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ABSTRACT

Aims. Analyses of Galactic late O dwarfs (O8-O9.5V stars) raised the “weak wind problem”: spectroscopic mass-loss rates (Ṁ) are up
to two orders of magnitude lower than the theoretical values. We investigated the stellar and wind properties of Galactic late O giants
(O8-O9.5III stars). These stars have luminosities log (L?/L�) ∼ 5.2, which is the critical value (onset of weak winds) proposed in the
literature.
Methods. We performed a spectroscopic analysis of nine O8-O9.5III stars in the ultraviolet (UV) and optical regions using the model
atmosphere code CMFGEN.
Results. Stellar luminosities were adopted using calibrations from the literature. Overall, our model spectral energy distributions agree
well with the observed ones considering parallaxes from the latest Gaia data release (DR2). The effective temperature derived from
the UV region agrees well with the ones from the optical. As expected, the analysis of the Hertzsprung–Russell (HR) diagram shows
that our sample is more evolved than late O dwarfs. From the UV region, we found Ṁ ∼ 10−8 − 10−9 M� yr−1 overall. This is lower by
∼0.9 − 2.3 dex than predicted values based on the (global) conservation of energy in the wind. The mass-loss rates predicted from first
principles, based on the moving reversing layer theory, agree better with our findings, but it fails to match the spectroscopic Ṁ for the
most luminous OB stars. The region of log (L?/L�) ∼ 5.2 is critical for both sets of predictions in comparison with the spectroscopic
mass-loss rates. CMFGEN models with the predicted Ṁ (the former one) fail to reproduce the UV wind lines for all the stars of our
sample. We reproduce the observed Hα profiles of four objects with our Ṁ derived from the UV. Hence, low Ṁ values (weak winds)
are favored to fit the observations (UV + optical), but discrepancies between the UV and Hα diagnostics remain for some objects.
Conclusions. Our results indicate weak winds beyond the O8-9.5V class, since the region of log (L?/L�) ∼ 5.2 is indeed critical to
the weak wind phenomenon. Since O8-O9.5III stars are more evolved than O8-9.5V, evolutionary effects do not seem to play a role
in the onset of the weak wind phenomenon. These findings support that the Ṁ (for low luminosity O stars) in use in the majority
of modern stellar evolution codes must be severely overestimated up to the end of the H-burning phase. Further investigations must
evaluate the consequences of weak winds in terms of physical parameters for massive stars (e.g., angular momentum and CNO surface
abundances).
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1. Introduction

With their high effective temperatures (&30 kK) and intense radi-
ation fields (L? . 106 L�), massive O-type stars have a huge
impact on the interstellar medium through ionizing photons (e.g.,
Abbott 1982) and strong line-driven outflows (.10−6 M� yr−1).
After they leave the main sequence, O stars evolve to become
objects such as red supergiants, luminous blue variables, and
Wolf–Rayet stars, depending on the initial mass (Meynet et al.
2011). Therefore, they are also progenitors of type II-Ib-Ic super-
novae, neutron stars, black holes, long gamma-ray bursts (e.g.,
Gehrels & Razzaque 2013), and possibly gravitational wave
events at low metallicity (Abbott et al. 2016).

Despite having been studied for several decades, exciting
findings regarding O stars have been reported in the literature
in recent years. For example, it is still unclear why about 10%
of O stars have been found to possess surface magnetic fields
(Grunhut et al. 2017). Moreover, it has been argued that O stars
form almost exclusively in multiple systems (Sana et al. 2014).
As is the case for magnetic fields, the effects of binary interac-
tions (e.g., tides, mass transfer, and mergers) on stellar evolution
are complex and constitute a hot topic in the literature (see,

e.g., Keszthelyi et al. 2017; de Mink et al. 2014). The insta-
bility inherent in line-driven winds is another critical issue; it
induces the far from smooth density and velocity structures –
inhomogeneities – that present a challenge to hydrodynamics and
to implementation in atmosphere codes (e.g., Sundqvist et al.
2014; Sundqvist & Puls 2018). Such inhomogeneities directly
affect the mass-loss rate obtained for these stars, and with likely
evolutionary consequences.

Another open question that has been called urgent in the
massive star community (e.g., Puls et al. 2009) is the so-called
weak wind problem1. It is characterized by a large discrepancy
between theoretical predictions for the mass-loss rates (Ṁ) of
O8-O9V stars – provided by Vink et al. (2000, 2001) – and the
results obtained from spectroscopic analyses using atmosphere
models (e.g., Martins et al. 2005a; Marcolino et al. 2009). The
“measured” (i.e., derived using atmosphere models) mass-loss
rates of late-type O dwarfs (O8-9.5V stars) are up to two orders
of magnitude lower than the predicted ones.

1 We use the term “problem” throughout the text to state the disagree-
ment between spectroscopic and predicted mass-loss rates.
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The first results regarding weak winds were presented almost
three decades ago, showing a significant difference (approxi-
mately a factor of 5–10) between spectroscopic and predicted
Ṁ for the faintest O stars (e.g., Chlebowski & Garmany 1991).
However, one of the first quantitative findings about the weak
wind problem with modern photosphere-wind unified models
came from Bouret et al. (2003) and Martins et al. (2004). These
authors investigated O dwarfs in the Small Magellanic Cloud and
found weak mass-loss on the order of 10−9 − 10−8M� yr−1 (in
O6-O9.5V stars). An important question raised by these results
was the role played by the low metallicity environment (like
the Small Magellanic Cloud) and the youth of the sample stars.
Later, Martins et al. (2005a) and Marcolino et al. (2009) pre-
sented spectroscopic analyses using optical and ultraviolet data
for a total of 17 Galactic O dwarfs and inferred much lower
mass-loss rates than predicted for the late-type objects (O8-9V).
The discrepancies found reached up to two orders of magni-
tude. This ruled out an environmental effect due to metallicity.
Overall, these results indicated that weak winds concern a partic-
ular range of stellar luminosity, corresponding to late O dwarfs,
namely log (L/L�) ∼ 4.5−5.0.

Interestingly, one of the most recent hydrodynamical results
regarding O stars (Muijres et al. 2012) fails to drive winds for
low luminosity O stars (O6.5V and later). Muijres et al. (2012)
identified the absence of physical solutions for their hydrody-
namical approach as resulting from the lack of Fe V at the basis
of the wind for this spectral range. This is notable since P-Cygni
profiles are observed in the UV spectra of these stars. It exposes
our lack of knowledge about the force that maintains the wind
at this luminosity range. Moreover, such discrepancy between
the hydrodynamical2 mass-loss rates of Vink et al. (2000) and
results from atmosphere models is currently a serious question
because the most modern evolutionary models use the predicted
values of Vink et al. (2000) during the main sequence phase (e.g.,
Ekström et al. 2012; Meynet et al. 2015). Stated differently, the
mass-loss rate of the majority of massive stars (low luminosity)
at the main sequence is severely overestimated in most evolution
models. The mass range affected is around 20–25 M�, that is, the
mass range of late O dwarfs. The evolutionary consequences of
this fact up to the end of the main sequence are as yet unknown.

We aim to investigate the weak wind phenomenon among
more evolved O stars for the first time. We are particularly inter-
ested in late O giants because of their luminosity – log (L?/L�) ∼
5.2 – which seems to define the outset of the weak wind problem.
So far, this problem has only been reported in O8-9.5V stars.
We performed a quantitative analysis of nine Galactic late-type
O giants (O8-9.5III) using ultraviolet and optical data to derive
their main stellar and wind physical parameters. Our analysis
increases the number of O8-9.5III stars analyzed in the literature
through a quantitative approach in the UV and visible spectral
regions. Up to date, Mahy et al. (2015) is one of the most com-
prehensive works deriving the stellar and wind parameters of
Galactic late O giants, combining UV and visible spectra: five
objects in total, with UV data for two out of five stars.

This paper is organized as follows. In Sect. 2, we present the
observational data used in our analysis. In Sect. 3, we present
the code to generate the non-LTE expanding atmosphere mod-
els (CMFGEN). The code assumptions and our methodology for

2 We note that the mass-loss rates predicted by Vink et al. (2000) are
not rigorously hydrodynamical since the authors do not explicitly solve
the wind equation through simulations. Nevertheless, Vink et al. (2000)
provide Ṁ using a global energy argument, where the conservation of
energy is globally satisfied in the wind for solely one value of Ṁ. For
more details, see Vink et al. (1999).

the analysis of the UV and optical data are discussed. In Sect. 4,
we first present the derived stellar and wind parameters and our
fits (Sect. 4.1). Then, we analyze the energy spectral distribu-
tion, the photospheric parameters, and the evolutionary status
of our sample in Sect. 4.2. The wind parameters and the weak
wind phenomenon are analyzed in detail in Sect. 4.3. After, we
discuss the derivation of Ṁ from the UV in comparison with
the optical region (from Hα) in Sect. 5.1. In Sect. 5.3, we eval-
uate the effect of different parameters (e.g., CNO abundances)
on the Ṁ diagnostics. Finally, our conclusions are presented
in Sect. 6.

2. Observations

Our sample contains nine Galactic late O giants. They belong to
the O8-9.5III spectral types, according to the classification pro-
vided by the Galactic O-Star Catalog (GOSC, Maíz Apellániz
et al. 2013). We present them in Table 1. Three stars of our
sample are double-lined spectroscopic binaries (HD 156292,
HD 153426, and HD 115455), and we discuss in Sect. 5.2 pos-
sible binary effects on the analysis. Two stars of our sample
have a classification outside the luminosity class III: HD 116852
(O8.5II-III) and HD 135591 (O8IV). We initially included these
objects in the analysis based on an outdated GOSC classi-
fication, O9III for HD 116852 and O7.5III for HD 135591
(Maíz-Apellániz et al. 2004). Nevertheless, HD 116852 and
HD 135591 have expected stellar parameters (such as bolometric
luminosity and effective temperature) consistent with the rest of
our sample of giants. The known population of O8-9.5 giants is
close to sixty stars (Maíz Apellániz et al. 2013). From an obser-
vational point of view, our analyzed spectra have a fairly good
morphological homogeneity. We consider our sample represen-
tative and it corresponds to ∼25% of the late O giants with
available spectra from the IUE/Short-Wavelength Prime (SWP)
instrument.

We used high-resolution (∆λ ∼ 0.2 Å) data from the Inter-
national Ultraviolet Explorer (IUE) satellite3. We focused on the
∼1200 − 1975 Å interval (SWP instrument). This region con-
tains the most important photospheric and wind lines useful to
our purposes (e.g., iron forest, N V λ1240, Si IV λλ1394,1403,
C IV λλ1548,1551, and N IV λ1718). When available, we co-
added different observations for the same target in order to
achieve a better signal-to-noise ratio (S/N). In addition, we used
IUE/ Long-Wavelength Prime (LWP) data (∼1900−3125 Å) and
UBVJHK photometry in the analysis of the spectral energy
distribution of our sample.

We also acquired high-resolution optical spectroscopic data
for six stars of the sample: HD 156292, HD 105627, HD 116852,
HD 153426, HD 115455, and HD 135591. The observations were
done with the FEROS spectrograph (resolving power R = 48 000)
at the ESO/MPG 2.2 m telescope in La Silla (Chile) from 17
to 22 March of 2016. Technical details about FEROS can be
found in Kaufer et al. (1999, 2000). The exposure times varied
from 80 to 420 s. The spectra cover the interval ∼3500−9200 Å,
and the S/N achieved is about 100 for all the stars. Further-
more, we used high-resolution optical data for HD 36861 from
the NARVAL spectrograph (R = 75 000) at the 2 m Télescope
Bernard Lyot on Pic du Midi (France), covering ∼3700−6800 Å.
For HD 24431 and HD 218195, we used public data from the
Magnetism in Massive Stars (MiMeS) survey (Wade et al. 2016)
obtained using the ESPADONS instrument (R = 68 000) at the

3 Public data available in the Barbara A. Mikulski Archive for Space
Telescopes (MAST): https://archive.stsci.edu/iue/
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Table 1. Star sample and photometric/spectroscopic data.

Star HD 156292 HD 24431 HD 105627 HD 116852 HD 153426 HD 218195 HD 36861 A HD 115455 HD 135591
(λ Orionis A)

Spec. type O9.7III O9III O9III O8.5II-III((f)) O8.5III O8.5III Nstr O8III O8III((f)) O8IV((f))

Spec. bin. SB2 – – – SB2 – – SB2

Member. NGC 6322 Sh 2-205 – – Sh 2-2 Cep OB1 Sh 2-264 RCW 75 ASCC 79
Cam OB1 Collinder 69 Cen OB1

Ori OB1

Johnson U 7.101 6.507 7.270 8.380 6.650 7.657 2.196 7.400 (a) 4.442

Johnson B 7.773 7.117 8.182 8.380 7.610 8.650 3.218 8.170 (a) 5.372

Johnson V 7.509 6.745 8.140 8.470 7.470 8.357 3.405 7.970 (a) 5.457

Johnson R – 6.360 (a) – – – – – – –

Johnson I – 6.100 (a) – – – – – – –

2MASS J 6.944 5.917 7.985 8.720 7.057 7.755 3.735 (b) 7.469 5.554

2MASS H 6.886 5.826 8.030 8.789 7.056 7.708 3.769 (b) 7.442 5.566

2MASS Ks 6.855 5.839 8.069 8.795 7.027 7.735 3.876 (b) 7.454 5.616

E(B − V) 0.52 0.63 0.30 0.17 0.40 0.55 0.07 0.46 0.17

Dist. (pc) 1833+270
−208 823+62

−54 2541+287
−234 22 726−12 766 2163+269

−215 1588+276
−204 417+10

−10 2266+271
−219 836+137

−103

2857−1956
(c)

SWP № 16 218 30 166 20 623 09332 01517 26 975 46 234 16 087 48 294
07827-28 46 237

07828 46 241
46 245
46 247

SWP date 1982-Jan-31 1987-Jan-26 1983-Aug-06 1980-Jun-20 1978-May-10 1985-Oct-24 1992-Nov-12 1982-Jan-21 1993-Aug-03
1980-Jan-31 1992-Nov-12
1980-Jan-31 1992-Nov-12

1992-Nov-12
1992-Nov-12

LWP № – 10 024 16 537 15 610 06841 06987 15 311 – 25 759

LWP date – 1987-Jan-26 1983-Aug-06 1989-May-27 1980-Feb-02 1985-Oct-25 1989-Apr-05 – 1993-Jun-17

Vis. inst. FEROS ESPADONS FEROS FEROS FEROS ESPADONS NARVAL FEROS FEROS

Vis. date 2016-Mar-23 2011-Nov-07 2016-Mar-18 2016-Mar-18 2016-Mar-18 2011-Jul-05 2007-Sep-21 2016-Mar-18 2016-Mar-18

Notes. Spectral types, spectroscopic binary classification, and memberships are from Sota et al. (2014). Photometric data are from Maíz-Apellániz
et al. (2004) with exception to the specific references. Color excesses are calculated considering intrinsic colors calibrated by spectral type from
Martins & Plez (2006). Distances are from Gaia Collaboration (2018). For HD36861, we adopted the distance from the mean Gaia DR2 parallaxes
for the components C and D, as in Gordon et al. (2018). Distance from van Leeuwen (2007) for HD 116852 is shown too. All distances are obtained
from the direct inversion of the measured parallaxes. We list information about the analyzed data in the UV (SWP and LWP number and observation
date) and in the visible (instrument name/observation date) regions.
References. (a)Ducati (2002). (b)Cutri et al. (2003). (c)van Leeuwen (2007).

