕ j,1 [l](k 2l -1)ǫ 2l and the column C N +k replaced by N -1 l=1 1 (2l)! ϕ j,N +1 [l](k 2l - 1)ǫ 2l for 2 ≤ k ≤ N .
For ∆ 1 , we make the same reductions, each component j of the column C ′ k can be rewritten as

N -1 l=1 1 (2l)! ψ j,1 [l](k 2l -1)ǫ 2l and the column C ′ N +k replaced by N -1 l=1 1 (2l)! ψ j,N +1 [l](k 2l -1)ǫ 2l for 2 ≤ k ≤ N . The term k 2 -1
2 ǫ 2 for 2 ≤ k ≤ N can be factorized in ∆ 3 and ∆ 1 in each column k and N + k , and so those common terms can be simplified in the numerator and denominator. If we restrict the developments at order 1 in columns 2 and N +2, we respectively get ϕ j1 [START_REF] Johnson | Water waves and Kortewegde Vries equations[END_REF]

+0(ǫ) for the component j of C 2 , ϕ jN +1 [1] + 0(ǫ) for the component j of C N +2 of ∆ 3 , and ψ j1 [1] + 0(ǫ) for the component j of C ′ 2 , ψ jN +1 [1] + 0(ǫ) for the component j of C ′ N +2 of ∆ 1 .
We can extend this algorithm up to the columns C N , C 2N of ∆ 3 and C ′ N , C ′ 2N of ∆ 1 . Then we take the limit when ǫ tends to 0, and q(x, y, t) can be replaced by Q(x, y, t) defined by :

Q(x, y, t) := ϕ 1,1 [0] . . . ϕ 1,1 [N -1] ϕ 1,N +1 [0] . . . ϕ 1,N +1 [N -1] ϕ 2,1 [0] . . . ϕ 2,1 [N -1] ϕ 2,N +1 [0] . . . ϕ 2,N +1 [N -1] . . . . . . . . . . . . . . . . . . ϕ 2N,1 [0] . . . ϕ 2N,1 [N -1] ϕ 2N,N +1 [0] . . . ϕ 2N,N +1 [N -1] 2      ψ 1,1 [0] . . . ψ 1,1 [N -1] ψ 1,N +1 [0] . . . ψ 1,N +1 [N -1] ψ 2,1 [0] . . . ψ 2,1 [N -1] ψ 2,N +1 [0] . . . ψ 2,N +1 [N -1] . . . . . . . . . . . . . . . . . . ψ 2N,1 [0] . . . ψ 2N,1 [N -1] ψ 2N,N +1 [0] . . . ψ 2N,N +1 [N -1]      2 (21) 
So the solution to the Johnson equation takes the form : v(x, y, t) = -2Q(x, y, t)

and we get the result. 2

3 Explicit expression of rational solutions of order 4 depending on 6 parameters

We explicitly construct rational solutions to the Johnson equation of order 4 depending on 6 parameters.

Because of the length of the expression, we only give the expression without parameters in the appendix.

We give patterns of the modulus of the solutions in the plane (x, y) of coordinates in function of the parameters a 1 , a 2 , a 1), on the left for t = 1, a 2 = 10 2 ; in the center for t = 10, a 1 = 10 2 ; on the right for t = 10, a 1 = 10 3 ; all the other parameters to equal to 0.

In these constructions, we note that the initial rectilinear structure becomes deformed very quickly as time t increases. The heights of the peaks also decrease very quickly according to time t and of the various parameters. Because of the structure of the polynomials, one notices that the modulus of these solutions tend towards value 2 when time t and variables x and y tend towards the infinite.

Conclusion

From the previous results giving the solutions to the Johnson equation in terms of Fredholm determinants and wronskians, we succeed in obtaining rational solutions to the Johnson equation depending on 2N -2 real parameters. These solutions can be expressed in terms of a ratio of two polynomials of degree 2N (N + 1) in x, t and 4N (N + 1) in y. That gives a new approach to find explicit solutions for higher orders and try to describe the structure of those rational solutions.

In the (x, y) plane of coordinates, different structures appear.

It will be relevant to go on this study for higher orders to try to understand the structure of those rational solutions.

