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Abstract. Stream-based reasoning systems process data stemming from different sources that are received over time. In this kind
of applications, reasoning needs to cope with the temporal dimension and should be resilient against inconsistencies in the data.
Motivated by such settings, this paper addresses the problem of handling inconsistent data in a temporal version of ontology-
mediated query answering. We consider a recently proposed temporal query language that combines conjunctive queries with
operators of propositional linear temporal logic (LTL), and consider these under three inconsistency-tolerant semantics that have
been introduced for querying inconsistent description logic knowledge bases. We investigate their complexity for temporal EL⊥
and DL-LiteR knowledge bases. In particular, we consider two different cases, depending on the presence of negations in the
query. Furthermore, we complete the complexity picture for the consistent case. We also provide two approaches toward practical
algorithms for inconsistency-tolerant temporal query answering.
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1. Introduction

For applications that rely on sensor data, such as
context-aware applications, ontologies can enrich and
abstract the (numerical) stream data by means of back-
ground knowledge. This richer view on the data of-
ten results in more query results than over the data
alone. Since the collected data usually provides an
incomplete description of the observed system, the
closed world assumption employed by database sys-
tems, where facts not present are assumed to be false,
is not appropriate. Most applications that rely on sen-
sor streams observe some kind of running system over
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time. In order to be able to react to the behaviour of
the observed system, they need to employ some repre-
sentation of temporal information and a query mech-
anism that can reference this temporal information. If
the sources of the collected data are not reliable, as
it might be in case of faulty sensors, the internal rep-
resentation of the observations may contain inconsis-
tencies. In such cases, query mechanisms that rely on
logical reasoning are effectively useless, as everything
would follow from an inconsistent knowledge base. As
a counter measure to this effect, inconsistency-tolerant
semantics for answering ontology-mediated queries
have been devised. In this paper, we investigate com-
binations of inconsistency-tolerant and temporal query
answering w.r.t. ontologies. This setting is fairly ab-
stract and deliberately neglects implementation details
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as it provides foundations on the combination of three
aspects vital to most stream reasoning applications.
First, stream reasoning requires background knowl-
edge either on the streams used or on the context in
which the information provided by the streams is to be
handled. Both kinds of background knowledge can be
represented by ontologies and be exploited by ontol-
ogy reasoning systems. Second, stream reasoning in-
herently has to cope with the temporal dimension. This
dimension is given by the sequence of observations
that individual items in the streams provide. Thus, tra-
ditional reasoning services that are oblivious of the
temporal dimension are hardly of use to stream rea-
soning applications. Naive combinations of such atem-
poral reasoning services can compute some forms of
temporal consequences, but these combinations need
not be complete and thus could miss consequences. To
stream reasoning applications relying on such ad-hoc
systems, it is not discernible when the naive reasoner
does or does not provide a reliable answer. Third, and
most importantly, the different streams or data sources
need not be free of errors due to the methods by which
the data is gathered or provided to the system. More-
over, an automatic combination of open stream sources
to which a stream reasoning system can subscribe sim-
ply cannot guarantee a consistent combination of such
sources. Thus, in general, the combination of the data
used by a stream reasoning system can simply contain
contradictory information. The combination of these
three aspects is so far not investigated in the literature.
This is why our setting abstracts from many applica-
tion specific details and variations of stream reasoning
systems, in order to concentrate on the combination of
the three fundamental conditions inherent to most such
systems. Our goal is to provide an initial orientation for
selecting between the many design choices by which
each of these factors can be addressed in a stream rea-
soning system, such as expressivity of the ontology
and query language, treatment of temporal informa-
tion, and different inconsistency-tolerant semantics. To
this end we map out the landscape of the computa-
tional complexity for many combinations of the three
design factors for stream reasoning systems in this pa-
per. In preparation for this, we examine the three de-
sign aspects in more detail.

In many stream reasoning systems, the collected
data is transformed into an abstract logical represen-
tation, and situation recognition is performed by some
kind of logical inference over the abstract logical rep-
resentation. There are stream reasoning approaches

based on rules, such as answer set programming [1–3],
(datalog) rules and approaches based on ontology lan-
guages [4–7]. The ontology-based approaches mostly
employ the framework of ontology-mediated queries,
where forms of conjunctive queries are answered over
data that is enriched by an ontology, to perform situ-
ation recognition. The ontology languages that are in-
vestigated for situation recognition are usually those
where reasoning is of lower computational complexity
in order to obtain systems with low execution times.

In this paper, we investigate the lightweight descrip-
tion logics (DLs) EL⊥ and DL-LiteR, for which an-
swering conjunctive queries is tractable (respectively
in P and AC0 w.r.t. the size of the data). The low
complexity for query answering in DL-LiteR made it
the choice for the OWL 2 QL profile [8] in the lat-
est version of OWL [9], the W3C-standardized on-
tology language for the Semantic Web. For similar
reasons, the logic EL was picked as the core of the
OWL 2 EL profile. Both DL-LiteR and EL⊥ ad-
mit to use database systems to answer conjunctive
queries and are thus good candidates for implement-
ing ontology-based stream reasoning. In DL-LiteR,
the query can be rewritten using the information from
the ontology such that the resulting query can be eval-
uated directly on the data, i.e. stored in a database [10].
For query answering in EL, there are several ap-
proaches. In the combined approach [11] the data
is augmented in a query-independent way to build a
canonical model by adding information form the ter-
minology. The query is then evaluated over this model
and unsound answers are filtered out. Alternatively,
a translation to datalog variants can be used [12] for
query answering in EL dialects.

In stream reasoning approaches in general, the tem-
poral information is often represented by associating
data with the time point at which it was collected. Re-
garding the language in which queries can be formu-
lated, many variations that capture the temporal as-
pect have been studied in recent research [2–4, 13].
Window-based approaches admit to concentrate on re-
cent continuous substreams when answering queries
over the data, and are the most prominent in im-
plemented systems [2–4]. Ontology-based approaches
mostly cover classical temporal logics such as linear
temporal logic (LTL) [14] (see [5, 15–18]) or met-
ric variants of temporal logics [19, 20] to enrich the
query language. For a recent overview on temporal
ontology-mediated querying see [20, 21]. Note that
window-based and ontology-based approaches can be
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combined. For example, it might often be convenient
to first extract a time window of interest and then ap-
ply ontology-based query answering to its content. Or
alternatively, it is possible to refer to subsequences of
the time line using LTL operators, though with a se-
mantics that differs from a standard window operator
(see Section 2 for an example.)

Ontology-based approaches for stream reasoning
often admit the use of temporal operators only in the
query language and use classical ontologies without
any temporal operators together with sequences of
datasets. Each dataset in such a sequence contains data
collected at the same time point. The ontology together
with the sequence of datasets constitute the temporal
knowledge base. Queries can then refer to the different
time points by means of temporal operators. This kind
of setting has been intensively investigated for tempo-
ral conjunctive queries, that is, queries with tempo-
ral operators from LTL appearing in front of Boolean
combinations of atoms, for expressive DLs in [5, 22],
for DL-LiteR in [6], and for EL in [23]. We base our
study in this paper on this general setting.

For stream reasoning systems, erroneous data can be
a severe problem, as for instance pointed out in [24]. If
inconsistencies arise in the knowledge base, the logi-
cal reasoning mechanisms are rendered useless. There
are several directions of research to cope with this
problem. While some employ non-monotonic reason-
ing techniques [25, 26], others try to resolve the incon-
sistencies directly [27] or perform reasoning with re-
spect to inconsistency-tolerant semantics (see [28] for
a recent overview). We follow the latter road, since the
techniques developed there are tailored to ontology-
mediated queries and often of lower complexity than
the other approaches for resolving inconsistencies.

A prominent approach for inconsistency-tolerant
reasoning is to consider repairs of the knowledge
base, i.e., maximal consistent subsets of the data, and
then to perform query answering with respect to these
subsets. Arguably the most natural and well-known
inconsistency-tolerant semantics is the AR semantics
[29, 30], inspired by consistent query answering in the
database setting [31], which considers the queries that
hold in every repair. However, AR query answering is
intractable even for very simple ontologies [32], which
leads the authors of [29, 30] to propose an approxi-
mation of AR tractable for DL-LiteR, namely the IAR
semantics, which queries the intersection of the re-
pairs. Beside its better computational properties, this
semantics is more cautious, since it provides answers

supported by facts that are not involved in any contra-
dictions. It may therefore be interesting in our setting
when the observed system should change its behaviour
only if some situation has been recognized with a very
high confidence. Finally, the brave semantics [33] re-
turns every answer that holds in some repair, so is sup-
ported by some consistent set of facts. This less cau-
tious semantics may be relevant for context recogni-
tion, when critical situations must imperatively be han-
dled.

For the two DLs to be investigated in this paper, an-
swering of (atemporal) conjunctive queries under these
inconsistency-tolerant semantics has already been in-
vestigated for DL-LiteR in [29, 30, 33, 34] and for
EL⊥ in [28, 35]. Attention has then turned to the prob-
lem of designing algorithms and implementing these
alternative semantics. Most work has focused on the
IAR semantics and dialects of DL-Lite, due to the
aforementioned tractability result [30, 36, 37]. A no-
table exception is the CQAPri system, which imple-
ments all three mentioned semantics—AR, IAR and
brave—for DL-LiteR knowledge bases [38, 39].

So far, inconsistency-tolerant semantics have not
been investigated in combination with temporal rea-
soning. In this paper, we lift inconsistency-tolerant se-
mantics to the case of answering temporal conjunc-
tive queries over lightweight DL temporal knowledge
bases.

1.1. Contributions

This article extends the conference paper [40]
on temporal query answering in DL-LiteR over in-
consistent data, where the complexity of answering
queries with LTL operators, but without negation, over
DL-LiteR temporal knowledge bases was investigated.
The considered ontologies admit the use of rigid pred-
icates, which are predicates that do not change their
interpretation over time. The initial results were ob-
tained for the three inconsistency-tolerant semantics
AR, IAR and brave and with respect to three cases
of rigid predicates: no rigid predicates, rigid concepts
only, and rigid concepts together with rigid roles.

Compared to the conference version, the present ar-
ticle includes new complexity results (all results for
EL⊥, as well as some results for DL-LiteR). It also
extends the set of temporal operators, distinguishing
bounded and unbounded variants of the future LTL op-
erators, in order to cover the two different settings that
have been investigated for temporal query answering



4 C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data

in the literature, where temporal knowledge bases are
interpreted w.r.t. finite or infinite sequences of inter-
pretations. Furthermore, we investigate both cases: the
one where negation is admitted in the query language
and the one where it is not.

The complexity upper bounds are often obtained
by non-deterministic procedures that require, for in-
stance, to guess the right repairs which may not be
feasibly computed in practice. Thus algorithms that
lend themselves to implementation are still to be de-
vised. We make two contributions toward practical al-
gorithms for temporal inconsistency-tolerant query an-
swering. The first is a polynomial reduction of rea-
soning in the presence of rigid predicates to reasoning
without such predicates by propagating the rigid facts
in the sequence of datasets. The second is to identify
cases where in the absence of rigid predicates the well-
known methods for classical temporal query answer-
ing and (atemporal) inconsistency-tolerant query an-
swering can straightforwardly be combined. We show
that for the IAR semantics, this yields a sound and
complete algorithm. For the AR semantics, such a
combination of the algorithms always yields a sound
approximation, and additionally yields a sound and
complete procedure if the query contains only a re-
stricted set of operators.

This paper is structured as follows. In the next sec-
tion, we introduce the basic notions of DLs, query
answering, inconsistency-tolerant semantics for atem-
poral knowledge bases and the temporal setting. Fur-
thermore, we discuss known complexity results for
both inconsistency-tolerant and temporal query an-
swering in the logics considered. In Section 3, we
lift the introduced inconsistency-tolerant semantics
to temporal query answering over inconsistent data.
Section 4 gives an overview over the complexity re-
sults obtained. General versions of algorithms for test-
ing (non-)entailment of temporal conjunctive queries
under the different semantics are described in Sec-
tion 5 in preparation of the complexity analysis.
Section 6 shows data and combined complexity of
inconsistency-tolerant temporal query answering for
DL-LiteR and EL⊥ for the case where the query lan-
guage admits negation. In Section 7, we complete the
complexity picture of temporal query answering under
classical semantics by investigating the case where the
query does not contain negation. We then built on these
results to provide the complexity of inconsistency-
tolerant temporal query answering for queries without
negation in Section 8. Finally, Section 9 investigates

two approaches for practical implementations that al-
low to employ well-known methods. The article fin-
ishes with a section on conclusions and future work.

To improve readability, some of the proofs have
been moved to the appendix and are only sketched in
the main text.

2. Preliminaries

We briefly recall the syntax and semantics of DLs
and the three inconsistency-tolerant semantics that we
consider, and then we introduce our setting of temporal
query answering.

Syntax. A DL knowledge base (KB) K consists of
an ABox A and a TBox T , both constructed from
three countably infinite sets: a set NC of concept names
(unary predicates), a set NR of role names (binary pred-
icates), and a set NI of individual names (constants).
The ABox (dataset) is a finite set of concept asser-
tions A(a) and role assertions R(a, b), where A ∈ NC,
R ∈ NR, a, b ∈ NI. The TBox (ontology) is a finite set
of axioms whose form depends on the particular DL.

In DL-LiteR, TBox axioms are either concept inclu-
sions B v C or role inclusions P v S , built according
to the following syntax, where A ∈ NC and R ∈ NR:

B := A | ∃P C := B | ¬B

P := R | R− S := P | ¬P.

Inclusions of the form B1 v B2 or P1 v P2 are called
positive inclusions (PI), those of the form B1 v ¬B2

or P1 v ¬P2 are called negative inclusions (NI).
In EL⊥, the TBox contains concept inclusions of the

form C1 v C2, where C1 and C2 are built according to
the following syntax, where A ∈ NC and R ∈ NR:

C := > | ⊥ | A | ∃R.C | C uC.

An EL⊥ inclusion of the form C1uC2 v ⊥ can also be
written in the form of a negative inclusion C1 v ¬C2.

Semantics. An interpretation is a tuple of the form
I = 〈∆I , ·I〉, where ∆I is a non-empty set and ·I
maps each a ∈ NI to aI ∈ ∆I , each A ∈ NC to AI ⊆
∆I , and each R ∈ NR to RI ⊆ ∆I × ∆I . We adopt
the unique name assumption, i.e., for all a, b ∈ NI, we
require aI 6= bI if a 6= b. The function ·I is straight-
forwardly extended to general concepts and roles, e.g.,
>I = ∆I , ⊥I = ∅, (R−)I = {(d, e) | (e, d) ∈ RI},
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(¬R)I = ∆I ×∆I \ RI , (∃P)I = {d | ∃e : (d, e) ∈
PI}, (∃P.C)I = {d | ∃e : (d, e) ∈ PI , e ∈ CI}
(C1 uC2)I = CI1 ∩CI2 .

An interpretation I satisfies an inclusion G v H if
GI ⊆ HI ; it satisfies A(a) (resp. R(a, b)) if aI ∈ AI

(resp. (aI , bI) ∈ RI). We call I a model of a KB K =
〈T ,A〉 if I satisfies all axioms in T and all assertions
in A. A KB is consistent if it has a model, and we say
that an ABox A is T -consistent (or simply consistent
if T is clear from the context), if the KB 〈T ,A〉 is
consistent.

Queries. A conjunctive query (CQ) takes the form
q = ∃~y.ψ(~x, ~y), where ψ is a conjunction of atoms of
the form A(t) or R(t, t′), with t, t′ individual names or
variables from ~x∪~y. We call the variables in ~x the free
variables in q. A CQ is called Boolean (BCQ) if it has
no free variables (i.e., ~x = ∅). A BCQ q is satisfied
by an interpretation I = 〈∆I , ·I〉, written I |= q, if
there is a homomorphism π mapping the variables and
individual names of q into ∆I such that: π(a) = aI for
every a ∈ NI, π(t) ∈ AI for every concept atom A(t)
in ψ, and (π(t), π(t′)) ∈ RI for every role atom R(t, t′)
in ψ. A BCQ q is entailed fromK, writtenK |= q, iff q
is satisfied by every model of K. Given a CQ q with
free variables ~x = (x1, . . . , xk) and a tuple of individu-
als ~a = (a1, . . . , ak), ~a is a certain answer to q over K
if K |= q(~a), where q(~a) is the BCQ resulting from
replacing each x j in q by a j.

Inconsistency-tolerant semantics. A repair of K =
〈T ,A〉 is an inclusion-maximal subset of A that is T -
consistent. We consider three semantics based on re-
pairs that have been previously introduced in the liter-
ature [29, 30, 33]. A tuple ~a is an answer to q over K
under

– AR semantics, written K |=AR q(~a),
iff 〈T ,A′〉 |= q(~a) for every repair A′ of K;

– IAR semantics, written K |=IAR q(~a),
iff 〈T ,A∩〉 |= q(~a) where A∩ is the intersection of
all repairs of K;

– brave semantics, written K |=brave q(~a),
iff 〈T ,A′〉 |= q(~a) for some repair A′ of K.

Figure 1 summarizes the complexity of BCQ entail-
ment under the different semantics for DL-LiteR and
EL⊥. Data complexity is measured in the size of the
ABox only, while combined complexity is measured in
the size of the whole KB and the query. When com-
plexity is measured w.r.t. the size of the KB (ABox and
TBox), it is called KB complexity. For DL-LiteR and
EL⊥, CQ answering under the classical semantics is

in P w.r.t. KB complexity. We refer to Section 4 for a
reminder on the definitions of the different complexity
classes that appear in this work.

Temporal query answering. We now present our tem-
poral framework inspired from [5] and [18].