Canada-France-Hawaii Telescope (USA). The optical data of our
sample were analyzed in a second step in our methodology, thus
allowing us to check the consistency of the results derived
from a pure ultraviolet analysis (e.g., effective temperature and
mass-loss rate).

3. Atmosphere models

3.1. Code

We used the code CMFGEN (Hillier & Miller 1998) to derive
the stellar and wind properties of the late-type O giant stars of
our sample. It allows us to solve the radiative transfer, statistical
and radiative equilibrium equations in a spherically symmetric
outflow. It includes, for example, the effects of line blanketing,
clumping, and Auger ionization by X-rays, and provides realistic
spectra from the UV to the middle infrared.

The code requires an initial estimate of the hydrostatic struc-
ture. For this purpose, we used a grid of non-LTE plane-parallel
models computed with the code TLUSTY (Hubeny & Lanz
1995), based on the OSTAR2002 grid (Lanz & Hubeny 2003).
The sampling steps of our grid are ∼500 K in effective tem-
perature and ∼0.25 dex in surface gravity. When necessary, we
interpolated on Teff and log (g). For the wind, we used a stan-
dard β velocity law, in the form v(r) = v∞

(
1 − R?

r

)
β, which

is smoothly connected to the hydrostatic density structure just
above the sonic point.

Initially, we used the following assumptions in the modeling
for all the stars of our sample:

(i) We adopted standard solar abundances (Grevesse et al.
2010) for all the chemical elements. Later, we performed tests
concerning the effects of CNO abundance changes on the deriva-
tion of the mass-loss rate (Sect. 5.3.1). The atomic species
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Table 2. Number of levels, super-levels, and bound–bound transitions
for each atomic species included in our basic models.

Ion Full levels Super-levels b–b transitions

H I 30 30 435
He I 69 69 905
He II 30 30 435
C III 243 99 5528
C IV 64 64 1446
N III 287 57 6223
N IV 70 44 440
N V 49 41 519
O III 104 36 761
O IV 64 30 359
O V 56 32 314
Mg II 44 36 348
Si III 50 50 232
Si IV 66 66 1090
S V 144 37 1673
Fe III 607 65 5482
Fe IV 1000 100 25 241
Fe V 1000 139 25 173
Fe VI 1000 59 24 798

Notes. CMFGEN approach for a faster computational treatment. For
more details see, for example, Hillier & Miller (1998).

included in each model and their number of energy levels are
shown in Table 2, together with the total number of computed
bound-bound transitions.

(ii) We assumed β = 1.0 for the wind velocity structure.
Values of β = 0.8 − 1.0 are recognized as typical for O stars
since they are supported both from spectroscopic modeling
(e.g., Bouret et al. 2013) and hydrodynamical predictions (e.g.,
Muijres et al. 2012). As we will show later (Sect. 4.3.1), lower
values for this parameter provide a better fit to the observed
C IV λλ1548,1551 profiles in late O giants.

(iii) All models include the effects of X-rays (energy inter-
val of 0.1−1.0 keV) produced in the wind with the canonical
value for O-type stars of log (LX/LBOL) apprximately− 7.0 (e.g.,
Sana et al. 2006; Rauw et al. 2015). We adopted the value of
log (LX/LBOL) = −7.0 ± 0.1. In fact, two objects of our sam-
ple have observed values for log (LX/LBOL) in the literature:
HD 36861 (λ Orionis A) and HD 135591. The first has determi-
nations of −6.96 (Berghoefer et al. 1996) and −6.81 (Nazé 2009),
while the latter one shows −7.14 (Berghoefer et al. 1996).

(iv) Wind clumping was included by default in the models.
In CMFGEN, a volume filling factor is used according to the
formula f (r) = f∞ + (1− f∞)e−

v(r)
vinitial (microclumping approxima-

tion). The free parameters vinitial and f∞ are the onset velocity
of clumping and the filling factor value at r → ∞, respectively.
We adopted vinitial = 30 km s−1 and f∞ = 0.1 (e.g., Bouret et al.
2003; Martins et al. 2005a). It is important to note that “clumped
models” imply underestimation of the derived mass-loss rates in
comparison with “unclumped models” (see, e.g., Martins 2011).
When needed, we scaled our mass-loss rates by a factor of
1/

√
f∞ (∼3.16) to compare them with unclumped results from

the literature.
(v) In CMFGEN, a depth-dependent microturbulence veloc-

ity is used to compute the emergent spectrum (formal solution).
It is parameterized as ξt(r) = ξmin

t + (ξmax
t − ξmin

t ) v(r)
v∞

, where
ξmin

t and ξmax
t are the minimum and maximum microturbulence

velocities. As in Mahy et al. (2015), we fixed ξmin
t = 10 km s−1

and ξmax
t is set to 0.1v∞. In Sect. 4.1, we discuss the effect

of this assumption particularly on the analysis of the effective
temperature.

3.2. Diagnostics for the photospheric and wind parameters

First, we performed the analysis of all objects using the UV
data set alone. Ultraviolet spectroscopy is suitable to investigate
the weak wind phenomenon since the most traditional mass-loss
diagnostic in the optical (Hα line) is found to be insensitive for
the analysis of mass losses lower than ∼10−8−10−7M� yr−1 (e.g.,
Puls et al. 2008; Martins 2011). Thereafter, we extended the anal-
ysis to the visible region, comparing with the results derived
from the UV (e.g., for Teff and Ṁ).

We have used typical line diagnostics in the optical and UV
for the determination of the photospheric and wind properties –
the effective temperature Teff , surface gravity log (g), projected
rotational velocity v sin i, mass-loss rate (Ṁ), and terminal
velocity v∞ (e.g., Martins et al. 2004; Marcolino et al. 2009;
Mahy et al. 2015). The spectroscopic parameters are obtained
through a direct comparison between the synthetic spectrum
and the data. The uncertainty for each parameter is inferred in a
conservative way: the upper and lower limits for each parameter
do not provide an acceptable “by eye” fit to the data (as, e.g., in
Marcolino et al. 2009). We provide examples for the derivation
of Teff and of Ṁ below.

In the following we summarize our methodology in more
detail:

(i) The bolometric luminosity log (L?/L�) was adopted
according to the spectral type of each star of our sample. We
used the calibrations for Galactic O stars provided by Martins
et al. (2005b) adopting conservative error bars, namely, ±0.2 dex
in log (L?/L�). Since Martins et al. (2005b) provide results for
luminosity classes V, III, and I, we use mean values among
these classes for the stars with intermediate classification, such
as HD 116852 (II-III) and HD 135591 (IV). We initially chose
this assumption because the astrometric distances derived from
the HIPPARCOS parallaxes are highly uncertain for most of our
sample. For O stars, the discrepancy between the HIPPARCOS
distances and the ones predicted from the spectral type is notori-
ous (e.g., Schröder et al. 2004). The total amplitude of 0.4 dex in
log (L?/L�) uncertainty covers a significant deviation in terms of
spectral types from O9.5III to O6.5III (Martins et al. 2005b). In
Sect. 4.2.1, we discuss this assumption for the stellar luminosity,
using recent astrometric results from Gaia Collaboration (2018).

(ii) The effective temperature Teff was derived by the ioniza-
tion balance method through the intensity of the Fe III-IV-V lines
in the ultraviolet, especially Fe III and Fe V. In the optical, it was
derived by the relative intensity of the He I and He II profiles,
mainly He I λ4471 and He II λ4542. Additional lines for con-
sistency checking include He I λ4144, He II λ4200, He I λ4713,
He I λ4920, He I λ5016, and He II λ5412.

We emphasize that we have inferred independent values for
the temperature using the ultraviolet and optical separately. In
Fig. 1, we illustrate the derivation of Teff for one of the stars
of our sample, HD 156292. The first three panels show the
models for the determination of the effective temperature (con-
sidering the error bars) in the ultraviolet. The bottom panels
show the same three models in the optical region for He I λ4471,
He II λ4542, and He II λ5412. It is conspicuous that the same
effective temperature fits both the UV and the visible spectra.

(iii) The surface gravity log (g) was initially adopted
according to the spectral type using the calibrations of
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Fig. 1. Determination of T UV
eff

for HD 156292 (O9.7III). The IUE
spectrum is in black. In the UV, most features are due to Fe IV

(∼1775−1840 Å) and Fe III (&1840 Å). Models are shown in green
(T UV

eff
lower limit), red (final model), and blue (T UV

eff
upper limit). In the

bottom panels, these models are shown for Teff diagnostics in the optical
(He I λ4471, He II λ4542, and He II λ5412).

Martins et al. (2005b). After the UV analysis, we checked the
fits for the wings of the Balmer lines, mainly Hγ and Hβ, for all
our sample.

(iv) The stellar radius R? of each object follows from the
Stefan–Boltzmann equation for a specific Teff and log (L?/L�),

R? =

√
L?

4πσT 4
eff

, (1)

where σ ≡ Stefan–Bolztmann constant.
The spectroscopic M? is found from the gravity law

M? =
gR2

?

G
, (2)

where G is the universal gravity constant.
The error bars for R? are calculated from the uncertainties

in log (L?/L�) (highest contribution to the error propagation on
the radius) and for M? from the uncertainties in R? (highest
contribution to the error propagation on the mass), being thus
underestimated values.

(v) The projected rotational velocity v sin i was initially
adopted from Howarth et al. (1997), and modified when needed
in order to provide a better fitting to the observed broadening. We
analyzed the broadening of UV Fe III-IV-V transitions, as well as
of weak metal lines and He I transitions in the optical. We stress
here that macroturbulence is not accounted for in our models. We
are aware that the inclusion of macroturbulence must provide a
better overall fit to the optical data, but it does not have a signif-
icant impact on the wind parameters. Thus, our values of v sin i,
in fact, express the total line broadening and they must be seen
as upper limits.
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Fig. 2. Determination of Ṁ for HD 156292 from the UV lines. The IUE
spectrum is in black. We show the models in green (lower limit on Ṁ),
red (final model), and blue (upper limit on Ṁ). Mass-loss rate unit is in
M� yr−1. We note that Si IV λλ1394,1403 and C IV λλ1548,1551 are the
most useful lines for the analysis of the wind mass loss in late O giants.
All the models have v∞ fixed in 1300 km s−1.

(vi) The wind terminal velocity v∞ is derived from fitting
the blueward extension (formed up to v∞+ξmax

t ) of the absorp-
tion component of the C IV λλ1548,1551 profile. Overall, we are
able to provide a very reasonable fit to the observed blueward
extension of C IV λλ1548,1551 with our adopted value of ξmax

t =
0.1v∞.

(vii) The mass-loss rate Ṁ was determined by fitting the
intensity of the ultraviolet P-Cygni profiles Si IV λλ1394,1403
and C IV λλ1548,1551. The Hα profile was also used to infer Ṁ,
allowing us to compare with the values derived from the UV. In
Fig. 2, we illustrate the determination of the wind mass loss of
HD 156292 from the UV lines. The model parameters are fixed
except the mass-loss rate. The lines N V λ1240 and N IV λ1718
are much less sensitive to the variation in Ṁ than the lines due to
Si IV and C IV. Nevertheless, they provide at most constraints on
the mass-loss rate. For example, models with Ṁ ∼ 10−7M� yr−1

provide stronger nitrogen lines than the observed ones in our
sample. For HD 156292, the modeling provided by our lower
limit on Ṁ is quite close to our final model. Such uncertainty
is due to the discrete absorption components in the observed
C IV λλ1548,1551 of HD 156292, which are not included in our
modeling. In any case, it would imply an overestimated Ṁ and
thus provides a proper comparison with the theoretical values
for this star.

4. Results

We present the stellar and wind parameters derived for our sam-
ple in Table 3. Effective temperature determined through the
analysis of Fe III-IV-V (ultraviolet) is denoted as T UV

eff
, while the

values obtained by He I-II (optical) are denoted by T opt
eff

. For
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Table 3. Summary of the results for the stellar and wind parameters.