Appendix : Because of the length of the complete expression, we only give in this appendix the explicit expression of the rational solution of order 4 to the Johnson equation without parameters. They can be written as v(x, y, t) = -2 |n(x,y,t)| 2 (d(x,y,t)) 2 with n(x, y, t) = A(x, y, t)+iB(x, y, t), d(x, y, t) = C(x, y, t)+iD(x, y, t) with a 15 = (238870462492387049472 y 10 + 271557999465029487820800 y 8 + 139242162925692296437432320 y 6 +40101742922599381373980508160 y 4 +6486942731796692881288829337600 y 2 +473287341711886712618832988471296)t 5 + (13577899973251474391040 y 6 +10044451180212384820101120 y 4 +4306079223517004057228083200 y 2 +756809985376280836150363422720)t 3 + (-215648999575170475622400 y 2 -45545068710276004451450880)t, a 14 = (49764679685913968640 y 12 +63363533208506880491520 y 10 + 38145911924852377465651200 y 8 +13808896791996409592068177920 y 6 +3163974518694955596510973132800 y 4 +435922551576737761622609331486720 y 2 + 28397240502713202757129979308277760)t 6 +(4243093741641085747200 y 8 +2747527994587357170892800 y 6 +1531970492982011058821529600 y 4 + 556477930423735908934090752000 y 2 +81086784147458661016110366720000)t 4 +(-134780624734481547264000 y 4 -72458063857257279809126400 y 2 -3229559417637753042921062400)t 2 + 1186069497663437615923200, a 13 = (8294113280985661440 y 14 + 11440637940424853422080 y 12 + 7737805584756487288258560 y 10 +3293353183912079028954071040 y 8 +948485716966678760338772459520 y 6 +184839709369548119511547584184320 y 4 + 22667972681990363604375685237309440 y 2 +1363067544130233732342239006797332480)t 7 +(990055206382920007680 y 10 +382044832580703250022400 y 8 + 198588767608779211328716800 y 6 +143756798692798443141306777600 y 4 +49192649049458254349773622476800 y 2 +6320876997862697543527835306557440)t 5 + (-52414687396742823936000 y 6 -51324461898890573198131200 y 4 -8984799918299902696331673600 y 2 +417358447817801931700568064000)t 3 + (1383747747274010551910400 y 2 + 398519351214915038950195200)t, a 12 = (1123161173466808320 y 16 + 1634376848632121917440 y 14 + 1203285919851743406981120 y 12 +576801970063697457048453120 y 10 +195462873061337238013099376640 y 8 +47842262604963321877426895585280 y 6 + 8278254729452363179048963481272320 y 4 + 932625161773317816865742478335016960 y 2 + 53159634221079115561347321265095966720)t 8 + (178759967819138334720 y 12 -8075744428535190650880 y 10 -39248117922681026563276800 y 8 + 1648823497551810100545454080 y 6 + 9283906805902660747383747379200 y 4 +3166849124689830209434838378741760 y 2 +374021549252840999472198806415605760)t 6 +(-14195644503284514816000 y 8 -21804509957045014757376000 y 6 -6831185242542533546449305600 y 4 -417358447817801931700568064000 y 2 +110683460361281072286990650572800)t 4 + (749530029773422382284800 y 4 +470977415072172318759321600 y 2 +72602979984971794368744652800)t 2 -4953187958992196861952000, a 11 = (124795685940756480 y 18 +187272347239097303040 y 16 +146517077489138458951680 y 14 +76751875048798451945963520 y 12 +29343905682992370383144878080 y 10 + 8451044836701802670345724887040 y 8 +1833438966925691173883327482429440 y 6 +290302440061792555740071800854282240 y 4 +30776630338519487956569501785055559680 y 2 + 1701108295074531697963114280483070935040)t 9 +(25537138259876904960 y 14 -16487978208259347578880 y 12 -23548870753608615937966080 y 10 -8817341281829796982995025920 y 8 -761138147057354337664295239680 y 6 +437525208016358121040339512852480 y 4 +154008873221758058606199508524072960 y 2 + 17253565492806379612016235849197813760)t 7 +(-2839128900656902963200 y 10 -6268796612650441742745600 y 8 -2644719330789890713033113600 y 6 -423155092926382514085298176000 y 4 +16527394533584956495342495334400 y 2 +11875684217586863285380643920281600)t 5 +(249843343257807460761600 y 6 + 255112766497426672661299200 y 4 +82167444414129755303549337600 y 2 +9121600742862404440611304243200)t 3 +(-4953187958992196861952000 y 2 -1462747164118381336146739200)t, a 10 = (11439604544569344 y 20 +17340032151768268800 y 18 +14144570226764761006080 y 16 +7918844251066506946805760 y 14 + 3318042598263440768740884480 y 12 +1079072537972782120301972422656 y 10 +275211725270362831122443922309120 y 8 +54479329302934823452533159477903360 y 6 + 8071322172111728459198374242649374720 y 4 +820710142360519678841853380934814924800 y 2 +44909258989967636826226217004753072685056)t 10 + (2926130425610895360 y 16 -4142023680111799173120 y 14 -5552074294617943572480000 y 12 -2774875482533482493430988800 y 10 -713283621327627974199245537280 y 8 -66272811660597455181323981291520 y 6 +15584231218868374978008283600650240 y 4 +5783190341388465874191981544577433600 y 2 +630920921939649503109674786593638973440)t 8 + (-433755804267026841600 y 12 -1299185384940598795960320 y 10 -624531483269670095762227200 y 8 -139312704109553329979680358400 y 6 -9508816636115587343911275724800 y 4 +3613990271343910486981558979788800 y 2 +808546584414229807682547419751383040)t 6 +(57255766163247543091200 y 8 + 83947363334623306815897600 y 6 +42080020585102165249150156800 y 4 +8142354162519524723084230656000 y 2 +829736418158311427016176015769600)t 4 + (-2270211147871423561728000 y 4 -1611437149325461379088384000 y 2 -236992212361124247935700172800)t 2 -22289345815464885878784000, a 9 = (866636707921920 y 22 +1300502411382620160 y 20 +1089362019887559475200 y 18 +640868004293042629509120 y 16 +288170959432301880016896000 y 14 + 102896891394092649087164743680 y 12 +29634304721498682937103446179840 y 10 +6883790993036019975202969485312000 y 8 +1269787444522250115855195947831132160 y 6 + 179027457524721204453247428684310118400 y 4 +17727339074987225062984033028192002375680 y 2 +979838377962930258026753825558248858583040)t 11 + (270938002371379200 y 18 -638011182995944243200 y 16 -840742678899288598118400 y 14 -482979213715195386711244800 y 12 -165537155961891038805413068800 y 10 -34306864410623318785786694860800 y 8 -3075319634693734127133359131852800 y 6 +429548557965447646452665295883468800 y 4 +169724064366835411525199458373468160000 y 2 + 18465978203111692773941701071033335808000)t 9 +(-51637595746074624000 y 14 -201262693179900454502400 y 12 -96196093393826585405030400 y 10 -21999073276661724119826432000 y 8 -2454299538973018581694729420800 y 6 +374509647175174266712643076096000 y 4 +257034039786313243415566487440588800 y 2 + 39036534804372144650795875425897676800)t 7 +(9542627693874590515200 y 10 +18738250744335559557120000 y 8 +12926719864534302210392064000 y 6 + 3607606490492998564718837760000 y 4 +475997309736203103104497876992000 y 2 +55341062407124027660404604377497600)t 5 +(-630614207742062100480000 y 6 -784176138142669388906496000 y 4 -252289921092987691135401984000 y 2 -29497677796289438610295357440000)t 3 +(-18574454846220738232320000 y 2 -10580009480407332497129472000)t, a 8 = (54164794245120 y 24 +78818327962583040 y 22 +67014124257127956480 y 20 +40891467820678187581440 y 18 + 19425182661732300509675520 y 16 +7463870654096140365862010880 y 14 +2362145763180161945293931151360 y 12 +619083287533350266506058630430720 y 10 + 133639567776023181938111111988510720 y 8 +23333915812210853614131125536381992960 y 6 +3171803314887420170582927478083372974080 y 4 + 309422645672504292008448576492078586920960 y 2 + 17637090803332744644481568860048479454494720)t 12 + (20320350177853440 y 20 -70380130498353561600 y 18 -90716928206703899443200 y 16 -56579907888537320344780800 y 14 -22667297643345319033621708800 y 12 -