Definition 2.1 (TKB). A temporal knowledge base
(TKB) K = 〈T , (Ai)06i6n〉 consists of a TBox T and
a finite sequence of ABoxes (Ai)06i6n. An infinite se-
quence J = (Ii)i>0 of interpretations Ii = 〈∆, ·Ii〉
over a fixed non-empty domain ∆ (constant domain
assumption) is a model of K iff for every i ∈ [0, n],
Ii is a model of 〈T ,Ai〉, for every i > n, Ii is a
model of T , and for every a ∈ NI and all i, j > 0,
aIi = aI j (rigidity of individual names). Rigid pred-
icates are elements from the set NRC ⊆ NC of rigid
concepts and the set NRR ⊆ NR of rigid roles. A se-
quence of interpretations J = (Ii)i>0 respects rigid
predicates iff for every X ∈ NRC∪NRR and all i, j > 0,
XIi = XI j . A TKB is consistent if it has a model
that respects rigid predicates. A sequence of ABoxes
(Ai)06i6n is T -consistent, or simply consistent, if the
TKB 〈T , (Ai)06i6n〉 is consistent.

Example 2.2. The following EL⊥ TKB gives infor-
mation useful to monitor a cluster of servers. The
TBox T defines that a server is overloaded when it ex-
ecutes a process with an increasing workload while its
CPU is already maximally utilized. The sequence of
ABoxes (Ai)06i62 records information on a server s.
The set of rigid roles is NRR = {hasCPU}, which mod-
els the fact that the CPU of a server does not change
over time.

T = {∃executes.IncreasingWorkload v LoadRise,

∃hasCPU.MaxUtilized v MaxLoaded,

LoadRise uMaxLoaded v Overloaded}

A0 = {hasCPU(s, c), MaxUtilized(c),

executes(s, p1), IncreasingWorkload(p1)}

A1 = {MaxUtilized(c), executes(s, p1),

executes(s, p2), IncreasingWorkload(p2)}

A2 = {executes(s, p2)}

It is sometimes convenient to represent a sequence
of ABoxes as a set of assertions associated with time-
stamps, which we call timed assertions: (Ai)06i6n

then becomes {(α, i) | α ∈ Ai, 0 6 i 6 n}.
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Semantics
Data complexity Combined complexity

DL-LiteR EL⊥ DL-LiteR EL⊥
classical in AC0 P-complete NP-complete NP-complete
AR coNP-complete coNP-complete Πp

2-complete Πp
2-complete

IAR in AC0 coNP-complete NP-complete ∆p
2[O(log n)]-complete

brave in AC0 NP-complete NP-complete NP-complete

Figure 1. Complexity of BCQ entailment in DL-LiteR [29, 33] and EL⊥ [28, 35]

A rigid concept is a concept which only uses rigid
predicates. A rigid assertion is of the form A(a) with
A ∈ NRC or R(a, b) with R ∈ NRR. We distinguish three
cases depending on which predicates can be rigid: in
the first case, we have no rigid predicates (NRC = ∅
and NRR = ∅), in the second case, we do allow only
for rigid concepts (NRC 6= ∅ and NRR = ∅), and in the
last case, we have both, rigid concepts and rigid roles
(NRC 6= ∅ and NRR 6= ∅). Because rigid concepts can
be simulated with rigid roles using a pair of concept
inclusions of the form A v ∃R, ∃R v A, these three
cases cover all interesting combinations.

In the remainder of the paper, we always use n to
denote the maximal timestamp of a TKB.

Definition 2.3 (TCQ). Temporal conjunctive queries
(TCQs) are built from CQs as follows: each CQ is a
TCQ, and if φ1 and φ2 are TCQs, then so are ¬φ1

(negation), φ1 ∧ φ2 (conjunction), φ1 ∨ φ2 (disjunc-
tion),#φ1 (next), b φ1 (bounded next),#−φ1 (strong
previous), −φ1 (weak previous),�φ1 (always),�bφ1

(bounded always), �−φ1 (always in the past), ♦φ1

(eventually), ♦bφ1 (bounded eventually),♦−φ1 (some
time in the past), φ1U φ2 (until), φ1Ub φ2 (bounded un-
til), and φ1S φ2 (since). We further may use ψ1 → ψ2

as a shortcut for ¬ψ1 ∨ ψ2.
We impose the constraint that the past operators#−,

�−, ♦− and S cannot be nested under the unbounded
future operators #, �, ♦ and U (in second position)
(see discussion later in this section).

Example 2.4 (Example 2.2 cont’d). The following
TCQ returns the list of servers which have been over-
loaded at least twice.

φ = ♦−(Overloaded(x) ∧#−♦−Overloaded(x))

Note that we can modify our query to speak about a
window of 10 time units as follows:

#−10♦(Overloaded(x) ∧#♦Overloaded(x))

where #−10 abbreviates a sequence of ten #− oper-
ators. Differently to window operators found in other
settings however, subexpressions within such a win-
dow can refer to time points outside this window.

Given a TCQ φ, we refer to the TCQs that oc-
cur in φ as subformulas of φ. We sometimes use the
notion of the propositional abstraction of a Boolean
TCQ φ, which is the propositional LTL formula ob-
tained by replacing each BCQ in φ by a proposi-
tional variable (e.g., the propositional abstraction of
#∃x.A(x) ∨ ∃x.B(x) is the propositional LTL formula
#x1 ∨ x2).

Remark 2.5 (Choice of operators). The additional
LTL operators W (weak until), W− (weak since), R
(release), and R− (past release) can be expressed by
our set of operators as follows:

φ1W φ2 ≡ (φ1U φ2) ∨ (�φ1),

φ1W−φ2 ≡ (φ1S φ2) ∨ (�−φ1),

φ1R φ2 ≡ φ2W (φ2 ∧ φ1), and

φ1R−φ2 ≡ φ2W−(φ2 ∧ φ1).

We will consider in Sections 7, 8 and 9 a special setting
where TCQs do not contain negation symbols, which
sometimes leads to a lower computational complexity.
For this reason, we did not introduce �φ as a short-
cut for ¬♦¬φ, as it is often done in the literature, but
instead treat the operators � and �b as native mem-
bers of our query language. Similarly, since the top
and bottom concepts > and ⊥ are not allowed in ev-
ery DL, ♦ (resp. ♦b) cannot be defined using U (resp.
Ub ) as usual in LTL (♦φ1 ≡ true U φ1), unless we
allow for negation (where we can express true using
∃x.A(x)∨¬∃x.A(x)). We thus keep all these operators
in the set we consider.

Note also that since disjunctions are allowed, TCQs
could be defined with unions of conjunctive queries
(UCQs) instead of CQs. We use CQs for simplicity.

Definition 2.6 (TCQ answering). Given a TCQ φ with
free variables ~x = (x1, . . . , xk) and a tuple of individ-
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Table 1
Satisfaction of BTCQs by a sequence of interpretations

φ J , p |= φ iff

∃~y.ψ(~y) Ip |= ∃~y.ψ(~y)
¬φ1 J , p 6|= φ1

φ1 ∧ φ2 J , p |= φ1 and J , p |= φ2

φ1 ∨ φ2 J , p |= φ1 or J , p |= φ2

#φ1 J , p + 1 |= φ1

 b φ1 p < n implies J , p + 1 |= φ1

#−φ1 p > 0 and J , p− 1 |= φ1

 −φ1 p > 0 implies J , p− 1 |= φ1

�φ1 ∀k, k > p, J , k |= φ1

�bφ1 ∀k, p 6 k 6 n, J , k |= φ1

�−φ1 ∀k, 0 6 k 6 p, J , k |= φ1

♦φ1 ∃k, k > p, J , k |= φ1

♦bφ1 ∃k, p 6 k 6 n, J , k |= φ1

♦−φ1 ∃k, 0 6 k 6 p, J , k |= φ1

φ1U φ2 ∃k, k > p, J , k |= φ2 and ∀ j, p 6 j < k,J , j |= φ1

φ1Ub φ2 ∃k, p 6 k 6 n, J , k |= φ2 and ∀ j, p 6 j < k,J , j |= φ1

φ1S φ2 ∃k, 0 6 k 6 p, J , k |= φ2 and ∀ j, k < j 6 p,J , j |= φ1

uals ~a = (a1, . . . , ak), φ(~a) denotes the Boolean TCQ
(BTCQ) resulting from replacing each x j by a j. A tu-
ple ~a is an answer to φ in a sequence of interpreta-
tions J = (Ii)i>0 at time point p iff J , p |= φ(~a),
where the satisfaction of a BTCQ φ by a sequence of
interpretations J is defined by induction on its struc-
ture as shown in Table 1. A tuple ~a is a certain answer
to φ over K at time point p, written K, p |= φ(~a), iff
J , p |= φ(~a) for every model J of K that respects
rigid predicates.

Example 2.7 (Example 2.2 cont’d). It follows from
the semantics of TKBs and TCQs that s is a certain
answer to the TCQ φ of Example 2.4 over the TKB of
Example 2.2 at time point 2 and at time point 1, but
not at time point 0. Note that the rigidity of the role
hasCPU is crucial to get this answer.

In addition to the standard LTL past and unbounded
future operators, we introduce four bounded future op-
erators that mimic the semantics based on finite se-
quences of interpretations used in [18] and similar
to that of LTL on finite traces (see e.g., [41]). In-
deed, while the standard way of interpreting TKBs
is based on infinite sequences of interpretations, it
can be relevant to limit the scope of querying to the
known time points, especially in the context of data
streams. For instance, a user may want to ask whether
a server has been running some process since it started
(♦−(Start(s)∧�bexecutes(s, p))), rather than whether
it will continue to run this process forever. Moreover,
we will see in Section 9.1 that using the bounded se-

mantics can be of practical interest, since it allows us
to reduce TCQ answering in the presence of rigid pred-
icates to TCQ answering without rigid predicates. We
choose to keep both unbounded and bounded versions
of future operators to cover the two settings that have
been previously studied for TCQ answering.

The constraint that TCQs should not contain past
operators in the scope of unbounded future operators
allows us to take advantage of the fact that a TKB en-
tails the same BCQs for every time point i > n to get
a lower complexity in the case where there is no nega-
tion in the query. Indeed, in this case, the unknown fu-
ture (i > n) can be entirely summarized in one time
point n + 1. This will also be useful to obtain the
data complexity upper bound of brave semantics in the
case where there are neither rigid predicates present
nor negation in the queries. Moreover, it turns out that
for some cases in our analysis, this restriction has no
impact on our results. Indeed, [18] shows that Gab-
bay’s separation theorem [42] can be used to rewrite
an LTL formula φ containing bounded operators into a
logically equivalent LTL formula φ′ that is a Boolean
combination of pure-past and pure-future formulas, al-
though with an exponential blow-up. It follows that the
restriction we impose does not have any influence over
the data complexity of BTCQ entailment, as long as
negation is allowed in the query. Moreover, since past
operators can still appear in the scope of bounded fu-
ture operators, all time points that refer to observations
having been made sofar (i 6 n) can be referenced by
the query language. This query language can thus still
express most situations that might be meaningful to
detect.

It follows from the definition of certain answers
that TCQ answering can be straightforwardly reduced
to BTCQ entailment (using polynomially many tests
w.r.t. data complexity and exponentially many tests
w.r.t. combined complexity). For this reason, we focus
on the latter problem.

Figure 2 summarizes the complexity of BTCQ en-
tailment for DL-LiteR and EL⊥ in the different cases
depending on which kind of predicates are rigid. Our
setting is slightly different from those of [6] and [23],
because we have additional bounded operators and the
restriction that past operators cannot be nested un-
der unbounded future operators. However, the results
shown in those papers apply to our setting. Indeed,
the proofs for the lower bounds do not use past oper-
ators nested under future operators, and for the upper
bounds, we argue that it is possible to reduce the en-
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Rigid predicates
Data complexity Combined complexity

DL-LiteR EL⊥ DL-LiteR EL⊥
NRC = NRR = ∅ ALOGTIME-complete P-complete PSPACE-complete PSPACE-complete
NRC 6= ∅,NRR = ∅ ALOGTIME-complete coNP-complete PSPACE-complete PSPACE-complete
NRC 6= ∅,NRR 6= ∅ ALOGTIME-complete coNP-complete PSPACE-complete CONEXPTIME-complete

Figure 2. Complexity of BTCQ entailment in DL-LiteR [6] and EL⊥ [23]

tailment of a BTCQ φ that contains bounded operators
to the entailment of a BTCQ φ′ without bounded oper-
ators independently from the size of the TKB and lin-
early w.r.t. the query size. To do that, we add an as-
sertion end(a) to the last ABox An of the sequence,
where end and a are both fresh names, and rewrite the
query without unbounded operators using the follow-
ing equivalences:

 b φ1 ≡ #φ1 ∨ end(a),

�bφ1 ≡ φ1U (end(a) ∧ φ1),

♦bφ1 ≡ ¬end(a)U φ1, and

φ1Ub φ2 ≡ (φ1 ∧ ¬end(a))U φ2.

3. Temporal query answering over inconsistent
data

We extend the three inconsistency-tolerant seman-
tics to temporal query answering. The main difference
to the atemporal case is that in the presence of rigid
concepts or roles, a TKB K = 〈T , (Ai)06i6n〉 may be
inconsistent even if each KB 〈T ,Ai〉 is consistent. In-
deed, in this case, there may not be a sequence of in-
terpretations J = (Ii)i>0 such that Ii is a model of
〈T ,Ai〉 for every i ∈ [0, n] and which also respects
rigid predicates. That is why we have to consider as re-
pairs the T -consistent sequences of subsets of the ini-
tial ABoxes that are component-wise maximal.

Definition 3.1 (Repair of a TKB). A repair of a
TKB K = 〈T , (Ai)06i6n〉 is a sequence of ABoxes
(A′i)06i6n such that {(α, i) | α ∈ A′i , 0 6 i 6 n}
is a maximal T -consistent subset of {(α, i) | α ∈ Ai,
0 6 i 6 n}. We denote the set of repairs of K
by Rep(K).

The next example illustrates the impact which rigid
predicates can have on repairs.

Example 3.2. Consider the TKBK = 〈T , (Ai)06i61〉.
The TBox expresses that web servers and applica-
tion servers are two distinct kinds of servers, and the

ABoxes provide information about a server a that exe-
cutes two processes b and c.

T = {WebServer v Server, AppServer v Server,

WebServer v ¬AppServer}

A0 = {WebServer(a), executes(a, b)}

A1 = {AppServer(a),WebServer(a), executes(a, c)}

Assume that no predicate is rigid. The TKBK is incon-
sistent because the timed assertions (AppServer(a), 1)
and (WebServer(a), 1) violate the negative inclusion
in T . Specifically, AppServer(a) and WebServer(a)
cannot both be true at time point 1. It follows that K
has two repairs that correspond to the two differ-
ent ways of restoring consistency: (A′i)06i61 and
(A′′i )06i61, where

A′0 = A′′0 = A0

A′1 = {AppServer(a), executes(a, c)}

A′′1 = {WebServer(a), executes(a, c)}.

Now assume that AppServer is rigid. There is then
a new reason for K being inconsistent: the timed as-
sertions (WebServer(a), 0) and (AppServer(a), 1) vi-
olate the negative inclusion of T due to the rigidity
of AppServer, which implies that AppServer(a) and
WebServer(a) should be both entailed at time point 0.
Therefore, K has now the two repairs (A′i)06i61 and
(A′′i )06i61, where

A′0 = {executes(a, b)}

A′1 = {AppServer(a), executes(a, c)}

A′′0 = A0

A′′1 = {WebServer(a), executes(a, c)}.

Note that even though (A′i)06i61 is maximal (adding
WebServer(a) to A′0 renders the TKB inconsis-
tent), A′0 is not a repair of 〈T ,A0〉, because it is not
maximal.
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We extend the semantics AR, IAR, and brave to
the temporal case in the natural way by regarding se-
quences of ABoxes.

Definition 3.3 (AR, IAR, brave semantics for TCQs).
A tuple ~a is an answer to a TCQ φ over a TKB K =
〈T , (Ai)06i6n〉 at time point p under

– AR semantics, written K, p |=AR φ(~a),
iff 〈T , (A′i)06i6n〉, p |= φ(~a) for every repair
(A′i)06i6n of K;

– IAR semantics, written K, p |=IAR φ(~a),
iff 〈T , (Air

i )06i6n〉, p |= φ(~a),
with Air

i =
⋂

(A′j)06 j6n∈Rep(K)A′i for all i ∈ [0, n];
– brave semantics, written K, p |=brave φ(~a),

iff 〈T , (A′i)06i6n〉, p |= φ(~a) for some repair
(A′i)06i6n of K.

The following relationships between the semantics,
which already hold in the atemporal case, are implied
by their definition:

K, p |=IAR φ(~a)⇒ K, p |=AR φ(~a)⇒ K, p |=brave φ(~a)

In the following example, we illustrate the effect of the
different semantics in the temporal case.

Example 3.4 (Example 3.2 cont’d). Consider the fol-
lowing three temporal conjunctive queries.

φ1 = �b(∃y.executes(x, y))

φ2 = �b(∃y.Server(x) ∧ executes(x, y))

φ3 = �b(∃y.AppServer(x) ∧ executes(x, y))

If there are no rigid predicates, the intersection of
the repairs is (Air

i )06i61, with Air
0 = A0 and Air

1 =
{executes(a, c)}. We have K, 0 |=IAR φ1(a), because
in every model of the intersection of the repairs a ex-
ecutes b at time point 0 and c at time point 1. For φ2,
K, 0 |=AR φ2(a), since every model of every repair
assigns a to WebServer at time point 0 and to either
AppServer (in models of (A′i)06i61) or WebServer
(in models of (A′′i )06i61) at time point 1. However,
K, 0 6|=IAR φ2(a). Finally, K, 0 6|=brave φ3(a), because
no repair entails AppServer(a) at time point 0.