Parameter HD 156292 HD 24431 HD 105627 HD 116852 HD 153426 HD 218195 HD 36861 HD 115455 HD 135591
Spectral type O9.7III O9III O9III O8.5II-III((f)) O8.5III O8.5III Nstr O8III O8III((f)) O8IV((f))
log (L?/L�) 5.12 ± 0.20 5.17 ± 0.20 5.17 ± 0.20 5.33 ± 0.20 5.24 ± 0.20 5.24 ± 0.20 5.30 ± 0.20 5.30 ± 0.20 5.10 ± 0.20

T UV
eff

(kK) (a) 31.0+2.0
−3.0 33.0 ± 3.0 33.0+1.5

−2.0 32.5+2.0
−2.5 32.0 ± 2.0 33.0 ± 2.0 33.5 ± 2.5 34.0+3.5

−1.5 35.0 ± 2.5

T opt
eff

(kK) (b) 30.0 ± 2.0 32.5 ± 1.5 33.0+1.5
−2.0 33.0+2.0

−2.5 35.0 ± 1.0 35.0 ± 1.5 35.0+2.0
−1.5 34.0+2.0

−1.5 36.0 ± 1.5

log (g) 3.50 ± 0.10 3.75 ± 0.10 3.50 ± 0.10 3.50 ± 0.10 3.55 ± 0.10 3.55 ± 0.10 3.60 ± 0.10 3.57 ± 0.10 3.75 ± 0.10

R? (R�) 13.0+3.7
−2.3 11.9+3.5

−2.2 11.9+3.5
−2.2 14.7+4.3

−2.7 13.7+4.0
−2.5 12.9+3.7

−2.4 13.4+3.9
−2.5 13.0+3.8

−2.4 9.7+2.8
−1.8

M? (M�) 19.6+11.1
−7.0 28.9+16.8

−10.6 16.3+9.5
−6.0 25.0+14.5

−9.1 24.3+14.1
−8.9 21.5+12.5

−7.9 26.1+15.1
−9.5 22.9+13.3

−8.4 19.4+11.2
−7.1

v sin i (km s−1) 100 80 160 120 110 80 75 70 80

v∞ (km s−1) 1300 ± 200 2300 ± 300 2100 ± 300 2100 ± 300 2400 ± 300 2000 ± 200 2000 ± 200 2300 ± 300 2100 ± 300

Ṁderived (M� yr−1) (c) 1.50+4.00
−0.75 × 10−9 2.5+7.5

−1.5 × 10−9 4.0+16.0
−2.5 × 10−9 6.0+19.0

−4.5 × 10−8 4.5+10.5
−2.5 × 10−9 1.00+2.50

−0.75 × 10−8 2.5+3.5
−2.2 × 10−8 5.0+10.0

−3.0 × 10−9 2.00+6.00
−1.85 × 10−8

Ṁunclumped (M� yr−1) (d) 4.8+12.6
−2.5 × 10−9 7.9+23.7

−4.7 × 10−9 1.3+5.0
−0.8 × 10−8 1.90+6.00

−1.43 × 10−7 1.4+3.4
−0.8 × 10−8 3.2+7.8

−2.4 × 10−8 7.9+11.1
−7.0 × 10−8 1.6+3.2

−1.0 × 10−8 6.30+18.70
−5.83 × 10−8

ṀVink (M� yr−1) (e) 2.6+0.5
−0.3 × 10−7 5.4+0.5

−0.3 × 10−7 5.4+0.8
−0.7 × 10−7 6.6+1.1

−1.0 × 10−7 4.2+0.7
−0.6 × 10−7 5.4+0.8

−0.8 × 10−7 5.8+1.0
−0.7 × 10−7 7.1+1.2

−0.9 × 10−7 3.5+0.5
−0.5 × 10−7

ṀLucy (M� yr−1) ( f ) 2.1+1.4
−0.7 × 10−8 1.2+0.8

−0.4 × 10−8 7.1+4.9
−2.4 × 10−8 9.8+6.5

−3.3 × 10−8 4.2+2.9
−1.4 × 10−8 5.9+3.9

−2.0 × 10−8 5.0+3.3
−1.7 × 10−8 6.5+4.3

−2.2 × 10−8 1.3+0.8
−0.5 × 10−8

log (Dunclumped
mom ) (g) 26.15+0.56

−0.48 26.60+0.60
−0.40 26.74+0.72

−0.40 27.98+0.62
−0.60 26.90+0.52

−0.35 27.16+0.52
−0.61 27.56+0.38

−0.92 26.92+0.47
−0.40 27.41+0.60

−1.12

log (DVink
mom) (e) 28.03+0.49

−0.49 28.12+0.49
−0.49 28.12+0.49

−0.49 28.32+0.49
−0.49 28.25+0.49

−0.49 28.25+0.49
−0.49 28.36+0.49

−0.49 28.36+0.49
−0.49 28.10+0.49

−0.49

Notes. Solar units and g unit are in the cgs system. Modified wind momenta (Dmom) are calculated using the mass-loss rate and terminal velocity
in the cgs system and the radius in solar unit. (a)Determined from the UV region (Fe III-IV-V lines). (b)Determined from the optical region (He I-
II lines). (c)Mass-loss rate using f∞ = 0.1. (d) Ṁunclumped = Ṁderived√

f∞=0.1
∼ 3.16 Ṁderived. (e)Calculated from Vink et al. (2000). ( f )Calculated from Lucy

(2010a). (g)Dunclumped
mom = v∞

√
R?Ṁunclumped.

a proper comparison with the theoretical values, we list our
unclumped mass-loss rates (Ṁunclumped). Unclumped modified
wind momenta log (Dunclumped

mom ) are calculated using Ṁunclumped.
In Table 3, we denote Ṁderived as our mass-loss rate

derived with the inclusion of clumping (adopted value of f∞ =
0.1), while Ṁunclumped is calculated from Ṁderived/

√
f∞ = 0.1 ∼

3.16 Ṁderived. In the rest of this paper, we will keep referring
to the clumped values as Ṁderived and to the unclumped ones as
Ṁunclumped.

The mass-loss rate ṀVink is the theoretical rate from the
mass-loss recipe of Vink et al. (2000). It was calculated con-
sidering T UV

eff
, the derived M?, and adopting the ratio v∞/vesc =

2.6. Accordingly, we provide values for log (DVink
mom) that were

calculated from log (L?/L�). We find that our mass-loss rates
(Ṁderived) are systematically lower than the predictions of Vink
et al. (2000) by ∼0.9−2.2 dex. The discrepancy is reduced to
∼0.4−1.7 dex considering the unclumped values for the mass-
loss rate (Ṁunclumped).

We also present in Table 3 the mass-loss rates predicted
by the hydrodynamical approach of Lucy (2010a), namely, the
moving reversing layer theory (Lucy & Solomon 1970). We per-
formed bivariate linear interpolation in the model grid provided
by Lucy and we computed mass fluxes J for the sample tak-
ing log (g) and T UV

eff
into account. Values for ṀLucy were then

obtained from our values for the stellar radii (see Eq. (3) in
Lucy 2010b). We see a significant reduction in the discrepancy
regarding the predicted mass-loss rates from Lucy (2010a). The
values for Ṁderived are lower4 by∼0.2−1.5 dex. However, we note
that ṀLucy is overestimated (up to ∼1.0 dex) in comparison with
Ṁunclumped for most of our sample. More details will be discussed
later in the paper.

4.1. Spectral modelling

We present the fits to the UV and optical spectra of each object
of our sample in Appendices A and B, respectively. All the fits

4 However, note that Ṁderived is higher than ṀLucy by ∼0.1 dex for
HD 135591.

presented in the appendices use the UV mass-loss rate and T UV
eff

(see Table 3). In the rest of this paper, we also only present mod-
els with the effective temperature derived from the UV region.
This approach is followed in this paper, since we extensively
used our final models with T UV

eff
in the analysis of degeneracy

tests for the Ṁ derivation. Our principal tests (such as for Teff)
will be discussed in detail in Sect. 5.3. Here, as an example,
we present the final model for HD 156292 in Fig. 3. Overall,
we achieve a very reasonable fit to the UV and optical data
simultaneously. Additional details and observed discrepancies
are discussed below.

Despite our efforts, a perfect fit to the observed spectra is
elusive. In the UV (see Figs. A.1–A.9), the spectrum below
∼1240 Å is affected by geocoronal emission and severe inter-
stellar H I absorption that is not taken into account here. We
also note the presence of interstellar lines created by low ionized
metals, neglected in our models. From the atlas of Dean &
Bruhweiler (1985), the most common ones found in the IUE
(SWP) spectra are: S II λ1259, Si II λ1260, O I λ1302, Si II λ1304
C II λ1334, C II λ1306, Si II λ1527, Fe II λ1608, C I λ1656,
C I λ1657, C I λ1658, Al II λ1657, Si II λ1808, Al III λ1855, and
Al III λ1863. Several of them can be identified in our stars.

The N V λ1240 wind profile is not reproduced in some stars
of our sample (e.g., see Fig. A.6 for HD 218195). However, this
transition is known to be very sensitive to the X-ray luminos-
ity from the wind and to the N/H abundance. In Fig. 4, we
show the behavior of the UV wind lines due to the variation
in X-ray luminosity (±1.0 dex) in the modeling of HD 218195.
We found that our mass-loss diagnostics (Si IV λλ1394,1403 and
C IV λλ1548,1551) are not strongly affected by such variation in
X-ray in the parameter space of O8-9.5III. Thus, our results for
Ṁ are unlikely biased by X-ray effects. On the other hand, it is
clear that N V λ1240 is much more affected. Therefore, we did
not consider it for the mass-loss rate determination.

Overall, our synthetic profiles of S V λ1502 (in absorption)
are stronger than the observations. Since this line is very sen-
sitive to the microturbulence velocity at the photosphere, we
tested different set of values for ξmin

t from our assumption of
10–30 km s−1. For example, we show in Fig. 5 our model for
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Fig. 3. Modeling (red) of HD 156292 (O9.7III) in the UV and optical. The IUE and FEROS data are shown in black. The effective temperature is
derived from fitting the UV region (see T UV

eff
in Table 3). We obtain a good fit to both the UV and optical observed spectra. In addition to the stellar

and wind diagnostics, we list some interstellar (ISM) lines. In this case, Hα is well reproduced with our Ṁ derived from the UV. Discussion can be
found in the text.
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Fig. 4. Models with different X-ray fluxes compared to the IUE spec-
trum (black line) of HD 218195. All the other parameters are fixed.
These models have the following log (LX/LBOL): −7.96 (blue dashed),
−7.49 (green dashed), −7.00 (solid red), −6.49 (solid green), and
−6.00 (solid blue). Our final model for HD 218195 is shown in red line
(typical X-ray luminosity for O stars). We note how the modeling of
N V λ1240 is sensitive to the inclusion of X-Rays, while Si IV
λλ1394,1403 and C IV λλ1548,1551 are almost unchanged.

HD 116852 computed with ξmin
t = 10, 20, and 30 km s−1. It is

necessary to increase ξmin
t from 10 up to 30 km s−1 to reproduce

the observed S V λ1502. On the other hand, Teff diagnostic lines
in the UV and in the visible are misfitted considering a microtur-
bulence velocity higher than 10 km s−1. Thus, it is not possible to
obtain a consistent fit simultaneously to the Fe III-IV-V lines and
to the He I-II lines with this suggested higher ξmin

t .
In addition to our basic model (atomic species shown in

Table 2), we also compare in Fig. 5 models computed with the
inclusion of the following species in order to test possible effects
due to line blanketing: C II, N II, O II, Ne II, Ne III, Ne IV, Ne V,
P IV, P V, S III, S IV, Ar III, Ar IV, Ar V, Ar VI, Cr IV, Cr V, Cr VI,
Ni III, Ni IV, Ni V, and Ni VI. Our results regarding the mod-
eling of S V λ1502 are unchanged. Still from Fig. 5, one sees
that the C IV λλ1548,1551 profile from our final model (solid
red line) has an emission component stronger than observed. In
advance of the discussion, this issue is systematic in our sample.
We are not able to reproduce the observed emission component
by just considering our models with a fuller account of species,
we need a higher ξmin

t up to 20–30 km s−1 to better reproduce the
observed emission. As discussed above, despite being able to
fit the S V λ1502 line, such high photospheric microturbulence
prevents a self-consistent analysis of the effective temperature
both from the UV and the visible for our sample. Therefore, we
present our results with the default value of ξmin

t = 10 km s−1.
We point out that Holgado et al. (2018) provide limits on the

photospheric microturbulence from optical spectroscopic anal-
ysis to four stars of our sample: HD 24431 (ξmin

t > 18 km s−1),
HD 218195 (ξmin

t > 18 km s−1), HD 36861 (ξmin
t > 11 km s−1),

and HD 135591 (ξmin
t < 8 km s−1). From Figs. A.2, A.6, A.7,

and A.9, our final models for HD 24431 and HD 218195
(high ξmin

t ) overestimate the observed emission component of
C IV λλ1548,1551 practically as much as in the cases of
HD 36861 and HD 135591 (low ξmin

t ). Thus, even consider-
ing these estimations for the microturbulence, we are not able
to explain our systematic overestimation of the emission com-
ponent in C IV λλ1548,1551 by just regarding ξmin

t . This issue
concerning C IV λλ1548,1551 will be discussed in terms of the
wind velocity in Sect 4.3.1.

In the optical, it is conspicuous that our models do not repro-
duce the features of C III λ4647 − 4650 − 4651 (see Figs. B.1–
B.9). For HD 105627, HD 116852, and HD 115455, they are
barely produced by our models. In contrast, the final models
for HD 36861 and HD 135591 show these profiles in emission,
while the data reveal them in absorption. For HD 156292 and
HD 153426, the synthetic lines are in absorption but weaker than
observed. We note, however, that these lines are quite sensitive to
radiative transfer details in the extreme UV – such as the lack of
robust atomic data for these transitions – as already pointed out
by Martins & Hillier (2012). Recent efforts on a better carbon
atomic model, using the code FASTWIND (Puls et al. 2005),
were presented by Carneiro et al. (2018). Thus, despite being
sensitive to Ṁ, C III λ4647 − 4650 − 4651 must not be used as
diagnostics for this parameter.