A ( x, y, t) = 20 k=0 a k (y, t)x k , B ( x, y, t) = 20 k=0 b k (y, t)x k , C ( x, y, t) = 20 k=0 c k (y, t)x k , D ( x, y, t) = 0. a 20 =

2

  is a solution to the Johnson equation depending on 2N -1 real parameters a k , b k and ǫ, with φ r ν defined in[START_REF] Pelinovsky | Self-focusing of plane dark solitons in nonlinear defocusing media[END_REF] 

3 , b 1 , b 2 , b 3 ,

 3123 and time t.

Figure 1 .

 1 Figure 1. Solution of order 4 to (1), on the left for t = 0; in the center for t = 0, a 2 = 10 4 ; on the right for t = 0, a 1 = 10 3 ; all other parameters not mentioned equal to 0.

Figure 2 .

 2 Figure 2. Solution of order 4 to (1), on the left for t = 0, 01, a 1 = 10 2 ; in the center for t = 0, 01, a 2 = 10; on the right for t = 0, 01, b 1 = 10; all other parameters not mentioned equal to 0.

Figure 3 .

 3 Figure3. Solution of order 4 to (1), on the left for t = 0, 1, a 1 = 10 2 ; in the center for t = 0, 1, b 1 = 10; on the right for t = 0, 1, a 2 = 10 2 ; all the other parameters to equal to 0.

Figure 4 .

 4 Figure 4. Solution of order 4 to (1), on the left for t = 1, a 2 = 10 2 ; in the center for t = 10, a 1 = 10 2 ; on the right for t = 10, a 1 = 10 3 ; all the other parameters to equal to 0.

The proof of this result is submitted to a review