If AppServer is rigid, the intersection of the re-
pairs is (Air

i )06i61 with Air
0 = {executes(a, b)} and

Air
1 = {executes(a, c)}. So, still K, 0 |=IAR φ1(a).

Since every model of every repair assigns a to Server
at time points 0 and 1 (either because a is a web server
or because a is an application server),K, 0 |=AR φ2(a),

but K, 0 6|=IAR φ2(a). Finally, K, 0 |=brave φ3(a),
because every model of 〈T , (A′i)06i61〉 assigns a to
AppServer at any time point by rigidity of AppServer,
but K, 0 6|=AR φ3(a).

We conclude this section by pointing out some char-
acteristics of the case without rigid predicates that will
be useful later. If there are no rigid predicates, the in-
terpretations Ii of a model J = (Ii)i>0 of K that re-
spects rigid predicates are independent, besides the in-
terpretation of the individual names. We thus obtain
the following proposition.

Proposition 3.5. If NRC = NRR = ∅, then a TKB
K = 〈T , (Ai)06i6n〉 is consistent iff every 〈T ,Ai〉
is consistent. Moreover, if K is consistent, for every
p ∈ [0, n], I ′p is a model of 〈T ,Ap〉 iff there exists a
model J = (Ii)i>0 of K such that Ip = I ′p.

Proof. If NRC = NRR = ∅, a sequence of interpreta-
tions J = (Ii)i>0 is a model of K that respects rigid
predicates iff it is a model of K. It follows that K is
consistent iff there exists J = (Ii)i>0 such that for
every i ∈ [0, n], Ii is a model of 〈T ,Ai〉, for every
i > n, Ii is a model of T , and for every a ∈ NI and
all i, j > 0, aIi = aI j . This already establishes one di-
rection of the proposition. We show that also the other
direction holds.

Assume that every 〈T ,Ai〉 is consistent, i.e., every
〈T ,Ai〉 has a model. Let p ∈ [0, n] be any fixed in-
dex and I ′p = 〈∆I

′
p , ·I

′
p〉 be a model of 〈T ,Ap〉. Since

we adopt the unique name assumption and NI is un-
bounded, ∆I

′
p is an infinite set. Moreover, for every

i ∈ [0, n], sinceAi is finite, by the Löwenheim-Skolem
theorem, there exists a model I ′′i = 〈∆I′′i , ·I′′i 〉 of
〈T ,Ai〉 such that ∆I

′′
i is countable. Thus ∆I

′′
i can be

mapped to ∆I
′
p by an injective function fi. For every i,

we can then build a model I ′i = 〈∆I′i , ·I′i 〉 of 〈T ,Ai〉
such that ∆I

′
i = ∆I

′
p . For this, let ∆ = ∆I

′
p\ fi(∆I

′′
i )

and select some domain element d1 ∈ ∆I
′′
i . We de-

fine a mapping mi : ∆I
′′
i → 2∆

I′p by setting mi(d) =
{ fi(d)} for d 6= d1 and mi(d1) = { fi(d1)} ∪ ∆. It
remains to set aI

′
i = fi(aI

′′
i ) for all a ∈ NI, AI

′
i =⋃

d∈AI
′′
i

mi(d), and RI
′
i = {(d1, d2) ∈ ∆I

′
i × ∆I

′
i |

(d′1, d
′
2) ∈ RI

′′
i , d1 ∈ mi(d′1), d2 ∈ mi(d′2)}. Since

∆I
′
i = ∆I

′
p for every i ∈ [0, n], there exists a bi-

jection bi : ∆I
′
i → ∆I

′
p such that for all a ∈ NI,

bi(aI
′
i ) = aI

′
p .

Using these bijections, we can construct a model
J = (Ii)i>0 of K based on the interpretations
I ′0, . . . I ′n as follows. For every i > n, Ii = I ′p,
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Ip = I ′p, and for every i ∈ [0, n] such that i 6= p,
Ii = 〈∆I

′
p , ·Ii〉, where ·Ii is defined by aIi = aI

′
p for

every a ∈ NI, AIi = {bi(d) | d ∈ AI
′
i } for every

A ∈ NC, and RIi = {(bi(d1), bi(d2)) | (d1, d2) ∈ RI
′
i }.

Note that this construction ensures aIi = aI j for all
i, j > 0. Furthermore, one easily establishes that for
all i ∈ [0, n], Ii is a model of 〈T ,Ai〉, and for i > n,
Ii is a model of T . We obtain that J is a model of K
such that Ip = I ′p.

It follows that, if NRC = NRR = ∅, CQs can be an-
swered at time point p by answering them over the KB
〈T ,Ap〉.

Proposition 3.6. If NRC = NRR = ∅, then for ev-
ery BCQ q = ∃~y.ψ(~y) and p ∈ [0, n], K, p |= q iff
〈T ,Ap〉 |= q.

Proof. K, p |= q iff for every model J = (Ii)i>0

of K that respects rigid predicates, Ip |= q. By Propo-
sition 3.5, this is the case iff for every model Ip of
〈T ,Ap〉, Ip |= q, which is equivalent to 〈T ,Ap〉 |= q.

4. Complexity analysis overview

In the next four sections, we investigate the com-
plexity of inconsistency-tolerant BTCQ entailment in
DL-LiteR and EL⊥. Apart from the different DLs, we
also consider two settings of query languages: in the
first setting, all TCQs as defined in Section 2 are con-
sidered, in the second setting, we analyze the com-
plexity for TCQs that do not use the negation opera-
tor. Furthermore, we investigate complexity depend-
ing on whether rigid symbols are present or absent and
which of the 4 semantics are used (classical, AR, IAR
or brave). All these investigations are carried out for
combined or data complexity.

For classical semantics, some complexities have
been investigated earlier for the different settings we
consider. For the case where negations are allowed
in the queries, the complexity of BTCQ entailment
under the classical semantics has been studied in [6]
for DL-LiteR and in [23] for EL (cf. Section 2, Fig-
ure 2). Furthermore, it has also been shown in [18, 43]
that in DL-LiteR, TCQs without negation (and with a
bounded future semantics) can be rewritten into FO-
queries for temporal databases, but this was shown
only in a restricted setting without rigid names and
only for rooted TCQs. In this case, rootedness of a CQ
means that it contains at least a constant or an answer

variable and all its terms are connected via chains of
role atoms. A TCQ is rooted if every CQ in it is rooted.

Most of our complexity upper bounds are based on
a set of general algorithms for BTCQ entailment under
the different inconsistency-tolerant semantics, which
we present in Section 5. Those allow us to obtain com-
plexity upper bounds for the different settings based
on the complexity of BTCQ entailment under classical
semantics, on the complexity of recognizing repairs,
and on the complexity of consistency checking. In Sec-
tion 6, we establish the complexity of these basic tasks,
and give complexity results for our two DLs of inter-
est, EL⊥ and DL-LiteR, regarding both data and com-
bined complexity. In the cases where the general algo-
rithms are insufficient to give tight bounds, we try to
provide specialized algorithms.

We then restrict the query language and study the
complexity of the entailment of BTCQs without nega-
tion. In Section 7, we first investigate this case un-
der classical semantics, and observe that in some
cases, disallowing negation leads to lower worst case
complexities, even if we alleviate the limitations im-
posed in [18, 43]. In Section 8 these lower complex-
ities allow us to also improve the complexity bounds
for inconsistency-tolerant reasoning when there is no
negation in the TCQs. Furthermore, we take advantage
of the absence of negation to tighten an upper bound
for brave semantics without rigid predicates.

Synopsis of complexity classes. We recall the defini-
tions of the complexity classes that appear in the fol-
lowing sections.

– P: problems solvable in polynomial time.
– NP: problems solvable in non-deterministic polyno-

mial time.
– coNP: problems whose complement is in NP.
– ∆p

2[O(log n)]: problems solvable in polynomial time
with at most logarithmically many calls to an NP
oracle.

– Σp
2: problems solvable in non-deterministic polyno-

mial time with an NP oracle.
– Πp

2: problems whose complement is in Σp
2.

– AC0: problems that can be solved by a uniform fam-
ily of circuits of constant depth and polynomial size,
with unbounded-fanin AND and OR gates. We have
AC0 ⊆ P.

– ALOGTIME: problems solvable in logarithmic time
by a random access alternating Turing machine. We
have AC0 ⊆ ALOGTIME ⊆ P.

– PSPACE: problems solvable in polynomial space.
– EXPTIME: problems solvable in exponential time.
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– NEXPTIME: problems solvable in non-deterministic
exponential time.

– CONEXPTIME: problems whose complement is
in NEXPTIME.

For the remainder of this paper, L is a DL which
is interpreted w.r.t. standard interpretations, as defined
in Section 2. We will consider in particular the cases
L = DL-LiteR and L = EL⊥. Furthermore, we assume
K = 〈T , (Ai)06i6n〉 to be the TKB we evaluate our
query against, and φ to be the considered query.

5. General algorithms for inconsistency-tolerant
BTCQ entailment

Our complexity bounds are based on a set of general
algorithms for deciding BTCQ entailment under the
different semantics, which are inspired from known al-
gorithms for inconsistency-tolerant BCQ entailment in
the atemporal case (see e.g., [35]). Depending on the
semantics under consideration, it might be more natu-
ral to describe either a procedure for entailment or one
for non-entailment, which is why these algorithms fo-
cus on different directions of the problem.

Non-entailment under AR semantics. The procedure
ARNonEntailment decides whether φ is not entailed
by K at time point p under AR semantics, and is de-
fined as follows.

1. Guess a sequence (A′i)06i6n ⊆ (Ai)06i6n of
ABoxes.

2. Verify that (A′i)06i6n is a repair of K and that
〈T , (A′i)06i6n〉, p 6|= φ.

It is common to focus on non-entailment when study-
ing the complexity of AR semantics, since this proce-
dure needs to consider only one repair instead of all
of them.

Entailment under brave semantics. The procedure
braveEntailment decides whether φ is entailed by K at
time point p under brave semantics, and is defined as
follows.

1. Guess a sequence (A′i)06i6n ⊆ (Ai)06i6n of
ABoxes.

2. Verify that (A′i)06i6n is a repair of K and that
〈T , (A′i)06i6n〉, p |= φ.

Non-entailment under IAR semantics. The procedure
IARNonEntailment decides whether φ is not entailed by
K at time point p under IAR semantics, and is defined
as follows.

1. Guess

(a) a set B = {(α1, i1), . . . , (αm, im)} ⊆ (Ai)06i6n

of timed assertions, together with
(b) m subsets of the data (A′1i )06i6n ⊆ (Ai)06i6n,

. . . , (A′mi )06i6n ⊆ (Ai)06i6n such that for ev-
ery j ∈ [1,m], α j /∈ A′ ji j

.

2. Verify that

(a) for every j ∈ [1,m], (A′ ji )06i6n is a repair
of K, and

(b) 〈T , (Ai)06i6n\B〉, p 6|= φ.

Note that m 6 |(Ai)06i6n|, Step 2a therefore has to
verify only a linear number of repairs. We show that
the algorithm decides non-entailment under IAR se-
mantics. Indeed, if for every (α j, i j) there exists a re-
pair (A′ ji )06i6n of K that does not contain (α j, i j),
then (α j, i j) is not in the intersection of the repairs
of K. Thus (Ai)06i6n\{(α1, i1), . . . , (αm, im)} is a su-
perset of the intersection (Air

i )06i6n of the repairs
of K. It follows that if 〈T , (Ai)06i6n\B〉, p 6|= φ, then
K, p 6|=IAR φ. For the other direction, assume that
K, p 6|=IAR φ, and let B = {(α1, i1), . . . , (αm, im)} =
(Ai)06i6n\(Air

i )06i6n. For each (α j, i j), there exists a
repair (A′ ji )06i6n of K that does not contain the timed
assertion (α j, i j), and 〈T , (Ai)06i6n\B〉, p 6|= φ.

Similarly to the AR case, we use this procedure for
non-entailment instead of a procedure for entailment.
Deciding non-entailment allows us to consider a lin-
ear number of repairs instead of all of them, which can
be exponentially many. However, for the IAR seman-
tics, a direct procedure for IAR entailment is useful for
showing combined complexity results for the DLs we
consider. This procedure is based on the computation
of the set of timed assertions that belong to some min-
imal inconsistent subset of the TKB.

Entailment under IAR semantics. We give an alter-
native procedure for IAR, IAREntailment, which de-
cides whether φ is entailed under IAR semantics at
time point p.

1. For every (α, j) ∈ (Ai)06i6n, check whether (α, j)
belongs to a minimal inconsistent subset of K
by asking an oracle whether there exists a T -
inconsistent set of timed assertions B ⊆ (Ai)06i6n

such that B\{(α, j)} is consistent.
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2. Call the oracle to determine whether φ is entailed
at time point p by the TKB from which all timed
assertions that belong to some minimal inconsistent
subset have been removed.

We show that the intersection of the repairs of K is ob-
tained by removing the minimal inconsistent subsets
of K. Let B ⊆ (Ai)06i6n be a minimal inconsistent
subset of K and (α, i) ∈ B. Since B\{(α, i)} is consis-
tent, (α, i) is not in the repairs that contain B\{(α, i)}.
In the other direction, if a timed assertion (α, i) does
not appear in some repair (A′i)06i6n ofK, since the re-
pairs are maximal, (A′i)06i6n∪{(α, i)} is inconsistent,
and (α, i) occurs in some minimal inconsistent subset
of K.

6. Complexity of inconsistency-tolerant BTCQ
entailment with negation in the query

In this section, we investigate the complexity of
BTCQ entailment for general BTCQs, that is, BTCQs
that may contain negation. For this, we first establish
the complexities of consistency checking and repair
recognition, i.e., the task of deciding whether a se-
quence of ABoxes is a repair of K. We then build on
these results to prove the complexity of inconsistency-
tolerant temporal query entailment using the general
algorithms described in the last section, while showing
matching lower bounds. We thus obtain the following
theorem.

Theorem 6.1. The results in Figure 3 hold.

6.1. Consistency checking and repair recognition
for TKBs

We reduce these tasks to the atemporal case by
defining an atemporal KB K̃ based on K. For K =
〈T , (Ai)06i6n〉, K̃ = 〈T̃ , Ã〉 is defined in Figure 4. We
first show a correspondence between the models of K
that respect rigid predicates and the models of K̃.

Lemma 6.2. K is consistent iff K̃ is consistent.

Proof. (⇐) We construct a function temp from the
models of K̃ to those ofK that respect rigid predicates.
Assume K̃ is consistent, and let Ĩ be a model of K̃. We
define temp(Ĩ) = J = (Ii)i>0 as follows. For every
i ∈ [0, n], we set

– aIi = aĨ for every a ∈ NI,

– AIi = AĨ for every A ∈ NRC,
– RIi = RĨ for every R ∈ NRR,
– AIi = AĨi for every A ∈ NC\NRC, and
– RIi = RĨi for every R ∈ NR\NRR,

and for every i > n, we set

– aIi = aĨ for every a ∈ NI,
– AIi = AĨ for every A ∈ NRC,
– RIi = RĨ for every R ∈ NRR,
– AIi = AĨn+1 for every A ∈ NC\NRC, and
– RIi = RĨn+1 for every R ∈ NR\NRR.

We show that the sequence temp(Ĩ) of interpreta-
tions is a model of K that respects rigid predicates.

1. For every time-point i ∈ [0, n], Ii is a model of Ai.
If A(a) ∈ Ai, then either A ∈ NRC and A(a) ∈ Ã,
or A /∈ NRC and Ai(a) ∈ Ã. In both cases, aIi =

aĨ ∈ AIi . The same argument holds for the role
assertions in Ai.

2. For every i ∈ [0, n + 1], Ii is a model of T .
Slightly abusing notation and viewing an interpre-
tation as an infinite set of assertions, we denote
by RenameNotRig(Ii, i) the interpretation obtained
from Ii by renaming every non-rigid predicate X by
Xi. The interpretations of all rigid predicates and of
all Ai and Ri are the same in RenameNotRig(Ii, i)
and Ĩ. Since Ĩ is a model of T̃ , and T̃ does not
contain any axiom that involves two non-rigid pred-
icates Xi and X j with i 6= j, RenameNotRig(Ii, i) is
a model of T̃ . Moreover RenameNotRig(T , i) ⊆ T̃ ,
and therefore RenameNotRig(Ii, i) is a model of
RenameNotRig(T , i). Hence, Ii is a model of T .

3. For every i > n + 1, Ii = In+1 is a model of T .
4. For every i > 0, for every A ∈ NRC , AIi = AĨ ,

and for every R ∈ NRC, RIi = RĨ . Therefore, J
respects rigid predicates.

We obtain that temp(Ĩ) is a model of K that respects
rigid predicates.

(⇒) For the other direction, we construct a function
atemp from the models of K that respect rigid pred-
icates to those of K̃. Assume K is consistent, and let
J = (Ii)i>0 be a model of K that respects rigid predi-
cates. We define atemp(J ) = Ĩ as follows.

– aĨ = aI0 (= aIi for every i > 0) for every a ∈ NI,
– AĨ = AI0 for every A ∈ NRC,
– RĨ = RI0 for every R ∈ NRR,
– AĨi = AIi for every A ∈ NC\NRC and i ∈ [0, n], and
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Data complexity Combined complexity

classical AR IAR brave classical AR IAR brave

EL⊥

NRC = NRR = ∅ P coNP coNP NP PSPACE PSPACE PSPACE PSPACE

NRC 6= ∅,NRR = ∅ coNP coNP coNP Σp
2 PSPACE PSPACE PSPACE PSPACE

NRC 6= ∅,NRR 6= ∅ coNP coNP coNP Σp
2 CONEXPTIME CONEXPTIME CONEXPTIME CONEXPTIME

DL-LiteR

NRC = NRR = ∅ ALOGTIME coNP in P in NP PSPACE PSPACE PSPACE PSPACE

NRC 6= ∅,NRR = ∅ ALOGTIME coNP in P NP PSPACE PSPACE PSPACE PSPACE

NRC 6= ∅,NRR 6= ∅ ALOGTIME coNP in P NP PSPACE PSPACE PSPACE PSPACE

Figure 3. Data [left] and combined [right] complexity of BTCQ entailment for BTCQs with negations. All complexities are tight, except those
preceded by “in”, which are upper bounds. The results for the classical semantics are shown in [23] for EL⊥ and in [6] for DL-LiteR.