4.2. Stellar properties

4.2.1. Spectral energy distribution

The spectral energy distribution (SED) for all the stars of our
sample are presented in Fig. 6. We included the effect of inter-
stellar medium (ISM) extinction in the synthetic SEDs using
the reddening law from Cardelli et al. (1989) with RV = 3.1.
The color excess E(B−V) (Table 1) was assumed according
to the calibrated intrinsic colors (B−V)0 from Martins & Plez
(2006). We compare the data with our synthetic SEDs scaled to
take into account the Gaia DR2 parallaxes (Gaia Collaboration
2016, 2018): with 1/(π + σπ) in solid green, 1/π in solid red,

and 1/(π−σπ) in solid blue. Synthetic SEDs taking into account
HIPPARCOS parallaxes (van Leeuwen 2007) are shown in dotted
lines for HD 116852. For HD 36861 (λ Ori A), the distance from
the Gaia DR2 parallaxes is 271+47

−35 pc. As in Gordon et al. (2018),
we adopted the distance of 417± 10 pc from the mean of the par-
allaxes for components C and D, since the Gaia DR2 parallaxes
for HD 36861 have large error bars. Furthermore, different meth-
ods in the literature provide a distance estimation for this star up
to ∼400 pc (e.g., van Leeuwen 2007; Maíz Apellániz et al. 2008;
Mayne & Naylor 2008; Maíz Apellániz & Barbá 2018).

From Fig. 6, we verify that our models provide a very rea-
sonable fit to the observed SEDs overall (e.g, for HD 156292).
Again, these luminosity values (Table 3) are adopted given the
spectral type using the calibrations of Martins et al. (2005b).
Log(L?/L�) is fixed here for each star, thus we are not taking
the error bar in log (L?/L�) into account in this analysis. We
tested possible effects on the SED fit due to our adoptions on the
color excess (Table 1) and on the total to selective extinction ratio
(RV = 3.1). In Table 4, we compare this assumption on RV with
the values derived from Wegner (2003) since our sample has
six objects in common with this work: HD 24431, HD 105627,
HD 153426, HD 36861, HD 115455, and HD 135591. The color
excess E(B−V) in Wegner (2003) is adopted considering intrin-
sic colors from Wegner (1994). There are no large discrepancies
between these literature results and the adopted value of RV in
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Fig. 5. Effect of ξmin
t in the Teff analysis (HD 116852). Models with ξmin

t = 10, 20, and 30 km s−1 are shown respectively in red, green, and blue.
The IUE and FEROS data are shown in black. Models with a fuller account of atomic species are shown by dashed lines. The model with ξmin

t =
10 km s−1 and a fuller account of species (dashed red line) is shown with thicker lines in He II λ4542 since it is overlapped with the basic model
ξmin

t = 20 km s−1 (solid green). Line S V λ1502 is reproduced by our model with the highest photospheric microturbulence velocity. The emission
component of C IV λλ1548,1551 is also better reproduced with a higher ξmin

t up to 20–30 km s−1. However, Teff diagnostics are misfitted in this case.
It is not possible to fit simultaneously He I λ4471 and He II λ4542 considering ξmin

t = 20–30 km s−1. Our conclusions are unchanged regardless of
the improved atomic in the modeling.

our analysis. One of the highest discrepancies is found for HD
36861 (RV ∼ 2.5), but with a large error bar compatible with
RV ∼ 3.1. For these six stars, we present two sets of model SEDs
in Fig 6: one with our adopted values for the extinction param-
eters and another one with the parameters (without the error
bars) from Wegner (2003). For HD 36861, we show four different
sets of models, including the one with the extinction parameters
from Wegner (2003), as discussed below. Both sets of extinction
parameters provide very reasonable fits to the observed SEDs,
in particular to the shape of the 2200 Å bump for the targets
with IUE/LWP data. Thus, the analysis of the stellar luminosity
is unlikely biased by our adoption of RV = 3.1. Despite individual
departures from this value, other studies in the literature support
that RV ∼ 3.1 is a reasonable assumption for galactic O-type stars
(e.g., Majaess et al. 2016).

The highest discrepancy in Fig. 6 is seen for HD 116852: we
underestimate the data in ∼1.5 dex (solid red line). Taking dis-
tances from van Leeuwen (2007) into account, our model overes-
timates the observations in ∼0.5 dex (dashed red line). From both
Gaia Collaboration (2018) and van Leeuwen (2007), the parallax

π has the same order of magnitude of σπ. There is no model
shown with distance 1/(π−σπ) in both cases due to negative par-
allax values. We stress that the direct inversion of the Gaia DR2
parallax is a reasonable distance estimator for stars with σπ/π .
0.2 (Bailer-Jones et al. 2018). Eight out of nine stars of our sam-
ple have σπ/π . 0.2 from the Gaia DR2 release. HD 116852 is
the only exception with a high ratio σπ/π ∼ 1.3. Therefore, this
discrepancy for HD 116852 is more likely due to an unreliable
distance estimation, using the direct inversion of π, than due to
our adopted luminosity of log (L?/L�) = 5.33 for this star. Still
from Fig. 6, the distance needed to fit the SED is ∼4.8 kpc with
log (L?/L�) = 5.33 (dashed red line). This result is in agreement
with the spectroscopic distance of 4.8 kpc derived by Sembach &
Savage (1994) for HD 116852. The closest astrometric result
to this distance is provided by the lower limit on π from ESA
(1997), giving an upper limit on the distance of ∼3.6 kpc.

In the case of HD 36861 and HD 218195, the difference
between our model and the observations is stronger in the UV
than in the near-infrared. For HD 218195, it reaches up to
∼1.0 dex in the UV continuum. For example, we show in Fig. 6
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HD 156292 (O9.7III): log(L L☉) = 5.12
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Fig. 6. Model SEDs (color lines) compared to the observed ones (black). The IUE/SWP+LWP and photometric data are listed in Table 1. Flux
unit is in erg cm−2 s−1 Å −1 and wavelength is in Å. Model SEDs in solid lines are computed with distances from Gaia DR2: 1/(π + σπ) (green),
1/π (red), 1/(π − σπ) (blue). Model SEDs taking into account HIPPARCOS distances are shown in dotted lines (HD 116852). For the stars listed in
Table 4, we show two set of models with different values of E(B − V) and RV from our assumption and from Wegner (2003). For HD 36861, there
are shown four sets of models with different extinction parameters, including one with E(B − V) and RV from Wegner (2003). For HD 218195, we
compare two sets of models with different values of E(B − V). For HD 116852 and HD 218195, SED models considering the distances of 4.8 and
2.5 kpc are shown in red dashed line. See text for discussion.

two sets of models (solid lines) for HD 218195 computed with
the same distance and with slightly different values of E(B−V):
0.55 and 0.60. The latter corresponds to the selective extinction
adopted by Patriarchi et al. (2001) for this star, using intrinsic
colors from Wegner (1994). Considering this color excess differ-
ent from our assumption, we are able to reproduce better the SED
shape in the continuum UV and to diminish the discrepancy in
the UBV-bands. In addition, we are able to improve significantly
our fit (red dashed line) taking into account the spectroscopic
distance of ∼2.5 kpc found by Maíz Apellániz & Barbá (2018)
for HD 218195. This distance is somewhat larger than the value
from Gaia DR2 parallaxes (∼1.6 kpc). In this case, we use the
extinction parameters from Maíz Apellániz & Barbá (2018) for
this star (E(B−V) = 0.54 and RV = 3.2), but they are very close
to our adopted values. For HD 36861, we show four sets of SED
models with different extinction parameters: our adopted val-
ues, derived from Wegner (2003), from Gordon et al. (2018),
and from Maíz Apellániz & Barbá (2018). In this case, our SED

models encompass the observed one by just considering differ-
ent values for E(B−V) and RV. An analysis of ISM reddening
is beyond the scope of this paper, nevertheless we point out
that uncertainties in our adopted values for E(B−V) can explain
certain differences between our models and the observed SED.

Therefore, despite uncertainties regarding the implementa-
tion of ISM reddening in the models and the distance estima-
tions, we conclude that the luminosities provided in Martins
et al. (2005b) are in fair agreement with the observations of
O8-9.5III stars. Considering our adopted E(B−V), it is necessary
to decrease log (L?/L�) in ∼0.5 dex for HD 218195. This reduc-
tion in luminosity would place this star in the late O dwarfs’
loci in the HR diagram. However, no evidence supports such
uncertainty in the spectral classification. Nevertheless, a lower
log (L?/L�) implies downward revision of Ṁ for HD 218195 to
re-fit the observed Si IV λλ1394,1403. In this case, our inferred
mass-loss rates for this star are at most overestimated due to the
adopted luminosity.
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Table 4. Comparison between our adopted ISM extinction parameters (RV = 3.1) to the total to selective extinction ratio derived by Wegner (2003)
for stars in common with our sample.

Star HD 24431 HD 105627 HD 153426 HD 36861 A HD 115455 HD 135591
(λ Orionis A)

E(B − V) (a) 0.63 0.30 0.40 0.07 0.46 0.17

E(B − V) (b) 0.65 0.31 0.43 0.09 0.47 0.22
RV

(b) 3.46 ± 0.06 3.24 ± 0.16 3.19 ± 0.16 2.46 ± 0.60 3.29 ± 0.13 3.57 ± 0.18

Notes. (a)Adopted in this work (see Table 1). (b)From Wegner (2003).
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Fig. 7. Comparison between effective temperatures obtained from the
UV versus optical for all our sample. The stars are ordered from
the later to the earlier types. The effective temperature derived from
the UV and the optical regions are shown, respectively, by circles (blue)
and crosses (red). We show weighted least squares fits to the UV Teff

(dashed blue line) and to the optical Teff (dashed red line). We note
the good agreement between them and the trend of higher Teff towards
earlier spectral types.

4.2.2. Photospheric parameters

In the following, we analyze the UV and optical effective tem-
peratures inferred for all objects of our sample in Fig. 7. We
find good agreement between the effective temperatures derived
from the iron forest lines in the ultraviolet and from the helium
lines in the visible region. The highest discrepancy (2000 K) is
seen for HD 218195. However, even in this case, the ultravio-
let and optical results are consistent within the error bars. The
expected trend of higher temperatures towards earlier spectral
classes (from O9.7III to O8IV) is confirmed: for a better visu-
alization, we provide two linear regressions in Fig. 7 to the UV
and optical Teff in function of the spectral type. We find only
two objects (HD 156292 and HD 24431) with T opt

eff
lower than

T UV
eff

. Others results in the literature find good agreement for
Teff derived from the UV and the optical spectra using the code
CMFGEN (e.g., Hillier et al. 2003; Martins et al. 2005a). There-
fore, our results confirm the viability of the determination of the
effective temperature for O giants solely through the ultraviolet,
despite its relatively high error bars.

We compare our photospheric parameters with the ones
found by Martins et al. (2015a)5 as our sample shows four objects
in common with them: HD 24431, HD 153426, HD 218195, and
HD 36861. We verify a good agreement for the effective tem-
perature. These authors derived the following values for Teff ,
respectively: 33 500, 34 000, 34 000, and 35 000 K. Our values
(T opt

eff
) differ in 1000 K for all these stars. Such differences are

inside our error bars on T opt
eff

and it is also the typical uncertainty
from Martins et al. (2015a).

For log (g), we derived the same value for HD 24431,
but overall our values are lower (up to 0.25 dex) than the
ones found in Martins et al. (2015a). Here, the lowest discrep-
ancy is 0.15 dex for HD 36861 (log (g) = 3.75 from Martins
et al. 2015a) and the highest one is 0.25 dex for HD 218195
(log (g) = 3.80 from Martins et al. 2015a). This discrepancy for
HD 218195 is explained considering our different values between
T UV

eff
(33 000 K) and T opt

eff
(35 000 K). From our tests using T opt

eff
,

it is necessary to increase log (g) up to ∼3.8 to re-fit the wings
of the Balmer lines. We are aware that the effective temperature
derived from the UV lines is less precise than the ones derived
from the optical analysis. Nonetheless, as discussed above, these
independent determinations of Teff are in overall good agree-
ment, attesting that our measured Teff from the UV are reliable.
Thus, such discrepancies must not impact the derivation of the
mass-loss rate for the stars of our sample.

Regarding v sin i, our values are systematically larger in com-
parison with Martins et al. (2015a). These discrepancies are
expected, as we do not include macroturbulence in the model-
ing and these authors include it. In any case, we stress that the
effective temperature has the highest potential of affecting our
mass-loss analysis.

4.2.3. HR diagram

After deriving the stellar and wind parameters, we analyzed our
sample in the HR diagram along with results from the literature
for different classes of O-type stars. We used evolutionary tracks
and isochrones from Ekström et al. (2012). The tracks were
computed considering solar metallicity (Z = 0.014) and vinitial/
vcritical = 0.4 (Ekström et al. 2012).

We present the results in Figs. 8 and 9. We show evolutionary
tracks for the initial masses (MZAMS) of 20, 25, 28, 32, 40, and
60 M�, as well as isochrones for the ages (t) of 106.0, 106.5, 106.6,
106.7, 106.8, 106.9 yr. Results concerning dwarfs (O3.5-9.5V) are
from Martins et al. (2005a) and Marcolino et al. (2009). The
OB supergiants (O3-9.7I and B0-0.5I) are from Repolust et al.
(2004), Mokiem et al. (2005), Crowther et al. (2006), and Bouret
et al. (2012). The early-type giants (O5-7.5III) are from Repolust
et al. (2004) and Mokiem et al. (2005). Additionally, results for

5 Martins et al. (2015a) do not provide results for the wind parameters
as their focus is on surface abundances for O stars.
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Fig. 9. Same as in Fig. 8, but showing the isochrones. The bulk of the
late O giants show ages ranging around 106.7−106.8 yr.

late O giants (six stars O8-9.5III in total, excluding giants earlier
than O7) from Mahy et al. (2015) are shown too. There are no
objects in common between Mahy et al. (2015) and our sample.