T̃ =

n+1⋃
i=0

RenameNotRig(T , i)

Ã =

n⋃
i=0

RenameNotRig(Ai, i)

where for every set of axioms O, the function
RenameNotRig(O, i) substitutes every non-rigid
predicate X by Xi in every axiom α ∈ O.

Figure 4. KB K̃ = 〈T̃ , Ã〉 representing K = 〈T , (Ai)06i6n〉.

– RĨi = RIi for every R ∈ NR\NRR and i ∈ [0, n].

Again, we show that Ĩ is a model of K̃ by considering
the ABox and the TBox separately.

1. Ĩ is a model of Ã. If A(a) ∈ Ã with A ∈ NRC,
then aĨ = aI0 ∈ AĨ , and if Ai(a) ∈ Ã for some
A /∈ NRC, then A(a) ∈ Ai and aĨ = aIi ∈ AĨ . The
situation is the same for the role assertions in Ã.

2. Ĩ is a model of T̃ . If we rename the non-rigid
predicates, RenameNotRig(Ii, i) coincides with Ĩ
on the interpretation of all rigid predicates and
all Ai and Ri. Since each Ii is a model of T , each
interpretation RenameNotRig(Ii, i) is a model of
RenameNotRig(T , i), and since T̃ does not contain
any axiom that involves two non-rigid predicates Xi
and X j with i 6= j, each RenameNotRig(Ii, i) is a
model of T̃ . It follows that Ĩ is a model of T̃ .

We thus obtain a direct correspondence between the
models of K and those of K̃, and that K is satisfiable
iff K̃ is satisfiable.

It follows that consistency checking of TKBs can be
polynomially reduced to consistency checking of KBs.

Lemma 6.3. If for a DL L, consistency checking of L-
KBs is in P, then consistency checking of L-TKBs is in
P as well.

Proof. By Lemma 6.2, the TKB K is consistent iff the
KB K̃ is consistent. If consistency checking is in P for
L-KBs, the consistency of K can then be checked in
time polynomial in the size of T̃ and Ã. Since the size
of T̃ is polynomial in |T | and n, and the size of Ã
is at most the size of (Ai)06i6n, we obtain that TKB
consistency checking is in P.

We next show that repair recognition can be done
with a polynomial number of consistency checks.

Lemma 6.4. If for a DL L, consistency checking of
L-TKBs is in P, then repair recognition, i.e., deciding
whether a sequence of ABoxes (A′i)06i6n is a repair
of K, is in P.

Proof. Assume consistency checking of L-TKBs is
in P. Then, we can verify in P whether a sequence of
ABoxes (A′i)06i6n is a repair of K as follows.

1. For every i, check that A′i ⊆ Ai.
2. Check that (A′i)06i6n is T -consistent.
3. For every (α, j) ∈ (Ai)06i6n\(A′i)06i6n, check that

(A′i)06i6n ∪ {(α, j)} is T -inconsistent.

Note that Lemmas 6.3 and 6.4 apply to DL-LiteR
and EL⊥ alike.
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6.2. Combined complexity

We are now ready to establish the complexity of
BTCQ entailment under inconsistency-tolerant seman-
tics. We start with the combined complexity. The fol-
lowing upper bounds follow straightforwardly from
the procedures described in Section 5.

Proposition 6.5. If repair recognition is in P and
BTCQ entailment under the classical semantics is in
PSPACE w.r.t. combined complexity, then BTCQ en-
tailment under AR, IAR, and brave semantics is in
PSPACE w.r.t. combined complexity.

Proof. If verifying that a sequence of ABoxes is
a repair is in P and verifying the entailment, and
thus also verifying the non-entailment, of a BTCQ
is in PSPACE, then the procedures ARNonEntailment,
IARNonEntailment and braveEntailment all run in
NPSPACE=PSPACE.

Proposition 6.5 applies to DL-LiteR and EL⊥ in
all cases except for EL⊥ with rigid roles, for which
BTCQ entailment under classical semantics is CO-
NEXPTIME-hard [23].

Proposition 6.6. BTCQ entailment from an EL⊥-TKB
under AR, IAR, and brave semantics is in CONEXP-
TIME w.r.t. combined complexity, even if NRR 6= ∅.

Proof. For the AR and IAR semantics, we modify the
procedures ARNonEntailment and IARNonEntailment
described in Section 5 so that they also guess a certifi-
cate of the non-entailment of φ in the first step. Then, in
the second step, the non-entailment of φ can be decided
by simply verifying this certificate. The certificate can
be checked in EXPTIME, since the non-entailment of φ
can be decided in NEXPTIME.

For the brave semantics’ upper bound, we give a
NEXPTIME procedure to decideK, p 6|=brave φ. For ev-
ery subset (A′i)06i6n of (Ai)06i6n, guess either “not
a repair” or a certificate of the non-entailment of φ
from 〈T , (A′i)06i6n〉 at time point p. Note that there
are 2|(Ai)06i6n| such subsets. For every such subset,
verify in EXPTIME whether it is indeed not a repair, or
whether 〈T , (A′i)06i6n〉, p 6|= φ.

The matching PSPACE and CONEXPTIME com-
bined complexity lower bounds for EL⊥ and DL-LiteR
follow from the consistent case (cf. Section 2).

6.3. Data complexity for EL⊥-TKBs

We now prove the data complexity results, starting
with EL⊥. We first consider the case without rigid
predicates.

Proposition 6.7. BTCQ entailment from an EL⊥-TKB
with NRC = NRR = ∅ is

– coNP-complete w.r.t. data complexity under AR and
IAR semantics, and

– NP-complete w.r.t. data complexity under brave se-
mantics.

Proof. The upper bounds follow from the proce-
dures described in Section 5: since verifying that a
sequence of ABoxes is a repair as well as verify-
ing the non-entailment and entailment of a BTCQ
take polynomial time w.r.t. data complexity, the pro-
cedures ARNonEntailment, IARNonEntailment, and
braveEntailment run in NP w.r.t. data complexity. The
lower bounds follow from the atemporal case.

Next, we prove the complexity of BTCQ entailment
with rigid predicates. The following proposition estab-
lishes the upper bounds for the case where both rigid
concepts and rigid roles are allowed.

Proposition 6.8. BTCQ entailment from an EL⊥-TKB
with NRC 6= ∅ and NRR 6= ∅ is

– in coNP w.r.t. data complexity under AR and IAR
semantics, and

– in Σp
2 w.r.t. data complexity under brave semantics.

Proof. For AR and IAR semantics, we modify the pro-
cedures described in Section 5 to also guess a certifi-
cate for the non-entailment of φ. This certificate can
be checked in P, since the non-entailment of φ can be
decided in NP. The upper bound for brave semantics
is obtained using the procedure braveEntailment de-
scribed in Section 5.

We show that these results are tight even if we only
have rigid concepts.

Proposition 6.9. BTCQ entailment from an EL⊥-TKB
with NRC 6= ∅ is

– coNP-hard w.r.t. data complexity under AR and IAR
semantics, and

– Σp
2-hard w.r.t. data complexity under brave seman-

tics.



C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 15

Proof (Sketch). The lower bounds for AR and IAR se-
mantics follow from the atemporal case. For brave se-
mantics, we show that the complement of brave TCQ
entailment is Πp

2-hard by reduction from QBF2,∀.
Let Φ = ∀x1 . . . xm∃y1 . . . yr ϕ be a QBF2,∀-formula,

where ϕ =
∧h

i=0 `
0
i ∨ `1i ∨ `2i is a 3-CNF formula over

the propositional variables {x1, . . . , xm, y1, . . . , yr}.
Based on Φ, define the TKB K = 〈T , (Ai)06i63h+2〉
and the TCQ φ as follows, where NRC = {T}.

T = {∃Pos.T v Sat,∃Neg.F v Sat,

∃FromPos.Sat v T,∃FromNeg.Sat v F,

∃FromY.Sat v T, T u F v ⊥,

T u ∃ValY.T v ⊥}

φ =¬�b(NotFirst(c) ∨ Sat(c)∨

#Sat(c) ∨##Sat(c))

For each clause `0i ∨`1i ∨`2i , i.e., for every i ∈ [0, h], we
define the following three ABoxes A3i+k (0 6 k 6 2):

A3i+0 =B ∪ B3i+0

A3i+k =B ∪ B3i+k ∪ {NotFirst(c)}, 1 6 k 6 2,

where

B ={T(x j), F(x j) | 1 6 j 6 m}∪

{ValY(y j,¬y j), | 1 6 j 6 r}

B3i+k ={Pos(c, x j), FromPos(x j, c)} if `k
i = x j

B3i+k ={Neg(c, x j), FromNeg(x j, c)} if `k
i = ¬x j

B3i+k ={FromY(y j, c)} if `k
i = y j

B3i+k ={FromY(¬y j, c)} if `k
i = ¬y j.

We use the following claim, which we prove in de-
tail in the appendix, and give the intuition behind the
construction here.

Claim. Φ is valid iff K, 0 6|=brave φ.

Recall that (i) Φ is valid iff for every valuation of
the x j, there exists a valuation of the y j that satisfies ϕ,
and that (ii) K, 0 6|=brave φ iff every repair of K has a
model in which φ does not hold. The correspondence
between valuations of variables of Φ and models of re-
pairs of K is ensured by B. Intuitively, the rigid con-
cept T is used to encode that a variable is true. The dis-
joint concept F encodes that a variable is false and is

used to enforce that the repairs of K correspond to the
valuations of the x j. The role ValY connects every pair
of y j,¬y j, which ensures together with the inclusion
T u ∃ValY.T v ⊥ that no model of a repair of K as-
signs both y j and ¬y j to the rigid concept T. As a con-
sequence, each model of a repair of K corresponds to
a valuation of the y j.

Each clause `0i ∨ `1i ∨ `2i is represented by the three
consecutive ABoxes A3i+0,A3i+1 and A3i+2, which
each encode a literal of the clause in the B3i+k part.
The concept NotFirst is used to indicate that the literal
represented is not the first of the clause. The concept
Sat encodes the satisfaction of a clause, and the query
expresses that it is not the case that every clause is sat-
isfied (the disjunction is true iff the clause is satisfied
by at least one of its three literals). Finally, the TBox
expresses the conditions under which a clause is satis-
fied. In particular, the first two inclusions enforce that
a clause is always satisfied if it contains a literal x j

(resp. ¬x j) assigned to true (resp. to false) in the re-
pair, and the next three inclusions ensure that a clause
is satisfied only if it contains a literal which is assigned
to true (for the ¬x j, since the literals x j and ¬x j are
represented with only one individual x j, the condition
is that x j is assigned to false).

6.4. Data complexity for DL-LiteR-TKBs

It remains to show the data complexity results for
DL-LiteR. For AR and brave semantics, the upper
bounds follow from the guess and check procedures
described in Section 5. (Recall that the complexity of
BTCQ entailment under classical semantics is ALOG-
TIME-complete for this DL, and thus in P.)

The lower bound for AR follows from the atempo-
ral case, which establishes a tight coNP-bound even if
NRC = NRR = ∅.

In contrast, for brave semantics, BCQ entailment is
tractable in the atemporal setting. However, we can-
not directly extend this result to the temporal case. In-
deed, the data complexity upper bound for brave CQ
answering in DL-LiteR relies on the fact that the size
of the minimal sets of assertions that support the query
is bounded by the query size. This is not true in the
temporal setting, as can already be seen by the query
φ = �−A(a), whose entailment at time point p can
depend on p assertions in the TKB. In fact, we show
that in the presence of rigid concepts, brave BTCQ en-
tailment becomes NP-hard.

Proposition 6.10. If NRC 6= ∅, then brave BTCQ en-
tailment from DL-LiteR-TKBs is NP-hard w.r.t. data
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complexity. This already holds for BTCQs that do not
contain negation.

Proof. We show NP-hardness of brave BTCQ entail-
ment from DL-LiteR-TKBs by reduction from SAT.
Let c0 ∧ ... ∧ cn be a CNF formula over variables
x1, ..., xm. We define the following problem of BTCQ
entailment under brave semantics, with two rigid con-
cepts T and F. Let K = 〈T , (Ai)06i6n〉 be such that:

T = {∃Pos v Sat, ∃Neg v Sat,

∃Pos− v T, ∃Neg− v F, T v ¬F}

Ai = {Pos(a, x j) | x j ∈ ci} ∪

{Neg(a, x j) | ¬x j ∈ ci} for 0 6 i 6 n

Let φ = �−Sat(a). We show that c0 ∧ ... ∧ cn is sat-
isfiable iff K, n |=brave φ. Note that φ does not con-
tain negation. Indeed, since T and F are rigid, a repair
(A′i)06i6n of K is such that each x j has either only
Pos or only Neg incoming edges in (A′i)06i6n, i.e., x j

occurs either only in assertions of the form Pos(a, x j)
or only in assertions of the form Neg(a, x j). We can
thus define a valuation ν of the variables such that
ν(x j) = true if (A′i)06i6n does not contain a timed as-
sertion of the form (Neg(c, x j), k), and ν(x j) = false
otherwise. The clause ci is satisfied by ν iff there ex-
ists x j such that either x j ∈ ci and ν(x j) = true or
¬x j ∈ ci and ν(x j) = false, that is, iff there exists x j

such that either Pos(a, x j) ∈ A′i or Neg(a, x j) ∈ A′i ,
which holds exactly iff 〈T , (A′i)06i6n〉, i |= Sat(a). It
follows that c0 ∧ ... ∧ cn is satisfiable iff there exists a
repair (A′i)06i6n ofK that entails φ at time point n.

For the case NRC = NRR = ∅, we have an ALOG-
TIME lower bound from the classical semantics, and
it is open whether the NP upper bound for brave se-
mantics can be improved. The challenge in obtaining
a polynomial upper bound for BTCQ entailment under
brave semantics lies intuitively in the non-trivial inter-
action between the brave semantics and the negation
in the query (see also end of Section 8). While under
brave semantics, it is more natural to focus on the pos-
itive problem of query entailment (one has to construct
some subset of a repair), for entailment of BTCQs, it
is more natural to focus on the negative problem of
query non-entailment (one tries to find some counter-
example for the entailment of the query [6]). While
for both problems polynomial algorithms have been
found, naive combinations of these approaches are not
possible. However, since we did not manage to prove

an NP lower bound either, it might still be possible to
solve this problem in polynomial time.

In contrast, for IAR semantics, we can give a
tractable upper bound even if NRR 6= ∅. The reason is
that, in DL-LiteR-TKBs, the size of a minimal incon-
sistent subset is at most two, as in the atemporal case.

Fact 6.11 ([29], Lemma 1). Due to the DL-LiteR syn-
tax, the following holds: for every DL-LiteR TBox T ,
the size of a minimal T -inconsistent set of (timed) as-
sertions is at most two.

Therefore, we can always compute the intersection
of all repairs in polynomial time.

Proposition 6.12. BTCQ entailment from a DL-LiteR-
TKB under IAR semantics is in P w.r.t. data complexity,
even if NRR 6= ∅ and NRC 6= ∅.

Proof. The size of the minimal T -inconsistent subsets
of (Ai)06i6n is bounded by 2. We can thus skip the
first step of the procedure IAREntailment described in
Section 5 and compute the minimal inconsistent sub-
sets in P by checking the consistency of every timed
assertion and pair of timed assertions (with a quadratic
number of consistency checks), and then verify the en-
tailment of the query in P w.r.t. data complexity over
the TKB from which they have been removed.

7. BTCQ entailment under classical semantics
without negation in the query

This section completes the complexity picture for
BTCQ entailment under the classical semantics by in-
vestigating the case where TCQs do not use negation.
We show that the absence of negation in the query in-
duces a complexity drop in several cases. These results
are based on a more general property: we show that for
any DL L, if L has the canonical model property for
CQ answering over KBs, then L has also the canoni-
cal model property for TCQ answering over TKBs for
TCQs without negation. We use the canonical model
to prove that for the classical semantics, the complex-
ity upper bounds of the atemporal case transfer to the
temporal case.

We first show that BCQ entailment from a TKB K
can be reduced to BCQ entailment from the KB K̃ de-
fined Section 6, Figure 4. For this, we define a simi-
lar transformation for BCQs as we did for TKBs. Let
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q = ∃~y.ψ(~y) be a BCQ and p > 0 be a time point.
Consider

q̃p = RenameNotRig(q, p)

where RenameNotRig(q, p) replaces every non-rigid
predicate X in q by Xp if p 6 n, and by Xn+1 other-
wise.

Lemma 7.1. K, p |= q iff K̃ |= q̃p.

Proof. The following proof is written for the case
where p ∈ [0, n + 1]. For the case p > n + 1, p is
replaced by n + 1 in the predicates names.

Assume that K, p |= q, and let Ĩ be a model of K̃.
Let J = (Ii)i>0 = temp(Ĩ) be the correspond-
ing model of K that respects rigid predicates, as de-
fined in the proof for Lemma 6.2. For any BCQ ψ
without existential variables, we denote by atoms(ψ)
the set of (ground) atoms of ψ. Since Ip |= q, there
then exists a mapping π from the set of constants and
variables that appear in ψ into ∆ such that for every
X(~d) ∈ atoms(ψπ), where ψπ is the BCQ obtained by
replacing the terms of ψ by their image by π, we have
~d ∈ XIp . It follows that for every X(~d) ∈ atoms(ψπ),
if X is rigid then ~d ∈ XĨ , and otherwise ~d ∈ XĨp .
Thus, Ĩ |= RenameNotRig(q, p), i.e., Ĩ |= q̃p. Hence
K̃ |= q̃p.