As expected, O dwarfs, giants, and supergiants occupy dif-
ferent loci in the HR diagram. In particular, our sample of late
O giants populate a narrow region due to the low dispersion
in luminosity (adopted) and effective temperature (from UV):
log (L?/L�) ∼ 5.1−5.3 and log (Teff) ∼ 4.50−4.55. The bulk of
our sample shows initial (evolutionary) masses of ∼25−28 M�
and ages of ∼106.7−106.8 yr. The star of our sample with the

lowest Teff , HD 156292, has initial mass between 20 and 25 M�
(being closer to the latter) and age between 106.8 and 106.9 yr. In
contrast, the O5-7.5III stars correspond to different intervals of
mass and age, with MZAMS ∼ 32−60 M� and t ∼ 106.6−106.7 yr,
and hence they are more massive and younger than our sam-
ple, as expected from the spectral classification. We see that the
late giants of Mahy et al. (2015) populate the region around our
sample despite the two stars that are close to the edge of our
upper limits on log (L?/L�). Indeed, Mahy et al. (2015) noted
the discrepancies between their luminosities and the spectral-
type calibration of Martins et al. (2005b). They argue that this
trend is related to their methodology for the derivation of the
luminosity, and thus slightly affecting the analysis on the HR
diagram.

The dwarfs considered here present a larger interval in mass
and age (∼25−60M� and t = ∼106.0−106.8), since they encom-
pass a larger range of spectral types (from O9.5V to O3.5V). This
is the same as for the OB supergiants that spread over the whole
diagram in Teff , implying MZAMS∼25−60M� and t = ∼106.5 −
106.9 yr. We recall here that the O dwarfs with log (L?/L�) < 5.2
present the weak wind problem and correspond to the O8-9.5V
spectral types. For these stars, we observe masses of ∼20−25M�
and ages around 106.7 yr. In fact, as expected, we can perceive
a clear division in ages between dwarfs, giants, and supergiants
from Fig. 9.

In conclusion, we corroborate the literature results showing
that O giants are slightly more evolved objects than the dwarfs,
being closer to the end of the main sequence phase (e.g., Mahy
et al. 2015; Martins et al. 2015a). Our sample is described on the
HR diagram as a descent of O dwarfs with log (L?/L�) ∼ 5.0,
corresponding to the spectral types O6.5-8V. These O dwarfs
are the onset of the weak wind problem. Thus, weak winds in
O giants would imply that this phenomenon is not exclusively
associated to younger stars on the main sequence. The bulk of
our sample is halfway between the O dwarfs’ loci and the end
of the H-burning phase, thus weak winds could persist up to end
of the main sequence before undergoing the supergiant phase.
We stress that OB supergiants do not present the weak wind
phenomenon (e.g., Bouret et al. 2012).

4.3. Wind properties

4.3.1. Wind velocity law

As previously mentioned, the emission component of the C IV
λλ1548,1551 P-Cygni profile is overestimated in our models.
Different parameters can affect this profile, for example, the car-
bon abundance, mass-loss rate, X-ray flux, and wind velocity
structure. However, we only found better fits by changing this
last, more specifically, the β parameter. Tests performed with
other parameters did not change the profile in the desired way
and/or produced undesired effects in other parts of the spec-
trum. It is possible to decrease the emission to the observed
level by decreasing the mass-loss rate or the carbon abundance6.
On the other hand, the absorption component of the P-Cygni
decreases too much in comparison with the observations. It is
beyond the scope of this paper to derive CNO abundances for late
O giants. Nevertheless, we discuss in Sect. 5.3.1 the effects of
CNO abundances on the determination of Ṁ from the UV.

We have tried different values for the β parameter in the
velocity law. In Fig. 10, we compare our final models (β = 1.0)
to models recalculated with lower β values around 0.3. Our tests
6 A lower carbon abundance is actually expected as O stars evolve (e.g.,
Martins et al. 2015a).
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to model convergence issues with β = 0.3. For the other stars, β = 0.3. The IUE spectra are in black. The emission component of C IV λλ1548,1551
is better modeled with β ∼ 0.3.

are limited to this value because we could not reach model con-
vergence below β . 0.37. Overall, the fit to the observed profiles
is improved with a β ∼ 0.3. The emission component of the pro-
files decreases in comparison with β = 1.0 models and provides a
better match to the observations. We see that the effects of vary-
ing β on the Si IV λλ1394,1403 profiles are not significant. The
exception is for HD 116852, but this modification of the spectral
lines due to β is much smaller than the changes created by the
limits on Ṁ of this star.

In the framework of the Sobolev approximation, the varia-
tion in β impacts differently on line formation in the inner and
outer regions of the wind. In the inner wind, the Sobolev length
is proportional to

(
dv
dr

) −1. That is, a lower β (higher gradient)
implies a smaller interaction region: we have less absorption and
emission at low velocities (close to the line center). This can be
seen in the C IV λλ1548,1551 profiles in Fig. 10. On the other
hand, the Sobolev length is proportional to r2

v
β−1 in the outer

wind. By decreasing β, we have a larger interaction region at
high velocities (far from the line center). This is also observed
in Fig. 10 (more absorption), but the effect is lower compared to
the decrease in emission.
7 Indeed, we could not reach convergence even with β = 0.3 for some
stars (HD 24431 and HD 115455), but it worked with a slightly higher
value β = 0.35–0.40.

Low values for β, as suggested by our fits, are uncommon
from the spectroscopic modelling of O stars: most O stars have β
close to unity (dwarfs) or even higher, up to ∼2.0−3.0 in super-
giants (see, e.g., Crowther et al. 2006; Martins et al. 2015b).
Moreover, there are hydrodynamical results showing β ∼ 1.0-
0.9 for O8-9.5 giants (Muijres et al. 2012). Therefore, our tests
suggesting very low values of β are an artifact of our modeling
assumptions, they do not represent a viable solution to the wind
velocity structure of O-type stars. We recall that we assumed a
standard β velocity law to describe the wind region. One possi-
bility relies on less simple parameterizations for wind velocity
structure, for example, a two-component β velocity describing
separately the inner and outer regions of the wind (e.g., Hillier &
Miller 1999). Thus, a deeper investigation is needed, but it is
beyond the scope of this paper.

4.3.2. Mass-loss rates: weak winds

In this section, we compare the mass-loss rates determined from
atmospheric models with the ones predicted by Vink et al.
(2000) and Lucy (2010a). First, we consider the log (Dmom) ver-
sus log (L?/L�) diagram in Fig. 11. Our results for late O giants
are presented along with dwarfs, giants, and supergiants of dif-
ferent spectral classes from the literature. We do not include here
the results of Mahy et al. (2015) since they derived v∞ for just
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Fig. 11. Wind momentum-luminosity diagram for O dwarfs, giants, and
supergiants. Colors and geometric figures stand as in Fig. 8, our results
are shown in red crosses. Our results are derived from the UV analysis.
All the spectroscopic results consider (or are scaled to) unclumped Ṁ.
The theoretical relation of Vink et al. (2000) is in solid black. We mark
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the literature results are shown in the top left.

two objects out of six late O giants. All spectroscopic results in
Figs. 11–14 consider homogeneous wind models: the literature
results with clumping were scaled by a factor of 1/

√
f∞.

The weak wind phenomenon is seen for the late O dwarfs
(O8-9.5V) with log (L?/L�) . 5.2. Their modified momentum
are up to two orders of magnitude lower than the theoretical
relation of Vink et al. (2000). The late O dwarf closest to the
predicted value – log (L?/L�) ∼ 4.8 and log (Dmom) ∼ 26.6 –
had its mass-loss rate derived by Martins et al. (2005a) as a
conservative upper limit value. For the most luminous stars with
log (L?/L�) & 5.2, there is a good agreement between the mea-
sured and predicted values. Our results fall below the values
expected from theory, even considering the error bars. Only one
object of our sample (HD 116852) marginally agrees with the
wind momentum-luminosity relation from Vink et al. (2000).
Hence, we conclude that late O giants also present winds weaker
than predicted by theory. The discrepancy is more severe for
O8 giants (HD 156292, O9.7III, lowest Dmom) and is attenu-
ated towards O9 giants (HD 116852, O8.5II-III, highest Dmom).
It suggests a gradual change from “weak” to “normal” winds
(agreement with predictions) for the stars of our sample.

In Fig. 12, we present a direct comparison between the spec-
troscopic Ṁ and the predicted ones using Vink et al. (2000).
Stars are divided by colors and geometric symbols as in Fig. 11.
In addition, we include here the results of Mahy et al. (2015) for
O8-9.5III stars for which mass-loss rates were determined (five
out of six stars). It reflects the same basic conclusions obtained
from the wind momentum-luminosity diagram in Fig. 11. Nev-
ertheless, the mass-loss range and the types of O stars for which
the radiative wind theory is successful are conspicuous. We note
that the sample of late O giants from Mahy et al. (2015) tends
to agree better with the predictions of Vink et al. (2000), but
we still observe the weak wind problem here: three out of five
stars in good agreement and two stars presenting significant
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Fig. 12. Comparison between the spectroscopic Ṁ and the ones pre-
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see that late O giants also present weak winds.

deviations (with one clear weak wind star). Since Mahy et al.
(2015) derived mass-loss rates using UV and Hα, we will discuss
this question in more detail in Sect. 5.1.

Furthermore, we performed the same comparison but with
the hydrodynamical predictions of Lucy (2010a) for Galactic
O stars. These predictions are made in the framework of the
most recent updated version of the moving reversing layer theory
(Lucy & Solomon 1970). In short, for given stellar parameters,
the equation of motion has physical solution for a certain value
of mass flux J that satisfies null effective gravity surface at the
critical point of the wind. In a previous work, Lucy (2010b)
found that the discrepancies between the measured Ṁ for late
O dwarfs (Marcolino et al. 2009) and their predictions are sig-
nificantly reduced up to about one order of magnitude. In Fig. 13,
we present a comparison between the derived Ṁ (by atmosphere
models) and the ones calculated using the predicted mass fluxes
given by Lucy (2010a) for almost the same sample presented in
Fig. 12.

The grid of Lucy (2010a) provides mass fluxes for stars with
3.00 ≤ log (g) ≤ 4.50. Thus, we excluded some OB supergiants
(six objects) that were analyzed in the previous comparison
with ṀVink. From the literature sample presented in Fig. 12, we
excluded stars with log (g) < 2.95. For stars with 2.95 ≤ log (g) ≤
3.00 (three objects), we calculated the mass fluxes (and then
ṀLucy) considering log (g) = 3.00. Interestingly, we observe a
better agreement between the spectroscopic and predicted values
for the mass-loss rates of low-luminosity objects (late O dwarfs
and giants). However, the most part still have Ṁ values about
0.5–1.0 dex lower than ṀLucy. In contrast to the previous com-
parison with Vink et al. (2000), the predictions of Lucy (2010a)
for high-luminosity OB stars – log (L?/L�) & 5.2 – are lower
than the mass-loss rates obtained by atmosphere models. For a
better visualization, we present again these results in an alterna-
tive form in Fig. 14. We see that ṀLucy underestimates the mass
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Fig. 14. Difference (as a function of luminosity) between the measured
Ṁ (clumped) and their theoretical values by Vink et al. (2000) on the
left, and by Lucy (2010a) on the right. Symbols stand as presented in
Fig. 8, our results are shown in red crosses. The luminosity value of
log (L?/L�) = 5.2 and the match between the spectroscopic and the-
oretical Ṁ are indicated by dashed black lines. We note that ṀLucy
attenuates the weak wind problem, but it increases the discrepancy to
the spectroscopic Ṁ in log (L?/L�) & 5.2.

loss of OB stars with log (L?/L�) & 5.2 practically as much as it
overestimates for objects with log (L?/L�) . 5.2.

In conclusion, Figs. 11 and 12 indicate that late O giants
exhibit weak winds. As O8-9.7III objects are more evolved than
late O dwarfs, we naturally exclude evolutionary effects as the
reason for weak winds. Put differently, O stars with luminosi-
ties lower than log (L?/L�) ∼ 5.2 must have weak winds through
the H-burning phase. Furthermore, the predictions from Lucy
(2010a) attenuate the weak wind problem both for late O dwarfs
and for late giants. However, these theoretical values clearly fail
(in comparison with Vink et al. 2000) to predict the mass-loss
rates for more luminous OB stars, such as OB supergiants, early
dwarfs, and early giants. We stress here that the predictions of
Vink et al. (2000) are in good agreement with the hydrody-
namical simulations of Muijres et al. (2012) for O stars with
log (L?/L�) & 5.2, while the latter fails to predict Ṁ for objects
below this luminosity region. It is hard to compare the predic-
tions of Vink et al. (2000) with the ones from Lucy (2010a)
because they employ different approaches: the first find Ṁ that is
globally (in the wind) consistent with the conservation of energy,
while Lucy (2010a) predicts the mass loss from first principles
(i.e., solving the equation of motion). Nevertheless, it is remark-
able that the region of log (L?/L�) ∼ 5.2 shows to be critical for
both of them (in comparison with the spectroscopic Ṁ).

5. Discussion

5.1. Mass-loss rates: UV versus visible

In this section, we compare our final models to the ones com-
puted using ṀVink, regarding the spectral modeling in the ultra-
violet and optical regions. Throughout this section, we only
compare our results with the predictions from Vink et al. (2000)
because they are currently used in most modern stellar evolu-
tion codes. In the previous discussion, all Ṁ for the objects of
our sample were derived from the UV analysis. Overall, our
synthetic Hα profiles have deeper cores than the observations,
indicating the need to increase the Ṁ parameter in our models.