For the other direction, assume that K̃ |= q̃p

and let J = (Ii)i>0 be a model of K that re-
spects rigid predicates. Let Ĩ = atemp(J ) be as
defined in the proof for Lemma 6.2. Since Ĩ |=
q̃p, there exists a mapping π from the set of con-
stants and variables that appear in ψ into ∆ such
that for every X(~d) ∈ atoms(RenameNotRig(ψπ, p)),
we have ~d ∈ XĨ . It follows that for every X(~d) ∈
atoms(RenameNotRig(ψπ, p)) such that X is rigid,
~d ∈ XIp . Furthermore, we have ~d ∈ XIp for every
Xp(~d) ∈ atoms(RenameNotRig(ψπ, p)) such that X is
not rigid. Thus, Ip |= q, and we obtain K, p |= q.

Moreover, the size of q̃p is the same as q. We thus
obtain the following lemma.

Lemma 7.2. If BCQ entailment from an L-KB is in P
w.r.t. KB complexity, respectively in NP w.r.t. combined
complexity, then so is BCQ entailment from an L-TKB.

Proof. If deciding whether K̃ |= q̃p is polynomial both
in |T̃ | and in |Ã|, then it is polynomial in |T | and

|(Ai)06i6n|. It follows that deciding whetherK, p |= q
is in P w.r.t. KB complexity.

Moreover, if deciding whether K̃ |= q̃p is in NP
w.r.t. |T̃ |, |Ã| and |q̃p|, then verifying a certificate
that K̃ |= q̃p can be done in polynomial time w.r.t.
|T̃ |, |Ã| and |q̃p|, so in polynomial time w.r.t. |T |, n,
|(Ai)06i6n| and |q|. It follows that deciding whether
K, p |= q is in NP w.r.t. combined complexity.

Next, we define the notion of canonical model prop-
erty for BCQ entailment and for entailment of BTCQs
without negation.

Definition 7.3 (Canonical model property). A DL L
has the canonical model property for BCQ entailment
iff for every consistent L-KB 〈T ,A〉, there exists a
model I〈T ,A〉 such that for every BCQ q, 〈T ,A〉 |= q
iff I〈T ,A〉 |= q. We call I〈T ,A〉 the canonical model of
KB 〈T ,A〉.

A DL L has the canonical model property for en-
tailment of BTCQs without negation iff for any L-TKB
〈T , (Ai)06i6n〉, there exists a model J〈T ,(Ai)06i6n〉
such that for every BTCQ without negation φ and ev-
ery time point p, holds that

〈T , (Ai)06i6n〉, p |= φ iff J〈T ,(Ai)06i6n〉, p |= φ.

We call this model J〈T ,(Ai)06i6n〉 the canonical model
of TKB 〈T , (Ai)06i6n〉.

Note that it is justified to speak of the canonical
model of a KB or TKBK because such a model can be
homomorphically mapped into any other model of K.
Indeed, for every assertion α built over NI, NC and NR,
if α holds in the canonical model ofK then it also holds
in every model of K.

The following theorem gives the relation between
the canonical model property for BCQ entailment and
the one for BTCQ entailment, and shows why the pres-
ence or absence of negation in the query matters.

Theorem 7.4. If L has the canonical model property
for BCQ entailment, then L also has the canonical
model property for entailment of BTCQs without nega-
tion.

Proof (Sketch). Let ĨK̃ be the canonical model of K̃
and JK = (Ii)i>0 = temp(ĨK̃). We show that JK is
the canonical model ofK for BTCQs without negation,
that is, for every BTCQ φ that does not contain any
negation, K, p |= φ iff JK, p |= φ.

Since JK is a model of K that respects rigid predi-
cates, if K, p |= φ then JK, p |= φ. For the other di-
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rection, we show in the appendix by induction on the
structure of φ that if JK, p |= φ, then K, p |= φ. The
interesting case is when φ is a BCQ. For a BCQ q, by
Lemma 7.1, K, p |= q iff K̃ |= q̃p, which is exactly the
case iff ĨK̃ |= q̃p. By construction of JK, it follows
that K, p |= q iff JK, p |= q.

Remark 7.5. If φ contains negation, the preceding ar-
gument fails and JK is not a canonical model for TCQ
answering, i.e., JK, p |= ¬φ does not guarantee that
J , p 6|= φ for every model J that respects rigid pred-
icates. As an example, consider the empty TKB, i.e.
T = ∅ and Ai = ∅ for every i ∈ [0, n]. We have
JK, 0 6|= ∃x.A(x), but we can easily construct a model
J for 〈T , (Ai)06i6n〉 such that J , 0 |= ∃x.A(x), so
that K 6|= ¬∃x.A(x).

The following proposition is a direct consequence
of the existence of a canonical model for entailment of
BTCQs without negation.

Proposition 7.6. Assume L has the canonical model
property for BCQ entailment. Then, for every L-
TKBs K and K′, if K and K′ coincide for BCQ entail-
ment, thenK andK′ coincide for entailment of BTCQs
without negation. I.e., if for every time point p and
BCQ q, K, p |= q iff K′, p |= q, then for every time
point p and BTCQ φ without negation, K, p |= φ iff
K′, p |= φ.

Proof (Sketch). We show this result in the appendix by
induction on the structure of φ. We use the fact that
by Theorem 7.4, L has the canonical model property
for entailment of BTCQs without negation, to apply
the definitions of BTCQ satisfaction of Table 1 to the
canonical models of K and K′.

We now prove a central proposition for TCQ an-
swering over TKBs in DLs that have the canoni-
cal model property for entailment of BTCQs with-
out negation. It amounts to reducing the entailment of
BTCQs with unbounded future operators to the entail-
ment of BTCQs with only bounded future operators.
These can then be answered by considering only a fi-
nite number of time points.

Let K∗ be the following TKB:

K∗ =〈T , (Ai)06i6n ∪ (An+1)〉 where

An+1 ={A(a) | A ∈ NRC, A(a) ∈ Ã}∪

{R(a, b) | R ∈ NRR,R(a, b) ∈ Ã}.

Proposition 7.7. If L has the canonical model prop-
erty for BCQ entailment, the relations in Table 2 hold
for any L-TKB K.

Proof. It is easy to see that JK∗ = JK holds by con-
struction. We obtain that K, p |= φ iff K∗, p |= φ for
every BTCQ without negation φ.

All relations in Table 2 but those for the operators
�, ♦ and U are straightforwardly obtained by apply-
ing the definitions of BTCQ satisfaction of Table 1 to
this canonical model. To show the three remaining re-
lations, we rely on the fact that JK∗ is such that for
every i > n, Ii = In+1, and there are no past opera-
tors nested under unbounded future operators by def-
inition of TCQs. Indeed, if a BTCQ φ1 does not con-
tain any past operators and i > n, JK∗ , i |= φ1 iff
JK∗ , n + 1 |= φ1. Hence we can show the follow-
ing, from which the relations from Table 2 then follow
straightforwardly.

– K∗, p |= �φ1 iff for every k > p, K∗, k |= φ1.
Hence K∗, p |= �φ1 iff ∀k, p 6 k 6 n, K∗, k |= φ1

and K∗, n + 1 |= φ1.
– K∗, p |= ♦φ1 iff there exists k > p, K∗, k |= φ1.

Hence K∗, p |= ♦φ1 iff ∃k, p 6 k 6 n, K∗, k |= φ1

or K∗, n + 1 |= φ1.
– K∗, p |= φ1U φ2 iff ∃k > p, K∗, k |= φ2 and ∀ j,

p 6 j < k,K∗, j |= φ1. Hence K∗, p |= φ1U φ2

iff ∃k, p 6 k 6 n, K∗, k |= φ2 and ∀ j, p 6 j <
k,K∗, j |= φ1, or K∗, n + 1 |= φ2 and ∀ j, p 6 j <
n + 1,K∗, j |= φ1.

In the next theorem, we transfer complexity upper
bounds from the atemporal case to the temporal case,
even with rigid predicates, for queries without nega-
tion and DLs that have the canonical model property
for BCQ entailment. We consider DLs for which BCQ
entailment is in P w.r.t. KB complexity and in NP w.r.t.
combined complexity, such as DL-LiteR and EL⊥.

Theorem 7.8. If L has the canonical model property
for BCQ entailment and is such that BCQ entailment
from KBs is in P w.r.t. KB complexity, respectively in
NP w.r.t. combined complexity, then the entailment of
BTCQs without negation from L-TKBs is in P w.r.t. KB
complexity, respectively in NP w.r.t. combined com-
plexity.

Proof. By Lemma 7.2, it is possible to decide whether
K∗, p |= q in P w.r.t. KB complexity for any BCQ q.
Based on this, we can show by induction on the struc-
ture of φ that K∗, p |= φ can be decided in P w.r.t.
KB complexity. Assume that for two BTCQs φ1, φ2
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Table 2
Entailment under classical semantics for DLs with the canonical
model property for BCQ entailment

φ K, p |= φ iff K∗, p |= φ iff

∃~y.ψ(~y) K∗, p |= ∃~y.ψ(~y)
φ1 ∧ φ2 K∗, p |= φ1 and K∗, p |= φ2

φ1 ∨ φ2 K∗, p |= φ1 or K∗, p |= φ2

#φ1 K∗, p + 1 |= φ1

 b φ1 p < n implies K∗, p + 1 |= φ1

#−φ1 p > 0 and K∗, p− 1 |= φ1

 −φ1 p > 0 implies K∗, p− 1 |= φ1

�φ1 ∀k, p 6 k 6 n + 1, K∗, k |= φ1

�bφ1 ∀k, p 6 k 6 n, K∗, k |= φ1

�−φ1 ∀k, 0 6 k 6 p, K∗, k |= φ1

♦φ1 ∃k, p 6 k 6 n + 1, K∗, k |= φ1

♦bφ1 ∃k, p 6 k 6 n, K∗, k |= φ1

♦−φ1 ∃k, 0 6 k 6 p, K∗, k |= φ1

φ1U φ2 ∃k, p 6 k 6 n + 1, K∗, k |= φ2

and ∀ j, p 6 j < k,K∗, j |= φ1

φ1Ub φ2 ∃k, p 6 k 6 n, K∗, k |= φ2 and ∀ j, p 6 j < k,K∗, j |= φ1

φ1S φ2 ∃k, 0 6 k 6 p, K∗, k |= φ2 and ∀ j, k < j 6 p,K∗, j |= φ1

and any p > 0, it is possible to decide in P whether
K∗, p |= φi. Using the relations in Table 2, we can
prove the following.

– K∗, p |= φ1 ∧ φ2 iff K∗, p |= φ1 and K∗, p |= φ2.
Therefore, deciding whetherK∗, p |= φ1∧φ2 can be
done in P by checking that K∗, p |= φ1 and K∗, p |=
φ2.

– K∗, p |= φ1 ∨ φ2 iff K∗, p |= φ1 or K∗, p |= φ2.
Therefore, deciding whether K∗, p |= φ1 ∨ φ2 can
be done in P by deciding whether K∗, p |= φ1 and
K∗, p |= φ2 and checking that at least one is true.

– K∗, p |= #φ1 iff K∗, p + 1 |= φ1. Therefore, de-
ciding whether K∗, p |= #φ1 can be done in P by
checking whether K∗, p + 1 |= φ1.

– K∗, p |=  b φ1 iff p < n implies K∗, p + 1 |=
φ1. Therefore, deciding whether K∗, p |=  b φ1

can be done in P by checking whether p > n or
K∗, p + 1 |= φ1.

– We show in the same way that we can decide in P
whetherK∗, p |= #−φ1 and whetherK∗, p |=  −φ1.

– K∗, p |= �φ1 iff for every k, p 6 k 6 n+1,K∗, k |=
φ1. Therefore, deciding whether K∗, p |= �φ1 can
be done in P by checking for each p 6 k 6 n + 1
that K∗, k |= φ1.

– We show in the same way that we can decide in P
whetherK∗, p |= �bφ1 and whetherK∗, p |= �−φ1.

– K∗, p |= ♦φ1 iff there exists k, p 6 k 6 n + 1,
K∗, k |= φ1. Therefore, deciding whether K∗, p |=
♦φ1 can be done in P by deciding for each p 6 k 6

n + 1 whether K∗, k |= φ1, and checking that this is
true for at least one k.

– We show in the same way that we can decide in P
whetherK∗, p |= ♦bφ1 and whetherK∗, p |= ♦−φ1.

– K∗, p |= φ1U φ2 iff there exists k, p 6 k 6 n + 1,
K∗, k |= φ2, and for every j, p 6 j < k, K∗, j |= φ1.
Therefore, deciding whether K∗, p |= φ1U φ2 can
be done in P by deciding for each p 6 k 6 n + 1
whether K∗, k |= φ1 and whether K∗, k |= φ2, and
checking that the condition holds.

– We show in the same way that we can decide in P
whether K∗, p |= φ1Ub φ2 and whether K∗, p |=
φ1S φ2.

The number of subqueries in φ is linear w.r.t. the size
of φ, and independent from the TKB size. It follows
that the total number of polynomial checks is also
polynomially bounded. Therefore, we obtain that for
every BTCQ φ without negation, K∗, p |= φ can be
decided in P w.r.t. the size of K∗. Since K, p |= φ iff
K∗, p |= φ and the size of K∗ is polynomial in the
size of K, deciding whether K, p |= φ is in P w.r.t. KB
complexity.

For the NP membership of entailment of BTCQs
without negation w.r.t. combined complexity, we de-
scribe how to guess a certificate that K, p |= φ that can
be checked in P. This certificate consists of:

– a sequence of functions (νi)06i6n+1 that associate to
each BCQ q of φ true or false, and

– for each BCQ q of φ and time point i ∈ [0, n + 1]
such that νi(q) = true: a certificate that q̃i =

RenameNotRig(q, i) is entailed from K̃.

There are polynomially many pairs of a time point and
a BCQ, and the certificate that q̃i is entailed from K̃
can be checked in polynomial time, since BCQ entail-
ment is in NP. Moreover, we can show that, since φ
contains neither negation nor past operators nested un-
der unbounded future operators, deciding whether the
propositional abstraction of φ is satisfied by the se-
quence of truth assignments that assign the proposi-
tional abstraction of q to νi(q) for every i ∈ [0, n + 1]
and to νn+1(q) for every i > n + 1 can be done in
polynomial time w.r.t. the size of the query and the
length of the sequence of ABoxes. Indeed, identify φ
and the BCQs in φ with their propositional abstrac-
tions, and denote by w = w0w1...wnwn+1... the trace
over 2BCQ(φ), where BCQ(φ) denotes the set of BCQs
of φ, such that wi = {q | νi(q) = true} for i 6 n + 1,
and wi = wn+1 for i > n + 1. Since wi = wn+1, for
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i > n +1, we can show similar relations as those in Ta-
ble 2 for the entailment of LTL formulas without past
operators nested under unbounded future operators or
negations from w. We can then use a similar induc-
tion as we used in the proof for the data complexity to
show that w, p |= φ can be decided by checking which
queries are in wi. For this, the number of queries to be
tested is polynomial in n and the size of φ.

As a consequence of Theorems 7.4 and 7.8, and
since EL⊥ and DL-LiteR have the canonical model
property for BCQ entailment (cf. [11] for EL⊥, and
[44] for DL-LiteR), we obtain the following theorem.

Theorem 7.9. For DL-LiteR and EL⊥, entailment of
BTCQs without negation is in P w.r.t. KB complexity
and in NP w.r.t. combined complexity, even if NRR 6= ∅.

Besides these results for DL-LiteR and EL⊥, The-
orems 7.4 and 7.8 hold for all Horn-DLs satisfy-
ing the complexity constraints in the precondition of
Theorem 7.8. For instance, they also hold for DL-
LiteNhorn [45].

8. Complexity of inconsistency-tolerant BTCQ
entailment without negation in the query

The following proposition gives general complex-
ity upper bounds for BTCQ entailment under the AR,
IAR, and brave semantics. By Theorem 7.9, they hold
in particular for L = EL⊥ and L = DL-LiteR, pro-
vided no negation is used in the TCQs.

Proposition 8.1. If L is such that consistency check-
ing of a L-TKB is in P and BTCQ entailment from a
L-TKB is in P w.r.t. data complexity and in NP w.r.t.
combined complexity, then BTCQ entailment from aL-
TKB

– under AR semantics is in coNP w.r.t. data complexity
and in Πp

2 w.r.t. combined complexity;
– under IAR semantics is in coNP w.r.t. data complex-

ity and in ∆p
2[O(log n)] w.r.t. combined complexity;

– under brave semantics is in NP w.r.t. data complex-
ity and in NP w.r.t. combined complexity.

Proof. The data complexities follow from the proce-
dures described in Section 5: since verifying that a se-
quence of ABoxes is a repair as well as non-entailment
and entailment of a BTCQ can be decided in polyno-
mial time, ARNonEntailment, IARNonEntailment and
braveEntailment take non-deterministic polynomial
time.

For the combined complexity of brave BTCQ entail-
ment, a certificate that 〈T , (A′i)06i6n〉, p |= φ can be
guessed together with (A′i)06i6n, and verified in P.

For the combined complexity of IAR, we use the
procedure IAREntailment from Section 5 with an NP
oracle to decide whether a timed assertion belongs to
some minimal inconsistent subset in the first step, and
to decide the entailment of φ in the last step. Since the
oracle calls can be structured as a tree, this procedure
gives membership in ∆p

2[O(log n)] [46].

For EL⊥, matching lower bounds for all semantics
follow from the atemporal case [28, 35].