Regarding O8-9.5V stars, Marcolino et al. (2009) found that
their UV Ṁ produce Hα profiles in absorption, in relatively good
agreement with observations. Moreover, they show that in three
(out of five) objects the predicted Ṁ (Vink) implies a shallower
Hα line, in contrast to the data. For the other two stars, the dif-
ference between the final models and ṀVink is minor against the
observations. We show below that such discrepancies in Hα are
higher for O8-9.5III stars.

First, in Fig. 15, we compare our final models with mod-
els using the mass-loss rates from Vink et al. (2000) in the
UV region. All models with ṀVink are computed with f∞ = 1.0
because Vink et al. (2000) do not take clumping into account.
These values of ṀVink are higher than our unclumped Ṁ from
UV up to about two orders of magnitudes (Table 3). Our best fits
to the observations consider clumping ( f∞ = 0.1, see Sect. 3).
We recall, however, that Fig. 15 would be virtually identical by
preserving Ṁ/

√
f∞ constant for each star. All the other physical

parameters are fixed. The synthetic profiles of Si IV λλ1394,1403
using ṀVink are systematically more intense than the data for all
objects. Regarding C IV λλ1548,1551, it is difficult to distinguish
between our final mass-loss rates and the ones predicted by Vink
for stars with saturated profiles (e.g., HD 116852). On the other
hand, in HD 24431, HD 105627, and HD 153426 the predicted
rates saturate the profiles in contrast to the observations. Hence,
we conclude that models considering ṀVink are not able to fit the
UV mass-loss diagnostics of late O giants.

Our analysis of the Hα profile is presented in Fig. 16. Again,
models with ṀVink are computed without clumping. However,
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Fig. 15. Comparison between the final models and the ones computed using the hydrodynamical mass-loss rates of Vink et al. (2000) in the UV
region. The IUE spectra are in solid black, and the star name is indicated right below its spectrum. All the final models (Ṁ from the UV) are in
red, while ṀVink is in dashed black. Our final models have clumping ( f∞ = 0.1), while the models with ṀVink are unclumped. We note how ṀVink
overestimates the intensity in Si IV λλ1394,1403 for all our sample. C IV lines also become saturated in a few cases, in contrast to the observations.

in this case, we have four “types” of models:
(i) with UV mass loss (solid red). We present “models (i)”

for all the stars of our sample. These models have f∞ = 0.1.
(ii) With UV upper mass loss (solid blue). We show “models

(ii)” only for HD 116852 and HD 135591 because we are able to
reproduce (or to overestimate) with them the observed Hα. We
do not present our UV upper limit on Ṁ for the other stars, since
they produce practically the same Hα profile as “models (i)” in
this case. These models have f∞ = 0.1.

(iii) With Vink’s mass loss (dashed black). As for “models
(i)”, “models (iii)” are shown for all the stars of our sample. We
use unclumped models because Vink et al. (2000) do not take
clumping into account.

(iv) With mass loss derived from fitting the Hα profile
(dashed red). “Models (iv)” are shown only for those stars for
which we do not fit Hα in any of the above cases. For example,
we present this type of model for HD 218195, since neither mod-
els with our UV Ṁ, our UV upper Ṁ, nor ṀVink are able to fit
the observed Hα profile. These models have f∞ = 0.1.

We note that the synthetic profiles calculated with ṀVink pro-
duce Hα somewhat more strongly than the observed profiles for
five stars of our sample: HD 156292, HD 105627, HD 218195,
HD 36861, and HD 135591. We observe that the discrepancies

for O8-9III are higher than the ones found by Marcolino et al.
(2009) for late dwarfs. This can be explained in terms of a
higher Hα sensitivity for Ṁ & 10−7 M� yr−1. In fact, our sample
has an average ṀVink of ∼5.0 × 10−7 M� yr−1, while the O8-9V
star sample in Marcolino et al. (2009) has an average value of
∼9.0 × 10−8 M� yr−1 for the predicted Ṁ.

From Fig. 16, the Hα profiles of HD 156292 and HD 105627
are well fitted by our final models: Ṁ derived from fitting the
UV resonance lines of Si IV and C IV. For the other seven stars,
our UV mass-loss rates show a deeper core in Hα. We see that
the profiles of HD 24431, HD 116852, and HD 115455 are fitted
considering the mass-loss rate from Vink et al. (2000). How-
ever, for HD 116852, our UV upper limit on Ṁ (solid blue line)
also reproduces Hα. It happens because all our models – used
to derive Ṁ – have the inclusion of clumping, while the models
with ṀVink are unclumped. Still regarding the mass-loss upper
limit from UV, we are also able to fit the Hα data of HD 135591.
Thus, our Ṁ derived from the UV (“models (i)” plus “models
(ii)”) are consistent with the observed Hα profile of four stars
out of nine.

For the other three objects (HD 153426, HD 218195,
HD 36861), we need to increase Ṁ up to ∼10−7M� yr−1 to fill
their core. Our models show Hα insensitive for Ṁ ∼ 10−8 −
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Fig. 16. Mass-loss rates from fitting Hα. Our final models (UV Ṁ) are shown in solid red: “models (i)”. Upper limits on UV Ṁ that encompass the
observed Hα line are shown in blue for some stars: “models (ii)”. Models with ṀVink are presented in dashed black: “models (iii)”. Again, only the
models with ṀVink are homogeneous. When none of the previous models are able to adjust the Hα intensity, we provide a new Ṁ determination
from fitting Hα (dashed-red): “models (iv)”. The text gives further details concerning the notations “models (i–iv)”.

10−7 M� yr−1, similarly to results found in the literature for late
O dwarfs (e.g., Martins et al. 2012). Since the Hα data for these
three stars tend to be reproduced by just varying Ṁ in CMFGEN,
we consider that these deeper observed profiles are unlikely to be
due to circumstellar or interstellar contamination. Nonetheless,
such cases of contamination have been reported in the litera-
ture for early and late O dwarfs (see, e.g., Martins et al. 2005a).
Another observational issue in this analysis could be due to Hα
variability for the stars in our sample, potentially impacting the
determination of Ṁ from this transition. For example, Martins
et al. (2015b) investigated the spectral variability in the optical
region in early OB supergiants and late O dwarfs. They found
strong profile variability in Hα for the supergiants, while the
dwarfs do not exhibit any sign of variability. Hence, it would
be necessary to investigate this issue in detail for an intermedi-
ate luminosity class such as the giants. Moreover, we performed
different tests (e.g., changing the number of depth points and
including additional ions) to solve this discrepancy between the
models with Ṁ from fitting the UV and the Hα data, but the situ-
ation was not improved at all. Thus, we conclude that our models
cannot fit simultaneously the UV and optical wind signatures in
about half of our sample.

As mentioned in Sect. 4.3.2, Ṁ found by Mahy et al. (2015)
tend to be closer to the predicted values using the mass-loss

recipe of Vink et al. (2000). This can be explained since their
mass-loss analysis is only complete concerning the visible spec-
tra: they have IUE/SWP data only for two out of the six O8-9.5III
stars in their sample. Even so, we still see one unequivocal late
giant in their sample that shows the weak wind phenomenon:
HD 191878 (type O8III). For this object, Mahy et al. (2015)
derived Ṁ = 2.0 × 10−9M� yr−1 (unclumped CMFGEN model)
by simultaneously fitting the UV spectrum and the Hα line.
Regarding Galactic O3-9.5V stars, Martins et al. (2012) also
found a disagreement using CMFGEN between the UV mass-
loss rates and the ones derived from the fitting of Hα. They
found the most severe disagreements for the O8-9V stars. Their
Ṁ derived from the UV region are up to two orders of magni-
tude lower than Ṁ from Hα, being this latter closer to ṀVink.
Thus, we verify a similar trend in our sample. One of the possi-
bilities stressed by Martins et al. (2012) to explain this issue is
the neglect of macroclumping in the modeling with CMFGEN.
The literature shows that accounting for macroclumping reduces
more significantly the intensity in the UV lines than in Hα (e.g.,
Oskinova et al. 2007; Sundqvist et al. 2011; Sundqvist & Puls
2018). Martins et al. (2012) pointed out that the inclusion of
macroclumping could lead to a better agreement between Ṁ
from the UV and Hα fittings, since the UV values would be
reduced in this case. On the other hand, it also implies that Ṁ
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Fig. 17. Effect of binarity on the Hα profile of the SB2 systems in our
sample: HD 156292, HD 153426, and HD 115455. Archival FEROS
data are shown in black. Our observed spectrum for each star is shown
in green. Best-fit CMFGEN model derived from the UV is shown in red.
The observed spectra are shifted in λ to match the line core of the model.
The mean spectra among all the observations is shown in orange. The
observed spectra are on average more intense from HD 156292 towards
HD 115455.

predicted neglecting clumping (such as the Vink’s value for HD
116852 in Fig. 16) must overestimate the real rates.

In short, Ṁ computed using the recipe of Vink et al. (2000)
are not able to fit the UV resonance lines for any of the stars
of our sample. Lower Ṁ are supported in four out of nine stars
considering simultaneously the fitting of the UV and the optical
regions, so, in this sense, favoring the weak wind phenomenon
in late O giants. Besides possible effects resulting from our phys-
ical assumptions in the modeling, environmental contamination,
and spectroscopic variability, we need to increase the UV mass
loss of about half of our sample to find a better modeling of
Hα. These higher Ṁ values from Hα are incompatible with the
UV modeling. Hence, we have a partial agreement between Ṁ
derived from the fitting to the UV resonance lines and to the Hα
line. Again, this issue between the UV and the visible analyses
is also present in the literature for O dwarfs and deserves further
study.

5.2. Mass-loss rates: binary effects

As previously commented, three stars of our sample are spectro-
scopic double-lined binary systems: HD 156292, HD 153426,
and HD 156292 (see Table 1). In Fig. 17, we compare our
models (derived from fitting the UV region) to multi-epoch
FEROS spectra of HD 156292, HD 153426, and HD 115455 in
the Hα line. Apart from the spectra that are modeled in this paper
for each of these stars (listed in Table 1), the observed spectra in
this figure are retrieved from the ESO Science Archive Facility
(Phase 3). The dates of the observations are shown in Table 5
with orbital phases calculated considering T0 from our observa-
tions. The orbital periods Porb of HD 156292, HD 153426, and
HD 115455 are, respectively, 4.94 days, 22.40 days, and 15.08

Table 5. Observation log for the FEROS data of HD 156292,
HD 153426, and HD 115455 analyzed in Fig. 17.

UTC (start time) MJD (start time) ESO program φ

HD 156292
2016-03-23T09:00:47.612 57470.37555106 096.A-9027(A) ≡ 0
2015-04-04T06:35:39.030 57116.27475729 089.D-0975(A) −0.680
2012-06-20T07:17:03.206 56098.30350933 089.D-0975(A) −0.747
2012-05-21T06:52:16.748 56068.28630495 089.D-0975(A) −0.824
2009-05-05T05:48:32.002 54956.24203706 083.D-0589(A) −0.934
2009-05-04T04:45:08.265 54955.19801233 083.D-0589(A) −0.145
2009-05-03T06:19:11.026 54954.26332206 083.D-0589(A) −0.335
2009-05-02T06:58:08.837 54953.29038006 083.D-0589(A) −0.531
2008-05-14T08:54:46.852 54600.3713756 081.D-2008(A) −0.973
2005-06-25T08:24:03.531 53546.35004087 075.D-0061(A) −0.337

HD 153426
2016-03-18T09:15:25.182 57465.38570813 096.A-9027(A) ≡ 0
2015-04-04T06:07:00.909 57116.25487163 089.D-0975(A) −0.586
2012-06-19T07:36:40.433 56097.31713464 089.D-0975(A) −0.075
2012-05-21T06:08:58.157 56068.25622867 089.D-0975(A) −0.372
2011-05-18T06:42:56.653 55699.27982237 087.D-0946(A) −0.844
2009-05-25T09:24:12.238 54976.39180831 083.D-0589(B) −0.116
2008-05-14T08:02:44.235 54600.3352342 081.D-2008(A) −0.904
2005-06-26T08:28:32.329 53547.35315196 075.D-0061(A) −0.912

HD 115455
2016-03-18T04:28:43.671 57465.18661656 096.A-9027(A) ≡ 0
2007-06-15T23:58:03.854 54266.99865572 079.D-0564(B) −0.081
2007-05-27T04:31:13.627 54247.18835217 079.D-0564(C) −0.395
2007-05-24T03:49:08.750 54244.15912905 079.D-0564(B) −0.596
2007-04-22T06:11:41.302 54212.25811692 079.D-0564(B) −0.711
2007-04-21T05:39:19.139 54211.23563818 079.D-0564(A) −0.779
2007-04-19T05:24:50.083 54209.22557966 079.D-0564(A) −0.913
2007-04-19T05:05:31.858 54209.21217428 079.D-0564(A) −0.913
2007-04-01T04:56:14.188 54191.20571977 079.D-0564(B) −0.107
2006-08-22T23:42:49.633 53969.98807446 077.B-0348(A) −0.777
2006-08-21T23:24:36.329 53968.97542048 077.B-0348(A) −0.844
2006-08-20T23:22:12.614 53967.97375711 077.B-0348(A) −0.911
2006-08-19T23:22:41.721 53966.97409399 077.B-0348(A) −0.977
2006-08-18T23:36:52.296 53965.98393861 077.B-0348(A) −0.043
2005-01-03T07:28:56.719 53373.31176758 074.D-0300(A) −0.344

Notes. Our observed spectra are shown in bold. Orbital phases (φ) are
calculated considering the epoch time T0 (φ = 0) from our observation.

days (Sota et al. 2014). The orbital phases are fairly uniformly
distributed from about 0.1 to 1.0.