For DL-LiteR, we can obtain matching lower bounds
from the atemporal case for the combined complexity
of all semantics as well as for the data complexity of
the AR semantics [29, 33]. Regarding IAR semantics,
entailment of BTCQs with negations under IAR se-
mantics is already in P (see Figure 3), so this better up-
per bound applies. Finally, we show that for brave se-
mantics and DL-LiteR, in the case where there are no
rigid predicates, we can improve the NP upper bound
of Figure 3 to a P bound. Recall that the lower bound
established by Proposition 6.10 for brave semantics
with rigid predicates already applies to BTCQs with-
out negations, which means that no improvement of
our bounds is possible in the presence of rigid pred-
icates. The only remaining case is entailment under
brave semantics where NRC = NRR = ∅.

We describe a method for brave entailment of BTCQ
without negation when NRC = NRR = ∅. Our proce-
dure proceeds by type elimination over a set of tuples
built from the query and that represent the TCQs that
are entailed at each time point.

First, we define the structure on which the method
operates. We consider the set BCQ(φ) of leaves of φ,
that is, the set of all BCQs in φ, and the set F(φ) of sub-
formulas of φ. In what follows, we identify the BCQs
of BCQ(φ) and the BTCQs of F(φ) with their proposi-
tional abstractions as defined in Section 2: if we write
that a KB or a TKB entails some elements of BCQ(φ)
or F(φ), we consider them as BCQs or BTCQs, and if
we write that some elements of BCQ(φ) or F(φ) entail
others, we consider the elements of BCQ(φ) as propo-
sitional variables and those of F(φ) as propositional
LTL formulas built over these variables.

Definition 8.2. A brave-justification structure J for
the BTCQ without negation φ in the TKB K is a set
of tuples of the form (i, Lnow, Fnow, Fprev, Fnext), where
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0 6 i 6 n, Lnow ⊆ BCQ(φ), Fnow ⊆ F(φ), Fprev ⊆
F(φ), and Fnext ⊆ F(φ).

Note that the size of a brave-justification structure
for φ in K = 〈T , (Ai)06i6n〉 is linearly bounded in
n and independent of the size of the ABoxes. A tuple
(i, Lnow, Fnow, Fprev, Fnext) is justified in J iff it fulfils
all of the following conditions.

1. 〈T ,Ai〉 |=brave
∧

q∈Lnow
q.

2. If i > 0, there exists (i−1, L′now, F
′
now, F

′
prev, F

′
next) ∈

J such that Fprev = F′now and Fnow = F′next.
3. If i < n, there exists (i+1, L′now, F

′
now, F

′
prev, F

′
next) ∈

J such that Fnext = F′now and Fnow = F′prev.
4. For every ψ ∈ BCQ(φ), if Fnow |= ψ, then ψ ∈

Lnow.
5. For every ψ ∈ F(φ), if Fnow |= ψ, then ψ ∈ Fnow.
6. For every ψ ∈ F(φ), if

∧
q∈Lnow

q∧#−(
∧
χ∈Fprev

χ)∧
#(

∧
χ∈Fnext

χ) |= ψ, then ψ ∈ Fnow.
7. For every ψ, ψ′ ∈ F(φ):

if ψ∨ψ′ ∈ Fnow, then either ψ ∈ Fnow or ψ′ ∈ Fnow,
if ♦ψ ∈ Fnow, then either ψ ∈ Fnow or ♦ψ ∈ Fnext,
if ♦bψ ∈ Fnow, then either ψ ∈ Fnow or ♦bψ ∈ Fnext,
if ♦−ψ ∈ Fnow, then either ψ ∈ Fnow or ♦−ψ ∈
Fprev,
if ψ′Uψ ∈ Fnow, then either ψ ∈ Fnow or ψ′ ∈ Fnow

and ψ′Uψ ∈ Fnext,
if ψ′Ub ψ ∈ Fnow, then either ψ ∈ Fnow or ψ′ ∈ Fnow

and ψ′Ub ψ ∈ Fnext,
if ψ′Sψ ∈ Fnow, then either ψ ∈ Fnow or ψ′ ∈ Fnow

and ψ′Sψ ∈ Fprev, and
if ψ is of the form �ϕ, then either ψ /∈ Fnow or
〈∅, (∅)06i6n〉, n + 1 |= �ϕ.

8. If i = n, then
for all ψ ∈ F(φ) that are of the form  b ϕ, ψ ∈
Fnow,
for all ψ ∈ F(φ) that are of the form #ϕ and such
that 〈∅, (∅)06i6n〉, n + 1 6|= �ϕ, we have ψ /∈ Fnow,
for all ψ ∈ F(φ) that are of the form ♦bϕ,�bϕ, or
ϕ′Ub ϕ, ψ ∈ Fnow iff ϕ ∈ Fnow,
for all ψ ∈ F(φ) that are of the form ♦ϕ, ϕ′Uϕ and
such that 〈∅, (∅)06i6n〉, n + 1 6|= �ϕ, ψ ∈ Fnow iff
ϕ ∈ Fnow.

9. If i = 0, then
for all ψ ∈ F(φ) that are of the form  −ϕ, ψ ∈
Fnow,
for all ψ ∈ F(φ) that are of the form #−ϕ, ψ /∈
Fnow, and
for all ψ ∈ F(φ) that are of the form♦−ϕ,�−ϕ, ϕ′Sϕ,
ψ ∈ Fnow iff ϕ ∈ Fnow.

We give the intuition behind the elements of the tuples
that fulfil these conditions. The first element i is the
time point we are considering, Lnow is a set of BCQs
whose conjunction is entailed under brave semantics
by 〈T ,Ai〉 (Condition 1), and Fnow is the set of for-
mulas that can be entailed together with Lnow, depend-
ing on what is entailed in the previous and next time
points, this information being stored in Fprev and Fnext

respectively (Condition 6). Conditions 2 and 3 ensure
that there is a sequence of tuples representing every
time point from 0 to n such that this information is
coherent between consecutive tuples. Condition 4 ex-
presses that Lnow is exactly the set of BCQs contained
in Fnow and Condition 5 that Fnow is maximal in the
sense that it contains its consequences. Condition 7 en-
forces that Fnow, Fprev and Fnext respect the semantics
of LTL operators and Conditions 8 and 9 enforce this
semantics at both ends of the finite sequence. (Note
that we use here the fact that past operators cannot be
nested under unbounded future operators, and that no
BCQ can be entailed under brave semantics after time
point n in the absence of rigid predicates.)

A brave-justification structure J is correct if every
tuple is justified, and φ is justified at time point p by J
if there is (p, Lnow, Fnow, Fprev, Fnext) ∈ J such that
φ ∈ Fnow. We show that φ is entailed from K at time
point p under brave semantics iff there is a correct
brave-justification structure for φ in K that justifies φ
at time point p. The main idea of the proof is to link the
tuples of a sequence ((i, Lnow, Fnow, Fprev, Fnext))06i6n

to a consistent TKB K′ = 〈T , (Ci)06i6n〉 such that for
every i, we have Ci ⊆ Ai and 〈T , Ci〉 |=

∧
q∈Lnow

q. We
show in the appendix that there is such a K′ such that
K′, p |= φ iff there is such a sequence of tuples that
is a correct brave-justification structure for φ in K and
justifies φ at time point p.

The data complexity of brave entailment of BTCQ
without negation when there are no rigid predicates
follows from the characterization of brave BTCQ en-
tailment with brave-justification structures.

Proposition 8.3. For DL-LiteR, if NRC = NRR = ∅,
then entailment of BTCQs without negation under
brave semantics is in P w.r.t. data complexity.

Proof. We describe a polynomial procedure that de-
cides the existence of a brave-justification structure
for φ in K that justifies φ at time point p. We start with
a brave-justification structure J for φ in K that con-
tains all possible tuples. Note that the size of this ini-
tial structure J is linearly bounded in the number n of
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ABoxes, and otherwise independent of the data size.
The reason is that, except for the time point, the ele-
ments of each justification tuple, namely the sets Lnow,
Fnow, Fprev and Fnext, only depend on the query.

From the initial, maximal, brave-justification struc-
ture, we remove the unjustified tuples one after the
other as follows. (i) Remove every tuple that does
not satisfy Conditions 1, 4, 5, 6, 7, 8 or 9, and (ii)
repeat the following steps until a fix-point has been
reached: iterate over the tuples from time point 0 to n,
eliminating those which do not satisfy Condition 3,
and then iterate from n to 0 eliminating those which
do not satisfy Condition 2. For the resulting brave-
justification structure, we check whether it contains a
tuple (p, Lnow, Fnow, Fprev, Fnext) such that φ ∈ Fnow.
If yes, we return “entailed at time point p”, otherwise,
we return “not entailed at time point p”. Since the size
of J is linear in n, this process requires at most quadrat-
ically many steps. The verification that a given tuple is
justified requires polynomial time w.r.t. data complex-
ity (the verification of Condition 3 and Condition 2 is
linear in n, and only the brave entailment of a BCQ
from a DL-LiteR-KB for Condition 1 depends on the
size of the ABox, which can be performed in AC0 w.r.t.
data complexity). Therefore, the complete procedure
runs in polynomial time w.r.t. data complexity.

Note that it is vital for this procedure that the BTCQ
does not contain negation, as this allows to fully fo-
cus on the positive entailments of BCQs. In contrast,
BTCQs with negation may require a case analysis over
query entailments, as exemplified by the tautological
BTCQ �(A(a) ∨ ¬A(a)).

The following theorem summarizes the complexity
results for the case without negation in the TCQ.

Theorem 8.4. The results in Figure 5 hold.

9. Toward practical algorithms

Until now, work on TCQ answering has primar-
ily focused on complexity analysis for different DL
languages [5, 6, 22]. Attempts towards practical al-
gorithms or implementations are as of now scarce
[43, 47]. The only attempt toward more practical al-
gorithms close to our scenario that we are aware of
has been made for DL-LiteR and TCQs without nega-
tion in [43], and partially implemented [48]. Some of
the results have then been generalized in [18] to query
languages that are rewritable in the atemporal case.

In this section, we mainly focus on DL-LiteR-TKBs
and TCQs without negation, building on this previous
work. However, some of our results also apply to other
DLs and we discuss the case of EL⊥.

Three different algorithms for answering TCQs
without negation over DL-LiteR-TKBs without rigid
predicates are provided in [18, 43]. The first algorithm
rewrites the TCQ into a query in ATSQL [49], an SQL
variant for temporal databases. The second algorithm
first rewrites the TCQ into an equivalent TCQ that does
not contain future operators, and then iteratively com-
putes the answers for each time point. The third algo-
rithm computes the answers of the TCQ iteratively as
well, but does not eliminate the future operators be-
forehand. For this, it uses a data structure called an-
swer formulas, which represents the TCQs in which
some parts have already been evaluated. This struc-
ture contains sets of already computed answers to sub-
queries, as well as variables that serve as place-holders
for subqueries that have to be evaluated at the next time
point.

Our first contribution is a method for handling rigid
predicates (both concepts and roles) in polynomial
time for TCQ answering over DL-LiteR-TKBs under
the classical semantics. Indeed, [18, 43] consider only
rigid concepts (but not rigid roles) for which they pro-
vide a method that is restricted to TCQs that are rooted,
i.e., in which each CQ contains an individual or an an-
swer variable that is connected to all the other terms
through roles. As a second contribution, we show that
in the absence of rigid predicates, it is sometimes
possible to combine the algorithms for inconsistency-
tolerant query answering in the atemporal case with
algorithms for temporal query answering in the con-
sistent case in order to perform inconsistency-tolerant
temporal query answering.

9.1. TCQ answering under classical semantics with
rigid predicates for DL-LiteR and TCQs without
negation or unbounded future operators

In this section, we show how TCQ answering with
rigid predicates can be reduced to TCQ answering
without rigid predicates, enabling us to use the algo-
rithms that have been proposed for this latter case.
Throughout the section, K is a DL-LiteR-TKB and φ
a TCQ without negation and unbounded future oper-
ators (#, �, ♦, U ). This restriction amounts to using
the setting of [18, 43] in which the semantics is defined
w.r.t. finite sequences of interpretations, and is neces-
sary to reduce TCQ answering with rigid predicates to
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Data complexity Combined complexity

classical AR IAR brave classical AR IAR brave

EL⊥

NRC = NRR = ∅ P coNP coNP NP NP Πp
2 ∆p

2[O(log n)] NP
NRC 6= ∅,NRR = ∅ P coNP coNP NP NP Πp

2 ∆p
2[O(log n)] NP

NRC 6= ∅,NRR 6= ∅ P coNP coNP NP NP Πp
2 ∆p

2[O(log n)] NP

DL-LiteR

NRC = NRR = ∅ in ALOGTIME coNP in P in P NP Πp
2 NP NP

NRC 6= ∅,NRR = ∅ in ALOGTIME coNP in P NP NP Πp
2 NP NP

NRC 6= ∅,NRR 6= ∅ in ALOGTIME coNP in P NP NP Πp
2 NP NP

Figure 5. Data [left] and combined [right] complexity of BTCQ entailment for BTCQs without negation. All results are tight but those preceded
by “in” which are upper bounds. The complexities lower than in the case of BTCQs with negation are in bold.

TCQ answering without rigid predicates. Indeed, con-
sider for instance the query �A(a). Such a query can
be entailed with rigid predicates, e.g., if A is rigid, but
not without rigid predicates since for p > n, the inter-
pretation of every predicate is empty in the pth com-
ponent of the canonical model of a TKB without rigid
predicates.

To the best of our knowledge, the only algorithm
that has been proposed for TCQ answering with rigid
predicates and aims at practicality is described as
well in [18, 43], and deals only with rigid concepts
and rooted TCQs. We briefly describe this algorithm,
which aims at handling streaming data by comput-
ing the answers to the query at the last available time
point. The key idea is to check all sets of potentially
rigid concept assertions and test their compatibility
with each of the ABoxes from the sequence together
with the TBox. Unfortunately, the original algorithm
omits the test whether the checked set of rigid concept
assertions covers also the rigid information from the
tested ABox together with the TBox. As we found this
small flaw in the original algorithm, we present here a
mended variant.

In the following, let NKC , NKR , NKRC, NKRR, and NKI
denote respectively the sets of concepts, roles, rigid
concepts, rigid roles, and individuals that occur in the
TKB K. The algorithm first constructs every possible
setR of assertions built from the rigid concepts and in-
dividuals in the TKB K. Note that there are 2|N

K
RC|∗|N

K
I |

such sets. It then runs, in parallel, for each such set R
an instance of the algorithm for TCQ answering with-
out rigid predicates on the TKB that is obtained by
adding the assertions inR to every ABox of the TKB.
For each time point i, it takes into account the new

dataset available by eliminating the incompatible in-
stances, i.e., those for which

1. 〈T ,Ai ∪R〉 is inconsistent, or
2. a rigid concept assertion entailed by 〈T ,Ai〉 does

not belong toR.1

The answers at time point i are then obtained by taking
the intersection of the answers returned by all active
instances.

We follow a similar idea in the sense that we also
add assertions to the TKB that propagate the effects
of the rigid predicates. We show that this way, for
DL-LiteR, TCQ answering with rigid predicates can
be reduced to TCQ answering without rigid predicates
in polynomial time.

In order to show that TCQ answering with rigid
predicates can be reduced to TCQ answering with-
out, we construct in polynomial time a set R of asser-
tions that captures all information about rigid concepts
and roles that is relevant for consistency checking and
TCQ answering. Then, TCQ answering over K with
NRC 6= ∅, NRR 6= ∅ can be performed by TCQ answer-
ing over 〈T , (Ai ∪ R)06i6n〉 with NRC = NRR = ∅.
Without any restriction on the TBox, R may be infi-
nite, as illustrated in the following example.

Example 9.1. Consider the TKB K with the TBox
T = {∃R− v ∃R, R v S }, where S is rigid, and
the ABox sequence consisting of A0 = {R(a, b)}, and
Ai = ∅ for i ∈ [1, n].

1This condition is new and added after consultation with the au-
thors of [18, 43].
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Every model of K that respects rigid predicates sat-
isfies φ = ∃x1...xk+1.S (x1, x2) ∧ ... ∧ S (xk, xk+1)
for every k > 0 and at every time point. Since with
NRC = NRR = ∅, K entails such a query only at
time point 0, R should be such that 〈T ,R〉 entails
such a query, so that 〈T , (Ai ∪ R)06i6n〉 entails it at
every time point. Moreover, there exist models of K
that respect rigid predicates and for which neither
∃x1...xk.S (x1, x2)∧ ...∧S (xk, x1) nor ∃xy.R(x, y) hold
at any time point i > 0. Therefore, R cannot contain
cycles of S , nor R-assertions . Consequently, R has to
contain an infinite chain of S -assertions.

This problem motivates us to disallow rigid roles
that have non-rigid sub-roles. In other words, we re-
strict ourselves in the following to TBoxes T that en-
tail no role inclusions of the form P1 v P2 with
P1 := R1|R−1 , R1 ∈ NR\NRR and P2 := R2|R−2 ,
R2 ∈ NRR. This condition avoids chains of rigid roles
in the anonymous part of the canonical model JK that
cannot be entailed by a single rigid assertion. In the
example above, if rigid roles are only allowed to have
rigid sub-roles, then R has to be rigid. In this case,
adding the single assertion R(x, y) to every Ai is suffi-
cient for ∃x1...xk+1.R(x1, x2) ∧ ... ∧ R(xk, xk+1) to be
entailed at every time point and for every k > 0.

As a first step, we explicitly construct the canonical
model JK of the DL-LiteR-TKB K. This model will
be used to prove that K with NRC 6= ∅, NRR 6= ∅ and
〈T , (Ai ∪ R)06i6n〉 with NRC = NRR = ∅ entail the
same BTCQs that do not have negation or unbounded
future operators.

We build a sequence of (possibly infinite) ABoxes
(chaseKrig(Ai))06i6n+1 similar to the chase presented
in [50] for KBs. Let S be a set of DL-LiteR assertions.
We say a positive inclusion (PI) α is applicable in S to
an assertion β ∈ S if one of the following conditions
is satisfied:

– α = A1 v A2, β = A1(a) and A2(a) /∈ S,
– α = A v ∃P, β = A(a) and there exists no b such

that P(a, b) ∈ S,
– α = ∃P v A, β = P(a, b) and A(a) /∈ S
– α = ∃P1 v ∃P2, β = P1(a1, a2) and there exists

no b such that P2(a1, b) ∈ S, or
– α = P1 v P2, β = P1(a1, a2), and P2(a1, a2) /∈ S.

A PI α is applied to an assertion β by adding a new
assertion βnew to S such that α is not applicable to β in
S ∪ {βnew} anymore.

Definition 9.2 (Rigid chase of a TKB). Let K =
〈T , (Ai)06i6n〉 be a DL-LiteR-TKB. Let (A′i)06i6n+1

be such that A′i = Ai ∪ {β | ∃k, β ∈ Ak and β is rigid}
for i ∈ [0, n] and A′n+1 = ∅. Finally, let Tp be the set
of positive inclusions in T , and Ni be the number of
assertions inA′i . Assume that the assertions in eachA′i
are enumerated from N1+· · ·+Ni−1+1 to N1+· · ·+Ni

following their lexicographic order. Consider the se-
quences of sets S j = (S j

i )06i6n+1 of assertions de-
fined by

S0 =(A′i)06i6n+1

S j+1 =S j ∪ Snew = (S j
i ∪ S

new
i )06i6n+1,

where Snew is defined in terms of the assertion βnew ob-
tained as follows: let β ∈ S j

iβ be the first assertion in S j

such that there exists a PI in Tp applicable in S j
iβ to β

and let α be the lexicographically first PI applicable
in S j

iβ to β. βnew is then defined based on the syntactic-
tal form of α and β. Specifically,

– if α = A1 v A2 and β = A1(a), then βnew = A2(a),
– if α = A v ∃P and β = A(a), then βnew =

P(a, anew),
– if α = ∃P v A and β = P(a, b), then βnew = A(a),
– if α = ∃P1 v ∃P and β = P1(a, b), then βnew =

P(a, anew), and
– if α = P1 v P2 and β = P1(a1, a2), then βnew =

P2(a1, a2),

where anew is constructed from α and β as follows:

– if a ∈ NKI , then anew = xiβ
aP, and

– otherwise a /∈ NKI , then a is of the form xi1...il
a′P1...Pl

and
we define anew = xi1...iliβ

a′P1...PlP.

If βnew is rigid, then Snew = ({βnew})06i6n+1, other-
wise, Snew = (Snew

i )06i6n+1 with Snew
iβ = {βnew} and

Snew
i = ∅ for i 6= iβ.
Let N be the total number of assertions in S j. The

assertion(s) added are numbered as follows: if βnew is
not rigid, βnew is numbered by N + 1, otherwise for
every i ∈ [0, n + 1], the assertion βnew ∈ Snew

i added
to S j

i is numbered by N + 1 + i.
We call the rigid chase of the TKB K, denoted by

chaserig(K) = (chaseKrig(Ai))06i6n+1, the sequence
of sets of assertions obtained as the infinite union of
all S j, i.e.,

(chaseKrig(Ai))06i6n+1 = (
⋃
j∈N
S j

i )06i6n+1.
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Based on the rigid chase of K, we construct the se-
quence of interpretations JK = (Ii)i>0, where Ii =
〈∆, ·Ii〉 is defined as follows.

– ∆ = NKI ∪ ΓN , where ΓN is the set of individuals
that appear in chaserig(K) and not in K.

– For every a ∈ ∆, aIi = a.
– For every A ∈ NC, AIi = {a | A(a) ∈ chaseKrig(Ai)}

if i 6 n, AIi = {a | A(a) ∈ chaseKrig(An+1)} if
i > n.

– For every R ∈ NR, RIi = {(a, b) | R(a, b) ∈
chaseKrig(Ai)} if i 6 n, RIi = {(a, b) | R(a, b) ∈
chaseKrig(An+1)} if i > n.

We show that JK is a model of K that respects rigid
predicates, and that for any BTCQ without negation φ
such that Nφ

I ⊆ NKI , K, p |= φ iff JK, p |= φ.

Lemma 9.3. If K is consistent, then JK is a model
of K that respects rigid predicates.

Proof (Sketch). Since for every i ∈ [0, n], Ai ⊆
chaseKrig(Ai), we directly obtain Ii |= Ai. We can show
that for every i, Ii further satisfies every PI in T with
similar arguments as those used in [50]. Indeed, every
PI applicable to an assertion β in S j

i at step j of the
construction of the rigid chase becomes not applicable
to β in Sk

i for some k > j, because there are neither
infinitely many assertions before β, nor infinitely many
PIs applied to some assertion that precedes β. Finally,
we show that Ii satisfies every negative inclusion of T
because otherwiseK would be inconsistent. Moreover,
the model JK respects rigid predicates because, if an
assertion β of chaseKrig(Ai) is rigid, either β ∈ Ai and
by construction β ∈ S0

k = A′k for every k, or β has
been derived at some step j by applying some PI to an
assertion of S j and β ∈ S j+1

k for every k. We obtain
that in both cases, β ∈ chaseKrig(Ak) for every k.

Next, we show that JK is the canonical model of K
for entailment of BTCQ without negation.

Lemma 9.4. If K is consistent, then for every BTCQ
without negation φ such that Nφ

I ⊆ NKI , K, p |= φ iff
JK, p |= φ.

Proof (Sketch). Since JK = (Ii)i>0 with Ii = 〈∆, ·Ii〉
is a model of K that respects rigid predicates, the first
direction is straightforward, and we only need to show
that JK, p |= φ implies K, p |= φ. Let J = (I ′i )i>0

with I ′i = 〈∆′, ·I′i 〉 be a model of K that respects rigid
predicates. We show by structural induction on φ that
if JK, p |= φ, then J , p |= φ. For the case where φ

is a CQ ∃~y.ψ(~y), we show that if there exists a homo-
morphism π of ∃~y.ψ(~y) into Ip, then I ′p |= ∃~y.ψ(~y), by
defining a homomorphism h from ∆ into ∆′.

We are now ready to introduce the set R that, if
added to every ABox of the TKB, allows us to reduce
TCQ answering with rigid predicates to TCQ answer-
ing without.

Proposition 9.5. Let R be as defined in Figure 6.
Then, R is computable in polynomial time and such
that

1. K is consistent iff KR = 〈T , (Ai ∪ R)06i6n〉 is
consistent with NRC = NRR = ∅, and

2. for any BTCQ φ without negation and unbounded
future operators and such that Nφ

I ⊆ NKI , K, p |= φ
iff KR, p |= φ with NRC = NRR = ∅.

The size of R is polynomial in the size of NKC ,N
K
R ,

and NKI , and since query answering as well as sub-
sumption checking are in P, R can be computed in
polynomial time. The first three parts of R contain in-
formation about the participation of individuals of NKI
in rigid predicates. The last two witness the partici-
pation in rigid predicates of the role-successors w.r.t.
non-rigid roles, and thus take into account also anony-
mous individuals that are created in chaserig(K) when
applying PIs whose right-hand side is an existential re-
striction of a non-rigid role. The individuals created
in chaserig(K) when applying such a PI with a rigid
role are witnessed by the individuals xaP or xP1P2

if
they do not follow from a rigid role assertion, and do
not need to be witnessed otherwise, since the asser-
tion P2(xP1

, xP1P2
) is sufficient to trigger the genera-

tion of the whole anonymous part implied by the fact
that xP1P2

is in the range of P2.
We split the proof of Proposition 9.5 into several

lemmas.

Lemma 9.6. K is consistent iff KR is consistent with
NRC = NRR = ∅.

Proof. By Proposition 3.5, KR is consistent with
NRC = NRR = ∅ iff each 〈T ,Ai ∪R〉 is consistent. We
show that also K is consistent iff each 〈T ,Ai ∪ R〉 is
consistent.

For the case where K is not consistent, let B be
a minimal inconsistent subset of K. Recall that by
Fact 6.11, B contains at most 2 assertions. Then
B is either internal to some Ai, or is of the form
B = {(α, i), (β, j)} with i 6= j. In the former case,
〈T ,Ai ∪R〉 is clearly inconsistent. In the latter case,
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R ={A(a) | A ∈ NKRC, a ∈ NKI , and ∃i, 〈T ,Ai〉 |= A(a)} ∪

{R(a, b) | R ∈ NKRR, a, b ∈ NKI , and ∃i, 〈T ,Ai〉 |= R(a, b)} ∪

{P(a, xaP) | P := R|R−, R ∈ NKRR, a ∈ NKI , and ∃i, 〈T ,Ai〉 |= ∃x.P(a, x)} ∪

{A(xP1) | A ∈ NKRC, P1 := S |S−, S ∈ NKR \NKRR, T |= ∃P−1 v A, and ∃i, 〈T ,Ai〉 |= ∃xy.P1(x, y)} ∪

{P2(xP1
, xP1P2

) | P2 := R|R−, R ∈ NKRR, P1 := S |S−, S ∈ NKR \NKRR, T |= ∃P−1 v ∃P2 and

∃i, 〈T ,Ai〉 |= ∃xy.P1(x, y)}

Figure 6. Set of rigid assertions added to every ABox of K

{α, β} violates some negative inclusion in the closure
of the TBox that involves at least a rigid concept A or a
rigid role R by assigning an individual a (or two indi-
viduals a, b) to two disjoint concepts (or roles). We can
then assume w.l.o.g. that we are in one of the follow-
ing cases: (i) 〈T , α〉 |= A(a), (ii) 〈T , α〉 |= ∃x.R(a, x),
(iii) 〈T , α〉 |= ∃x.R(x, a), or (iv) 〈T , α〉 |= R(a, b).
It follows that respectively (i) 〈T ,Ai〉 |= A(a), (ii)
〈T ,Ai〉 |= ∃x.R(a, x), (iii) 〈T ,Ai〉 |= ∃x.R(x, a), or
(iv) 〈T ,Ai〉 |= R(a, b). By construction of R, we then
conclude that (i) A(a) ∈ R, (ii) R(a, xaR) ∈ R, (iii)
R(xaR− , a) ∈ R, or (iv) R(a, b) ∈ R respectively, and
therefore that 〈T ,A j ∪R〉 is inconsistent.

For the other direction, assume there exists i ∈
[0, n], such that 〈T ,Ai ∪ R〉 is inconsistent, and let B
be a minimal inconsistent subset of 〈T ,Ai∪R〉. If B is
internal to Ai, K is clearly inconsistent. Otherwise, B
is of the form {α, β} and involves at least one assertion
from R. The assertions α and β assign an individual x
to two disjoint concepts C1,C2, or a pair of individuals
x, y to two disjoint roles R1,R2. We distinguish three
cases.

1. In the case where x = xaP (resp. x = xP1P2
),

since P(a, xaP) (resp. P2(xP1 , xP1P2)) is the only
assertion of R that contains x, we obtain that
〈T , {P(a, xaP)}〉 (resp. 〈T , {P2(xP1

, xP1P2
)}〉) is

inconsistent, which implies that P (resp. P2) is un-
satisfiable, i.e., has an empty interpretation in ev-
ery model of T . Since there exists j such that
〈T ,A j〉 |= ∃x.P(a, x) (resp. 〈T ,A j〉 |= ∃xy.P1(x, y)
and T |= ∃P−1 v ∃P2), it follows that A j is incon-
sistent.

2. In the case where x = xP1
, since xP1

appears only
in concepts that subsume ∃P−1 , the fact that x is as-
signed to two disjoint concepts implies that ∃P−1 is

unsatisfiable. Thus, and since there exists j such that
〈T ,A j〉 |= ∃xy.P1(x, y), A j is inconsistent.

3. Finally, in the case where x ∈ NKI , since α or β
is in R, at least one of C1,C2 (or R1,R2) is rigid.
As the case where some ABox A j is inconsistent
is trivial, we assume every A j to be consistent. If
α /∈ Ai, let cα ∈ A jα be an assertion responsible
for the entailment that triggered the addition of α
to R, and otherwise let (cα, jα) = (α, i). If β /∈ Ai,
let cβ ∈ A jβ be an assertion responsible for the en-
tailment that triggered the addition of β to R, and
otherwise (cβ, jβ) = (β, i). Then {(cα, jα), (cβ, jβ)}
is inconsistent because cα and cβ lead to a (or a, b)
being assigned to two disjoint concepts (or disjoint
roles) such that at least one of them is rigid. As a
result, K is inconsistent as well.

We obtain that in every case, ifKR is inconsistent with
NRC = NRR = ∅, then K is inconsistent with rigid
predicates.

We now assume that K and KR are consistent. Note
that if this is not the case, they both trivially entail
any BTCQ. The following two lemmas show that if a
Boolean conjunctive query q = ∃~y.ψ(~y) is such that
Nq

I ⊆ NKI , then for every p ∈ [0, n], KR, p |= q iff
K, p |= q.

Lemma 9.7. Let q = ∃~y.ψ(~y) be such that Nq
I ⊆ NKI .

Then, for every p ∈ [0, n], ifKR, p |= q thenK, p |= q.

Proof (Sketch). By Lemma 9.4, it suffices to focus on
the canonical model JK = (Ii)i>0 for testing entail-
ments ofK. The lemma can be shown by defining a ho-
momorphism from the canonical model of 〈T ,Ap∪R〉
into Ip, the pth component of JK.
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Lemma 9.8. Let q = ∃~y.ψ(~y) be such that Nq
I ⊆ NKI .

For every p ∈ [0, n], if K, p |= q then KR, p |= q.

Proof (Sketch). Again, we make use of Lemma 9.4 and
use the canonical model JK = (Ii)i>0. The lemma
can then be shown by considering some model IRp
of 〈T ,Ap ∪ R〉, and defining a homomorphism of Ip

into IRp .

Since by Lemmas 9.7 and 9.8, K and KR with
NRC = NRR = ∅ coincide on the entailment of BCQs
for every time point p ∈ [0, n], we can show as in
Proposition 7.6 that they coincide on entailment of
BTCQs without negation nor unbounded future opera-
tors.

Lemma 9.9. Let φ be a BTCQ with no negation or
unbounded future operators such that Nφ

I ⊆ NKI . Then,
K, p |= φ iff KR, p |= φ with NRC = NRR = ∅.

It follows that TCQs can be answered in K with
rigid predicates by answering TCQs in KR without
rigid predicates and pruning answers that contain indi-
vidual names not in NKI . Note that every model of KR
is a model ofK, but does not respect rigid predicates in
general. We can reduce BTCQ entailment over K with
rigid predicates to BTCQ entailment over KR with-
out rigid predicates only because our TCQs do not al-
low LTL operators to be nested in existential quan-
tifications. This prevents existentially quantified vari-
ables to link different time points. To see this, con-
sider the query ∃xy.�b(R(a, x)∧R(x, y)) and the TKB
K = 〈T , (Ai)06i6n〉 with T = {B v ∃R,∃R− v ∃R},
R ∈ NRR and Ai = {B(a)}. For this TKB, we would
have R = {R(a, xaR)}, and therefore xaR could have a
different R-successors in each interpretation of a model
of KR, thus y cannot be mapped to the same object at
every time point.

Remark 9.10. In the case of streaming data, if we
want to take into account a newly available dataset, we
do not need to fully recomputeR: we only need to add
the new rigid assertions that can be derived from the
new dataset. Moreover, if we only reason over a win-
dow of n time points from our stream, we can anno-
tate the assertions inRwith a counter that is initialised
with n and decremented with each new time point. If
an existing assertion is derived again, it is reset to n.
Assertions are then removed from R if their counter
reaches 0.

Remark 9.11. The main goal of the approaches pre-
sented in [18, 43] for TCQ answering in DL-LiteR is to

obtain the query answers at the last time point without
storing all the data for all previous time points. Their
algorithm uses a bounded history encoding, which
means that the space required by the algorithm is con-
stant w.r.t. the number n of previous time points: only
the current dataset and some auxiliary relations re-
quired for computing the query answers are stored and
updated at each time point.

Unfortunately, with rigid predicates present, our ap-
proach does not achieve bounded history encoding,
since the answers of the subqueries of φ at previous
time points may change when new rigid assertions are
derived from the last dataset. However, if the algorithm
of [18, 43] has this property, it requires exponential
space w.r.t. NKRC and NKI which can also be problematic,
while our algorithm requires only polynomial space
and time. To achieve bounded history encoding (but
in exponential time w.r.t. NKRC, NKRR and NKI ), we could
adapt the algorithm of [18, 43] to support rigid roles.
We would consider all possible setsR built from NKRC,
NKRR and NKI following the form of Figure 6, then ver-
ify at each time point whether R is consistent with Ai

and T and contains all rigid assertions that can be de-
rived from Ai as described in Figure 6.

Our procedure only applies to TBoxes in which rigid
roles do not have non-rigid subroles. A possible di-
rection to alleviate these restrictions would be to use
ideas similar to those developed in [44] for CQ an-
swering over DL-LiteR-KB using the combined ap-
proach. This CQ answering approach saturates the data
by adding to the ABox every assertion that can be de-
rived, introducing individual names to witness existen-
tial role restrictions, and then uses a special rewriting
to prune spurious answers. In our setting, we could
model infinite chains of rigid roles by adding cycles
of rigid roles to R, then prune the spurious answers
resulting from these cycles.