As discussed in the previous section, we are able to provide
an acceptable fit to Hα in HD 156292, considering our parame-
ters derived from the UV. On the other hand, we need to increase
our UV mass-loss rates for HD 153426 and HD 115455 to fit
their Hα spectra. From Fig. 17, we see how the morphology of
the Hα profiles changes due to different orbital configuration
of these binary systems. Our failure to reproduce the shape of
both Hα wings, in particular HD 156292, can be explained due
to the binary nature of the system. Furthermore, the line core
is also affected with the intensity varying by about 2–3%. For
HD 153426 and HD 115455, our model with UV Ṁ fails to
reproduce the observed Hα profiles regardless of the epoch time.

Still from Fig. 17, one sees that the averaged spectra, among
all the observations for each of these three stars, and ours
observed spectra are very similar. Therefore, our Hα analysis
(considering just our observed spectra) and conclusions pre-
sented in Sect. 5.1 are unchanged. Binarity is not affecting the
Hα line cores in a significant way in the SB2 stars of our sample.

Regarding the wind profiles in the UV region, we cannot
perform a similar analysis since there is just one IUE/SWP
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spectrum for each of these three stars. However, we see that the
observed profiles of Si IV λλ1394,1403 and C IV λλ1548,1551
are fairly similar in morphology in the overall sample (see, e.g.,
Fig. 10). This reflects in the determination of the mass-loss rate
from fitting these lines: we obtain a relatively uniform range of
Ṁ values from ∼10−9 to 10−8 M� yr−1, with a trend for higher Ṁ
for more luminous objects, as expected. HD 116852 presents a
clear morphological exception, with developed P-Cygni profiles
in Si IV λλ1394,1403. However, this object has the highest
luminosity of our sample, being of luminosity class II-III, and
the highest Ṁ derived from fitting the UV lines. Additionally,
this star is not classified as a binary in the literature. So, this
exception in morphology is very unlikely due to binary effects.
We stress that our failure to reproduce the emission component
of C IV λλ1548,1551 seems to be independent of the binary
status our sample. For example, the final model for HD 156292
overestimates the observed emission component of this line
practically as much as in the case of HD 105627 (no binary
status). Thus, our results do not support that such an issue arises
due to binary effects.

We are aware that disentangling of the observed spectra
would be the most appropriate method to evaluate quantitatively
possible effects of binarity on our results, but this technique is
beyond the scope of this paper. Nevertheless, these results indi-
cate that our mass-loss rates, derived from fitting the UV wind
lines and the Hα line, are unlikely biased by binary effects.
Moreover, our models provide reasonable fits to the observed
SED, and the effective temperature derived from the UV and
the visible regions are in good agreement, showing a trend of
higher Teff towards the earlier stars (O8). This reflects in the
analysis of the HR diagram, where our sample’s loci are con-
sistent with other results in the literature for O dwarfs, giants,
and supergiants.

5.3. Mass-loss rates: degeneracies

Here, we investigate the effects of different stellar parameters
on the UV line diagnostics for the mass-loss rate. The computa-
tional effort required by CMFGEN hinders degeneracy tests for
several parameters simultaneously (e.g., CNO abundances, Teff ,
and luminosity). Therefore, we calculated the effects of a spe-
cific parameter on the Ṁ diagnostics, leaving all others fixed.
We present results separately for CNO abundances (εCNO), Teff ,
and log (L?/L�).

5.3.1. CNO abundances

Compared with main sequence objects, evolved O stars present
an enhanced N/H together with depleted C/H and O/H ratios
at their surfaces (see, e.g., Martins et al. 2015a, and refer-
ences therein). Deviations from the solar CNO abundance have a
potential impact on the determination of the mass-loss rates for
the stars of our sample. In particular, a very low C/H ratio affects
directly the C IV λλ1548,1551 profile, decreasing its strength8.
Thus, we proceeded as follows to evaluate abundance effects on
our results:

(i) Martins et al. (2015a) derived CNO abundances for 74 O
stars of different luminosity classes through spectral modeling
with CMFGEN. Our sample has four stars in common with them:
HD 24431, HD 153426, HD 218195, and HD 36861. For these

8 The Sobolev optical depth for C IV is directly proportional to the
product ṀqC IVεC , where qC IV is the ion fraction of C IV (see, e.g.,
Lamers et al. 1999).

objects, we re-computed our final models (Table 3) using the
values given by Martins et al. (2015a) for C/H, N/H, and O/H.

(ii) For HD 156292, HD 105627, HD 116852, HD 115455,
and HD 135591, for which there is no detailed abundance anal-
ysis, we chose to adopt the lowest C/H, highest N/H, and lowest
O/H values among the late O giants found in Martins et al.
(2015a), namely: C/H = 0.7 ×10−4, N/H = 1.6 ×10−4, and O/H =
1.1 ×10−4. This approach is obviously conservative. Our main
concern is about C/H, because it is expected to be lower than the
solar value, impacting C IV λλ1548,1551.

(iii) We then analyzed the effects of non-solar CNO values
in the modeling of the UV mass-loss diagnostics, revising, when
necessary, the mass-loss rates to re-fit the observed spectra.

(iv) The revised mass-loss rates were evaluated again in the
log (Ṁ) versus log (ṀVink) diagram, allowing us to compare them
with the previous Ṁ using solar abundances.

We show in Fig. 18 the final models with solar abundances
in comparison with the ones using the results from Martins
et al. (2015a). The considered εCNO are listed in Table 6. The
C IV λλ1548,1551 profiles of four stars are affected by a
lower carbon abundance, becoming weaker than the observed:
HD 156292, HD 24431, HD 105627, and HD 115455. For
these objects, we re-determined their Ṁ, which are indicated in
Table 6. For three out these stars, we have adopted conservative
low values of C/H. That is, these new inferred Ṁ are likely over-
estimated due to our adoption. The above results are summarized
in Fig. 19, where we present again the measured Ṁ and the ones
according to Vink et al. (2000). It is clear that our conclusions
regarding weak winds in late O giants are not changed due to
possible affects created by CNO abundances. Some points shift
toward to the expected mass-loss rates, but the changes are minor
overall.

5.3.2. Effective temperature

Reliable effective temperatures are mandatory to derive the wind
parameters. Depending on the model parameters range, changes
in Teff can modify the ionization structure in the wind (e.g.,
Austin & Prinja 2011), directly affecting the wind lines. Here, we
analyze the effect of different Teff values on the mass-loss rate.
For simplicity, we present only results for HD 156292 (O9.7III)
and HD 116852 (O8.5II-III). These two stars have extreme val-
ues of mass-loss rate among the objects of our sample. The Ṁ of
HD 116852 is higher than the Ṁ of HD 156292 by a factor of 40.

In Figs. 20 (HD 116852) and 21 (HD 156292), we show the
fits to the two main UV diagnostics of Ṁ considered in this
paper. We present the synthetic wind profiles corresponding to
the upper and lower limits of the mass-loss rates for these stars,
with Teff fixed (upper panels). For comparison, we also present
the synthetic wind profiles corresponding to the upper and lower
limits for Teff , with fixed Ṁ (lower panels). These values for the
effective temperature were derived from the UV region, allowing
us to develop a more conservative analysis since they have higher
error bars than the ones found from fitting the He I-II lines in the
optical.

For HD 156292, we do not see significant changes in Si IV
λλ1394,1403 and C IV λλ1548,1551 with different values for Teff .
We note that in the case of HD 116852:

(i) Variation in Teff affects the Si IV λλ1394,1403 transition
but not C IV λλ1548,1551 that is saturated.

(ii) We need to increase Ṁ to re-fit the Si IV λλ1394,1403
profiles.

(iii) This new (larger) mass-loss rate lies within the error
bars already provided by our final Ṁ: this can be seen from the
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Fig. 18. Final models for all our sample considering solar abundances (red). Re-computed models using εCNO from Martins et al. (2015a) are in
dashed blue. IUE data are in black. We indicate, right above each spectrum, whether εCNO is a determination from Martins et al. (2015a) or an
adoption based on their results (see text for details). We note that the highest effects in C IV λλ1548,1551 are due to the adopted εCNO.

Table 6. CNO affects on the mass-loss rates of all the sample.

Star Ṁderived
(a) (M� yr−1) ṀCNO

revised (M� yr−1) C/H, N/H, O/H (×10−4)

HD 156292 1.5+4.0
−0.75 × 10−9 3.0+2.5

−1.5 × 10−9 * 0.7, 1.6, 1.1

HD 24431 2.5+7.5
−1.5 × 10−9 5.0+5.0

−2.5 × 10−9 1.3, 0.8, 3.9

HD 105627 4.0+16.0
−2.5 × 10−9 1.0+2.0

−0.6 × 10−8 * 0.7, 1.6, 1.1

HD 116852 6.0+19.0
−4.5 × 10−8 X * 0.7, 1.6, 1.1

HD 153426 4.5+10.5
−2.5 × 10−9 X 2.9, 1.0, 4.6

HD 218195 1.0+2.5
−0.75 × 10−8 X 2.0, 5.0, 4.6

HD 36861 2.5+3.5
−2.2 × 10−8 X 2.2, 1.5, 4.7

HD 115455 5.0+10.0
−3.0 × 10−9 1.5+2.0

−1.0 × 10−8 * 0.7, 1.6, 1.1

HD 135591 2.0+6.0
−1.85 × 10−8 X * 0.7, 1.6, 1.1

Notes. Revised mass-loss rates are denoted by ṀCNO
revised. The tick symbol

(X) stands for star without changes in Ṁ. In the last column, the asterisk
symbol (*) stands for adopted εCNO. The Ṁderived were determined using
solar εCNO from Grevesse et al. (2010): C/H = 2.7 × 10−4, N/H = 0.7 ×
10−4, and O/H = 4.9 × 10−4. (a)Same notation as in Table 3.

amplitude of the profile variations corresponding to the error
bars on Ṁ.

(iv) The strongest effect on Si IV λλ1394,1403 is due to the
lower limit of Teff . In this case, we need to decrease Ṁ to fit again
the Si IV λλ1394,1403 profiles.

Therefore, we do not need to revise upward the UV mass-loss
rate due to uncertainties in Teff . The error bars on the mass-loss

rates are conservative enough to encompass uncertainties due to
Teff .

5.3.3. Stellar luminosity

It is well known that the luminosity class affects the Si IV
λλ1394,1403 lines of O-type stars (Walborn & Panek 1984;
Howarth & Prinja 1989; Pauldrach et al. 1990). These lines
are almost photospheric in O9.5 dwarfs, while O supergiants
show fully P-Cygni profiles in Si IV λλ1394,1403. Here, we
evaluate the impact of our luminosity adoptions, from Martins
et al. (2005b), on the derivation of Ṁ. As discussed in
Sect. 4.2.1, these values of log (L?/L�) match well the
observed SEDs for the most part of our sample, consider-
ing astrometric measures from Gaia Collaboration (2018).
For this purpose, we analyze the cases of HD 156292 and
HD 116852 again. As discussed above, these stars possess,
respectively, the lowest and highest density wind in our sample
– Ṁ = 1.5× 10−9M� yr−1 and Ṁ = 6.0× 10−8M� yr−1. They are
also extreme cases in luminosity, respectively: log (L?/L�) =
5.12 (lowest value) and log (L?/L�) = 5.33 (highest
value).

We show the fits to the UV mass-loss diagnostics in Figs. 22
(HD 116852) and 23 (HD 156292). As in Figs. 20 and 21, the
models corresponding to the upper and lower limits of the mass-
loss rates are shown in the upper panels. Here, they have the
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Fig. 19. Effects of εCNO in the log (Ṁ) versus log (ṀVink) diagram. On
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(2015a). Crosses indicate stars for which we adopted extreme εCNO based
on the results of Martins et al. (2015a). Our conclusions about weak
wind in late O giants are not affected due to CNO abundances.

0

0.5

1

1.5

2

1360 1380 1400 1420
0

0.5

1

1.5

2

1500 1520 1540 1560 1580

0

0.5

1

1.5

2

1360 1380 1400 1420
0

0.5

1

1.5

2

1500 1520 1540 1560 1580

N
or

m
al

iz
ed

flu
x

N
or

m
al

iz
ed

flu
x

λ (Å) λ (Å)

Fig. 20. Effect of Teff on the UV mass-loss diagnostics Si IV
λλ1394,1403 and C IV λλ1548,1551. We show the analysis for
HD 116852 (O8.5II-III) with T UV

eff
. In all panels, our final model is shown

in red: Ṁ = 6.0× 10−8 M� yr−1 and Teff = 32 500 K. Top panels: models
with the limits on Ṁ (1.5× 10−8 M� yr−1 in green and 2.5× 10−7 M� yr−1

in blue): fixed Teff = 32 500 K. Bottom panels: models with limits on Teff

(30 000 K in green and 34 500 K in blue): fixed Ṁ = 6.0× 10−8 M� yr−1.
We note that the error bars of Ṁ are conservative enough to account for
the effects due to variation in Teff .

luminosity fixed for each case. In the lower panels, we present the
synthetic profiles for models with variation in stellar luminosity
within our adopted error bars of 0.2 in log (L?/L�) and fixed Ṁ.
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Fig. 21. Same analysis as in Fig. 20, but for HD 156292 (O9.7III).
Final model (red) with Ṁ = 1.5 × 10−9 M� yr−1 and Teff = 31 000 K.
Top panels: models with the limits on Ṁ (7.5 × 10−10 M� yr−1 in green
and 5.5 × 10−9 M� yr−1 in blue): fixed Teff = 31 000 K. Bottom panels:
models with the limits on Teff (28 000 K in green and 33 000 K in
blue): fixed Ṁ = 1.5 × 10−9 M� yr−1. We note that the error bars of
Teff do not produce any significant changes in the considered mass-loss
diagnostics.

For HD 156292, we do not see any significant changes in
Si IV λλ1394,1403 and C IV λλ1548,1551 with different values
of luminosity (log (L?/L�) = 4.92 and 5.32). On the other hand,
we note that in the case of HD 116852:

(i) Variation in log (L?/L�), from 5.08 to 5.48, affects the
Si IV λλ1394,1403 transition but not C IV λλ1548,1551, which is
saturated.

(ii) The strongest effect on Si IV λλ1394,1403 is due to the
lower limit on log (L?/L�). In this case, we need to decrease Ṁ
in order to re-fit the Si IV λλ1394,1403 profiles.

(iii) The upper limit on luminosity provides an acceptable fit
to the Si IV λλ1394,1403 within the error bars provided to Ṁ.

Hence, as in the case of the effective temperature, we do not
need to revise our UV mass-loss rates to higher values due to the
uncertainties (±0.2 dex) in the luminosity.

6. Conclusions

We presented a quantitative analysis of nine late O giant stars
(O8-O9.5III) using non-LTE atmosphere models computed with
the code CMFGEN. We used archival high-resolution UV
(IUE/SWP) and recent optical data (FEROS, NARVAL, and
ESPADONS) to determine the main photospheric and wind
parameters for each star of our sample. We analyzed the results
in the context of the weak wind phenomenon. Our main findings
and conclusions are summarized as follows:

(i) Overall, we achieved good fits to the UV and optical
data. The bulk of our sample has parameters in the follow-
ing ranges: log (L?/L�)∼ 5.10 − 5.30, Teff ∼ 30 000−35 000 K,
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Fig. 22. Stellar luminosity effect on the UV mass-loss diagnostics
Si IV λλ1394,1403 and C IV λλ1548,1551. We show the analysis for
HD 116852 with T UV

eff
. In all panels, the final model is shown in red:

Ṁ = 6.0×10−8 M� yr−1 and log (L?/L�) = 5.33. Top panel: models with
the limits on Ṁ (1.5 × 10−8 M� yr−1 in green and 2.5 × 10−7 M� yr−1 in
blue): fixed log (L?/L�) = 5.33. Bottom panel: models with the limits on
log (L?/L�) (5.13 in green and 5.53 in blue): fixed Ṁ = 6.0 × 10−8 M�
yr−1. We note that the error bars of Ṁ are conservative enough to
account for effects due to variation in luminosity.

log (g)∼ 3.50 − 3.60, v∞ ∼ 2000−2400 km s−1, and Ṁ ∼ 10−9−
10−8 M� yr−1.

(ii) It is reliable to derive the main physical properties of late
O giants – Teff , R?, M?, Ṁ, and v∞ – solely from UV spectrum
(IUE/SWP data, ∼1100−2000 Å), considering that values for the
bolometric luminosity and surface gravity are adopted. The main
mass-loss diagnostics for O8-9.5 giants are Si IV λλ1394,1403
and C IV λλ1548,1551.

(iii) Overall, our model SEDs reproduce well the observed
ones considering parallaxes from Gaia Collaboration (2018) and
van Leeuwen (2007). The highest discrepancies are explained
by unreliable distance estimations and uncertainties in the ISM
extinction. Thus, the calibrated log (L?/L�) given by Martins
et al. (2005b) is a good assumption for late O giants.

(iv) We determined Teff separately from the UV (Fe III-V
lines) and the optical (He I-II lines). These independent mea-
surements for Teff agree well. For both of them, the expected
tendency of higher values of Teff was obtained, as we go from
later (O9.5III) towards earlier (O8III) spectral types.

(v) The emission component of C IV λλ1548,1551 is system-
atically overestimated by our models. We are able to improve the
fits with ξmin

t up to 20–30 km s−1 together with a fuller account-
ing of atomic species. Our improved model in terms of species
is not sufficient to explain this discrepancy. However, such
higher values for the photospheric microturbulence prevent a
self-consistent Teff analysis from the UV and optical for the stars
of our sample. Considering the adoption of ξmin

t = 10 km s−1, our
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Fig. 23. Same analysis as in Fig. 22, but for HD 156292. Final model
(red) with Ṁ = 1.5 × 10−9 M� yr−1 and log (L?/L�) = 5.12. Top panel:
models with the limits on Ṁ (7.5 × 10−10 M� yr−1 in green and 5.5 ×
10−9 M� yr−1 in blue): fixed log (L?/L�) = 5.12. Bottom panel: models
with the limits on log (L?/L�) (4.92 in green and 5.32 in blue): fixed
Ṁ = 1.5 × 10−9 M� yr−1. We note that the error bars of log (L?/L�) do
not produce any significant changes on the UV diagnostics for Ṁ.

tests show that the fits are only improved by using a considerably
lower β in the velocity law, namely, of ∼0.3. These values are
not common among O stars. Dwarfs usually present values close
to unity while OB supergiants may present larger values, such
as β & 3.0. We consider that this very low β value is likely due
to the simple β parameterization used in this paper, that is, they
must be an artifact of our modeling assumption with CMFGEN.
A deeper investigation regarding this issue is required.

(vi) We analyzed literature results for O dwarfs, giants, and
supergiants with our ones in the HR diagram. The loci of these
stars are different in the diagram. We estimated ages for the
giants of our sample and confirmed that they are more evolved
than dwarfs. The bulk of our sample has ages of 106.7−106.8 yr
and evolutionary masses of MZAM ∼ 25−28 M�. These val-
ues of mass are consistent with the recent findings of Martins
et al. (2017), which determined spectroscopic masses around
25−40M� for O7-8 giants. Our spectroscopic masses (M? ∼
16−26M�) are in marginal agreement with the evolutionary
masses.

(vii) The mass-loss rates obtained from the UV analysis were
compared with different theoretical works. Considering clumped
Ṁ, our values are considerably lower than the values predicted
from Vink et al. (2000) by a factor of ∼0.9−2.3 dex. The dis-
crepancy is reduced to ∼0.4−1.7 dex in comparison with our
unclumped Ṁ, still being severe since it reaches up to about two
orders of magnitude. That is, late O giants also present weak
winds, like late O dwarfs. The disagreement between our results
and the predicted values by theory is lessened as we go from
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O9.5III to O8III objects. Thus, the region of log (L?/L�) ∼ 5.2
seems critical for the weak wind phenomenon.

(viii) We also compared our results with the theoretical Ṁ
from Lucy (2010a). The predictions of Lucy (2010a) are bet-
ter in comparison with ṀVink for low luminosity objects. The
weak wind problem is considerably attenuated (where Vink’s
predictions are worst), with discrepancies up to ∼1.0 dex. On the
other hand, they underestimate the mass-loss rates for OB super-
giants (where Vink’s predictions work well). The physical reason
for these discrepancies should be investigated in detail, but it is
beyond the scope of this paper. We verified that the region of
log (L?/L�) ∼ 5.2 seems to be critical for both the predictions
from Vink et al. (2000) and Lucy (2010b).

(ix) The mass-loss rates predicted from Vink et al. (2000)
largely overestimate the intensity in Si IV λλ1394,1403 for
all our sample. These values of Ṁ also overestimate the
C IV λλ1548,1551 for our stars with non-saturated profiles. For
Hα, a good part of our sample (five out of nine stars) shows over-
estimated profiles using ṀVink. The mass loss from Vink et al.
(2000) is able to fit the observed Hα for three objects: HD 24431,
HD 116852, and HD 115455.

(x) We checked the fits to the Hα profiles using our mass-loss
rates inferred from the UV diagnostics. We found excellent fits
for two objects (HD 156292 and HD 105627) and for another
two stars the upper limit on Ṁ also provide reasonable fits
(HD 116852 and HD 135591). However, for five objects, we
could not fit Hα even considering the UV upper limits on the Ṁ:
HD 24431, HD 218195, HD 36861, HD 153426, and HD 115455.
Despite our efforts, in these stars our models fail to reproduce
simultaneously all the wind diagnostics considered here (UV and
optical).

(xi) Regarding the simultaneous fitting to the UV and Hα
spectra, weak winds in O8-9.5III are favored in comparison with
the values from Vink et al. (2000). We fit the UV and optical
spectra of four out of nine stars of our sample. Models with ṀVink
are able to reproduce the Hα data for three out of nine objects,
but they fail to reproduce the UV wind lines for all our sample.
We needed to revise upward the UV Ṁ to model the Hα profiles
in about half of our sample. This issue regarding the UV and
optical modeling with CMFGEN is also found in works about
O dwarfs. It is still an open question in the literature.

(xii) Our results show that effects of binarity on the UV and
optical analyses are unlikely to change our conclusions about
the weak wind phenomenon in late O giants. Moreover, we per-
formed different tests to address the impact of stellar parameters
on the mass-loss rates derivation from the UV wind lines. We
also found that the depletion of C/H, caused by evolutionary
effects in late O giants, is not enough to modify our conclusions
regarding the weak winds. The same is valid for the effects of
Teff and L? on the UV wind diagnostics.

In conclusion, our results indicate the weak wind phe-
nomenon in O8-9.5III stars. It is the first time that weak winds
are found for spectral types other than O8-9.5V. Despite our
efforts, we are not able to model at the same time both the UV
wind diagnostic lines and the Hα profile for all the stars of our
sample. This issue could be solved by investigations regarding
macroclumping implementation in the modeling with CMFGEN
and potential Hα variability (as observed in late OB supergiants)
among late O giants. Apart from this problem, low Ṁ (weak
winds) are favored to model the spectra (UV + optical regions)
of late O dwarfs and giants in comparison with values provided
by theory. In other words, the measured mass-loss rates of these
stars are systematically lower than the predictions of Vink et al.
(2000). This is important as they are low luminosity O stars

(latter spectral types), implying that the majority of the O-type
stars must undergo a weak wind phase. Therefore, we suggest
that the mass-loss recipe in the majority of modern stellar evo-
lution codes must severely overestimate Ṁ during the H-burning
phase. Further investigations are needed to evaluate the conse-
quences of this in terms of physical parameters for massive stars
(e.g., angular momentum and CNO surface abundances).
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Appendix A: Final models: ultraviolet
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Fig. A.1. Final CMFGEN model with T UV
eff

(red) for HD 156292 in the UV. The IUE/SWP spectrum is shown in black. Model parameters are listed
in Table 3.
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Fig. A.2. Final CMFGEN model with T UV
eff

(red) for HD 24431 in the UV. The IUE/SWP spectrum is shown in black. Model parameters are listed
in Table 3.
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Fig. A.3. Final CMFGEN model with T UV
eff

(red) for HD 105627 in the UV. The IUE/SWP spectrum is shown in black. Model parameters are listed
in Table 3.
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Fig. A.4. Final CMFGEN model with T UV
eff

(red) for HD 116852 in the UV. The IUE/SWP spectrum is shown in black. Model parameters are listed
in Table 3.
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Fig. A.5. Final CMFGEN model with T UV
eff

(red) for HD 153426 in the UV. The IUE/SWP spectrum is shown in black. Model parameters are listed
in Table 3.
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Fig. A.6. Final CMFGEN model with T UV
eff

(red) for HD 218195 in the UV. The IUE/SWP spectrum is shown in black. Model parameters are listed
in Table 3.
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Fig. A.7. Final CMFGEN model with T UV
eff

(red) for HD 36861 in the UV. The IUE/SWP spectrum is shown in black. Model parameters are listed
in Table 3.
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Fig. A.8. Final CMFGEN model with T UV
eff

(red) for HD 115455 in the UV. The IUE/SWP spectrum is shown in black. Model parameters are listed
in Table 3.
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Fig. A.9. Final CMFGEN model with T UV
eff

(red) for HD 135591 in the UV. The IUE/SWP spectrum is shown in black. Model parameters are listed
in Table 3.
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Appendix B: Final models: optical
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Fig. B.1. Final CMFGEN model with T UV
eff

(red) for HD 156292 in the optical. The FEROS spectrum is shown in black. Model parameters are listed
in Table 3.
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Fig. B.2. Final CMFGEN model with T UV
eff

(red) for HD 24431 in the optical. The ESPADONS spectrum is shown in black. Model parameters are
listed in Table 3.
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Fig. B.3. Final CMFGEN model with T UV
eff

(red) for HD 105627 in the optical. The FEROS spectrum is shown in black. Model parameters are listed
in Table 3.
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Fig. B.4. Final CMFGEN model with T UV
eff

(red) for HD 116852 in the optical. The FEROS spectrum is shown in black. Model parameters are listed
in Table 3.
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Fig. B.5. Final CMFGEN model with T UV
eff

(red) for HD 153426 in the optical. The FEROS spectrum is shown in black. Model parameters are
listed in Table 3.
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Fig. B.6. Final CMFGEN model with T UV
eff

(red) for HD 218195 in the optical. The ESPADONS spectrum is shown in black. Model parameters are
listed in Table 3.
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Fig. B.7. Final CMFGEN model with T UV
eff

(red) for HD 36861 in the optical. The NARVAL spectrum is shown in black. Model parameters are
listed in Table 3.

A36, page 40 of 42

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834266&pdf_id=0


E. S. G. de Almeida et al.: Probing the weak wind phenomenon in Galactic O-type giants

0.5
0.6
0.7
0.8
0.9

1

3850 3900 3950 4000 4050 4100 4150 4200

0.5
0.6
0.7
0.8
0.9

1

4300 4350 4400 4450 4500 4550 4600

0.5
0.6
0.7
0.8
0.9

1

4600 4700 4800 4900 5000 5100

0.5
0.6
0.7
0.8
0.9

1

5400 5450 5500 5550 5600 5650 5700 5750 5800 5850

0.5
0.6
0.7
0.8
0.9

1

6530 6540 6550 6560 6570 6580 6590 6600

N
or
m
al
iz
ed

flu
x

λ (Å)

Fig. B.8. Final CMFGEN model with T UV
eff

(red) for HD 115455 in the optical. The FEROS spectrum is shown in black. Model parameters are listed
in Table 3.
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Fig. B.9. Final CMFGEN model with T UV
eff

(red) for HD 135591 in the optical. The FEROS spectrum is shown in black. Model parameters are listed
in Table 3.
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