Regarding EL⊥, we conjecture that we could have
a similar approach for rigid predicates. The main dif-
ference would be that since in EL⊥ several assertions
may be needed to derive one,Rwould have to be com-
puted iteratively, taking into account its own assertions
to derive new ones until a fix-point is reached. More-
over, the problem of infinite chains of rigid roles that
cannot be entailed by a polynomial set of assertions
would appear as soon as NRR 6= ∅. The combined ap-
proach for EL [11] could provide ideas to overcome
this difficulty.
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Table 3
Entailment under classical or IAR semantics from a L-TKB without
rigid predicates and such that L has the canonical model property
for BCQ entailment

φ K, p |=S φ iff

∃~y.ψ(~y) p 6 n and 〈T ,Ap〉 |=S ∃~y.ψ(~y)
φ1 ∧ φ2 K, p |=S φ1 and K, p |=S φ2

φ1 ∨ φ2 K, p |=S φ1 or K, p |=S φ2

#φ1 K, p + 1 |=S φ1

 b φ1 p < n implies K, p + 1 |=S φ1

#−φ1 p > 0 and K, p− 1 |=S φ1

 −φ1 p > 0 implies K, p− 1 |=S φ1

�φ1 ∀k, k > p, K, k |= φ1

�bφ1 ∀k, p 6 k 6 n, K, k |= φ1

�−φ1 ∀k, 0 6 k 6 p, K, k |=S φ1

♦φ1 ∃k, k > p, K, k |= φ1

♦bφ1 ∃k, p 6 k 6 n, K, k |= φ1

♦−φ1 ∃k, 0 6 k 6 p, K, k |=S φ1

φ1U φ2 ∃k, k > p, K, k |= φ2 and ∀ j, p 6 j < k,K, j |= φ1

φ1Ub φ2 ∃k, p 6 k 6 n, K, k |=S φ2 and ∀ j, p 6 j < k,K, j |=S φ1

φ1S φ2 ∃k, 0 6 k 6 p, K, k |=S φ2 and ∀ j, k < j 6 p,K, j |=S φ1

9.2. Inconsistency-tolerant TCQ answering without
rigid predicates

In this section K is a L-TKB and φ a TCQ without
negation.

When NRC = NRR = ∅, an important consequence
of Proposition 3.5 is that the repairs of K are all
possible sequences (A′i)06i6n where A′i is a repair
of 〈T ,Ai〉, so the intersection of the repairs of K is
(A∩i )06i6n where A∩i is the intersection of the repairs
of 〈T ,Ai〉. This allows us to show that the entailment
(resp. IAR entailment) of a BTCQ without negation
from a consistent (resp. possibly inconsistent) TKB in
a DL L that has the canonical model property for BCQ
entailment can be equivalently defined w.r.t. the entail-
ment (resp. IAR entailment) of the BCQs it contains as
follows.

Proposition 9.12. If L has the canonical model prop-
erty for BCQ entailment and NRC = NRR = ∅, then the
entailments shown in Table 3 hold for S = classical
when K is consistent, and for S = IAR.

Proof. For the consistent case, all relations in Table 3
but the first one are straightforwardly obtained by ap-
plying the definitions of BTCQ satisfaction of Table 1
in Section 2 to the canonical model of K. Moreover,
by Proposition 3.6, if p 6 n, then K, p |= ∃~y.ψ(~y) iff
〈T ,Ap〉 |= ∃~y.ψ(~y). Finally, K, p 6|= ∃~y.ψ(~y) if p > n,
because there exists a model of K whose pth compo-
nent interprets every predicate as the empty set.

For IAR semantics, let (Air
i )06i6n denote the inter-

section of the repairs of K andA∩i denote the intersec-
tion of the repairs of 〈T ,Ai〉.

– K, p |=IAR ∃~y.ψ(~y) iff 〈T , (Air
i )06i6n〉, p |= ∃~y.ψ(~y),

i.e., iff p 6 n and 〈T ,Air
p〉 |= ∃~y.ψ(~y) because

(Air
i )06i6n is consistent. Since the repairs of K

are the sequences of the repairs of the 〈T ,Ai〉,
Air

p = A∩p , so K, p |=IAR ∃~y.ψ(~y) iff p 6 n and
〈T ,Ap〉 |=IAR ∃~y.ψ(~y).

– K, p |=IAR φ1 ∧ φ2 iff 〈T , (Air
i )06i6n〉, p |=

φ1 ∧ φ2, i.e., iff 〈T , (Air
i )06i6n〉, p |= φ1 and

〈T , (Air
i )06i6n〉, p |= φ2 because (Air

i )06i6n is con-
sistent. It follows that K, p |=IAR φ1 ∧ φ2 iff
K, p |=IAR φ1 and K, p |=IAR φ2.

– We show all remaining relations in the same way,
applying the definition of IAR semantics and using
the fact that (Air

i )06i6n is consistent.

This is an important result, since it implies that an-
swering temporal CQs under IAR semantics can be
done with the algorithms developed for the consistent
case (see [18, 43] for algorithms for DL-LiteR with-
out unbounded future operators) by replacing classical
CQ answering by IAR CQ answering (see [30, 37, 38]
for algorithms for DL-LiteR). The following example
shows that this is unfortunately not true for brave or
AR semantics.

Example 9.13. Consider the TKBK = 〈T , (Ai)06i6n〉
and the TCQ φ defined as follows.

T ={T v ¬F}

Ai ={T (a), F(a)} for 0 6 i 6 n

φ =�−(T (a) ∧ −F(a))

Now,K, k |=brave T (a)∧ −F(a) for every 0 6 k 6 n,
but K, n 6|=brave φ. This is because the same repair
cannot entail T (a) ∧  −F(a) both at time point k
and k + 1, since it would contain both (T (a), k) and
(F(a), k) which is not possible. For AR semantics,
consider φ = T (a) ∨ F(a) over the TKB K: while φ
holds under AR semantics at each time point, neither
T (a) nor F(a) does.

However, if the operators allowed in the TCQ are re-
stricted to ∧,#, b ,#−, −,�,�b, and�−, then AR
TCQ answering can be done with the algorithms devel-
oped for the consistent case by simply replacing clas-
sical CQ answering by AR CQ answering (see [38] for
algorithms for DL-LiteR). Indeed, for these operators,
the relations of Proposition 9.12 hold for S = AR.
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– K, p |=AR ∃~y.ψ(~y) iff for every repair (A′i)06i6n

of K, 〈T , (A′i)06i6n〉, p |= ∃~y.ψ(~y), i.e., iff for ev-
ery repair (A′i)06i6n of K, p 6 n and 〈T ,A′p〉 |=
∃~y.ψ(~y) because (A′i)06i6n is consistent. Since the
repairs of K are the sequences of the repairs of the
〈T ,Ai〉, this is the case iff p 6 n and for every
repair A′p of 〈T ,Ap〉, 〈T ,A′p〉 |= ∃~y.ψ(~y), i.e., iff
p 6 n and 〈T ,Ap〉 |=AR ∃~y.ψ(~y).

– K, p |=AR φ1 ∧ φ2 iff for every repair (A′i)06i6n

of K, 〈T , (A′i)06i6n〉, p |= φ1 ∧ φ2, i.e., iff for ev-
ery repair (A′i)06i6n of K, 〈T , (A′i)06i6n〉, p |= φ1

and 〈T , (A′i)06i6n〉, p |= φ2 because (A′i)06i6n is
consistent. It follows that K, p |=AR φ1 ∧ φ2 iff
K, p |=AR φ1 and K, p |=AR φ2.

– We show all remaining relations in the same way,
applying the definition of AR semantics and using
the fact that TKB repairs are consistent.

The following counter-examples show that this is not
the case for the other operators: ∨,♦,♦b,♦−,U ,Ub ,
and S .

– K, 0 |=AR φ1 ∨ φ2 but K, 0 6|=AR φ1 and K, 0 6|=AR
φ2:

T ={A v ¬B} A0 ={A(a), B(a)}

φ1 =A(a) φ2 =B(a)

– K, 0 |=AR ♦φ1 (resp. K, 0 |=AR ♦bφ1) but for every
k (resp. such that 0 6 k 6 2), K, k 6|=AR φ1:

T ={A v ¬B} A0 ={A(a)}

A1 ={A(a), B(a)} A2 ={B(a)}

φ1 =A(a) ∧#B(a)

– K, 0 |=AR φ1U φ2 (resp. K, 0 |=AR φ1Ub φ2) but
for every k (resp. such that 0 6 k 6 2), either
K, k 6|=AR φ2 or there exists j, such that 0 6 j < k
and K, j 6|=AR φ1:

T ={A v ¬B} A0 ={A(a)}

A1 ={A(a), B(a)} A2 ={B(a)}

φ1 =A(a) φ2 =B(a)

– We can construct similar counter-examples for ♦−

and S .

Interestingly, contrary to the brave semantics, even
for general TCQs the “if” direction of Proposition 9.12
is true.

– If K, p |=AR φ1 or K, p |=AR φ2, then K, p |=AR
φ1 ∨ φ2.

– If there exists k > p such that K, k |=AR φ1, then
K, p |=AR ♦φ1.

– If there exists k such that p 6 k 6 n and K, k |=AR
φ1, then K, p |=AR ♦bφ1.

– If there exists k such that 0 6 k 6 p and K, k |=AR
φ1, then K, p |=AR ♦−φ1.

– If there exists k > p such that K, k |=AR φ2 and for
every j such that p 6 j < k, K, j |=AR φ1, then
K, p |=AR φ1U φ2.

– If there exists k such that p 6 k 6 n, K, k |=AR φ2

and for every j such that p 6 j < k, K, j |=AR φ1,
then K, p |=AR φ1Ub φ2.

– If there exists k such that 0 6 k 6 p, K, k |=AR φ2

and for every j such that k < j 6 p, K, j |=AR φ1,
then K, p |=AR φ1S φ2.

It follows that even for unrestricted TCQs, combin-
ing algorithms for TCQ answering with algorithms for
AR query answering will provide a sound approxima-
tion of AR answers.

For brave semantics, it would be useful to charac-
terize the queries for which this method would be cor-
rect. Indeed, for many pairs of a TBox and a query,
the minimal subsets of the TKB such that the query
can be mapped into them cannot be inconsistent. For
instance, for DL-LiteR-TKBs, this is the case if no
pair of predicates that may be involved at the same
time point appears in an NI entailed by the TBox. Con-
sider for instance T = {A v ¬C, B v ¬C} and
φ = ∃x.A(x) ∧ ♦(∃x.B(x) ∧ #(∃x.C(x))). For φ to
be entailed at time point p, ∃x.A(x) should hold at p,
∃x.B(x) at time point i > p and ∃x.C(x) at i + 1 > p,
so there cannot be a conflict between the C and the A
or B timed assertions used to satisfy the different CQs.

10. Conclusions and future work

For stream reasoning, handling the temporal dimen-
sion of the collected data and being resilient against
errors in the data are expedient requirements. In the
presence of erroneous data, handling inconsistencies
is indispensable for logic-based approaches to stream
reasoning. In this paper, we have lifted the stan-
dard inconsistency-tolerant semantics AR, IAR and
brave to a temporal query answering setting that has
been widely studied in the literature—namely, where
the data is associated with time points and only the
query language admits the use of temporal operators
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from LTL. We have presented complexity results and
techniques to combine temporal with inconsistency-
tolerant query answering over lightweight DL tempo-
ral knowledge bases suited for ontology-mediated sit-
uation recognition.

Our main contribution is a complexity analysis of
the three semantics, focusing on the DLs EL⊥ and
DL-LiteR, where we distinguished the cases based
on whether rigid concept or role names occur in the
TKB, and on whether the query contains negation.
We provided general algorithms that allow us to de-
rive the complexity of temporal inconsistency-tolerant
query answering from the complexities of consistency
checking and classical entailment of temporal conjunc-
tive queries. We furthermore completed the complex-
ity picture for the classical semantics for TCQs with-
out negations. Indeed, for the case where the query lan-
guage does not provide negation, we devised a gen-
eral approach to assess the complexity by the use of
the canonical model property for B(T)CQ answering
and thus not only limited to a particular DL. This ap-
proach allows us to derive the complexity of tempo-
ral query answering from the complexity of conjunc-
tive query entailment for DLs that have this canonical
model property.

Encouragingly, our analysis shows that either with
or without negation in the query, in most cases,
inconsistency-tolerant reasoning and temporal query
answering can be combined without increasing the
computational complexity. Furthermore, our results
show that disallowing negation in the query language
results in a drop in the combined complexity of TCQ
answering, and, in the case of EL⊥ with rigid predi-
cates, even in the data complexity. This raises hope that
ontology-based stream reasoning applications which
are resilient against noise in the data can be feasibly
implemented and used in practice.

As a second major contribution, we investigated two
techniques useful for developing practical algorithms
for inconsistency-tolerant temporal query answering.
We first showed that in DL-LiteR, under the classi-
cal semantics and for queries without negation and
unbounded temporal operators, rigid predicates can
be handled by adding a set of assertions of polyno-
mial size to each ABox from the TKB. However, our
approach, which reduces TCQ answering with rigid
predicates to TCQ answering without rigid predicates,
works only for BTCQ entailment under the classical
semantics.

We then showed that in the case without rigid pred-
icates and for queries without negation, TCQ answer-

ing under IAR semantics can be implemented by com-
bining algorithms developed for TCQ answering un-
der the classical semantics with algorithms for CQ
answering under IAR semantics over atemporal KBs.
Moreover, we showed that when disallowing some of
the operators in the queries, the same method can be
used for AR semantics, while for full TCQs without
negation, it provides for a sound approximation of the
AR answers. Unfortunately, this is not the case for
brave semantics, which is relevant for practical appli-
cations such as recognizing highly critical situations.
Thus it would be useful to characterize the queries and
TBoxes for which this method is correct. Now, fully
fledged practical algorithms still remain to be found for
inconsistency-tolerant temporal query answering with
rigid predicates.

Another interesting open question is how the com-
plexity changes if we admit not only the qualitative
temporal operators from LTL, but also metric temporal
operators as found in MTL or LTLbin [20, 51, 52]. In
LTLbin, temporal operators can be annotated by time
intervals over which they are evaluated. In a query lan-
guage with these operators, it would for example be
possible to directly express that a query was entailed
at some point during the last 5–10 time units, using the
expression ♦−[5,10]φ. It is well-known that LTLbin for-
mulas can be exponentially encoded in LTL (assuming
a binary encoding of the intervals) [52], which would
also apply to our setting. This immediately gives com-
plexity upper bounds due to our results, tight in the
case of data complexity, but with an exponential in-
crease in the case of combined complexity. This blow-
up might be unavoidable, since propositional LTLbin is
EXPSPACE-complete. In fact, combinations of LTLbin

operators with description logics often lead to an ex-
ponential increase in complexity [20, 53], and it would
be interesting to investigate whether this also happens
for the settings considered in this paper. Regarding
MTL, an initial investigation of query answering with
a Horn-fragment of MTL has been performed in [19].
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Appendix A. Detailed proofs

We start by defining the notions of conflicts and
causes that will be used in some proofs. A conflict for
a KB K = 〈T ,A〉 is a minimal T -inconsistent subset
of A. A cause for a BCQ q w.r.t. K is a minimal T -
consistent subset C ⊆ A such that 〈T , C〉 |= q. The
following definitions extend these notions to the tem-
poral setting.

Definition A.1 (Conflicts of a TKB). A conflict of a
TKB K = 〈T , (Ai)06i6n〉 is a sequence of ABoxes
(A′i)06i6n such that {(α, i) | α ∈ A′i , 0 6 i 6 n} is a
minimal T -inconsistent subset of {(α, i) | α ∈ Ai, 0 6
i 6 n}.

The conflicts of a DL-LiteR-TKB are at most
binary, i.e., contain at most two timed assertions
(Fact 6.11).

Definition A.2 (Causes for a BTCQ in a TKB).
A cause for a BTCQ φ at time point p in K =
〈T , (Ai)06i6n〉 is a sequence of ABoxes (Ci)06i6n

such that {(α, i) | α ∈ Ci, 0 6 i 6 n} is a minimal
T -consistent subset of {(α, i) | α ∈ Ai, 0 6 i 6 n}
such that 〈T , (Ci)06i6n〉, p |= φ.

Note that a KB (resp. TKB) is consistent iff it has no
conflict, and that a BCQ (resp. BTCQ) is entailed from
a KB (resp. a TKB) K under brave semantics iff it has
some cause in K, since such a cause can be extended
to a repair that entails the query.

A.1. Proofs of complexity results

Hardness of data complexity for brave semantics
in EL⊥.

Proposition 6.9. BTCQ entailment from an EL⊥-TKB
with NRC 6= ∅ is

– coNP-hard w.r.t. data complexity under AR and IAR
semantics, and

– Σp
2-hard w.r.t. data complexity under brave seman-

tics.

Proof. The lower bounds for AR and IAR semantics
follow from the atemporal case, so that we only have
to provide a lower bound for brave semantics.

We show that the complement of brave TCQ entail-
ment is Πp

2-hard by reduction from QBF2,∀. Let Φ =
∀x1 . . . xm∃y1 . . . yr ϕ be a QBF2,∀-formula, where ϕ =∧h

i=0 `
0
i ∨ `1i ∨ `2i is a 3-CNF formula over the propo-

sitional variables {x1, . . . , xm, y1, . . . , yr}. Based on Φ,
we define the TKB K = 〈T , (Ai)06i63h+2〉 and the
TCQ φ as follows, where NRC = {T}.

T = {∃Pos.T v Sat,∃Neg.F v Sat,

∃FromPos.Sat v T,∃FromNeg.Sat v F,

∃FromY.Sat v T, T u F v ⊥,

T u ∃ValY.T v ⊥}

φ =¬�b(NotFirst(c) ∨ Sat(c)∨

#Sat(c) ∨##Sat(c))

For each clause `0i ∨ `1i ∨ `2i , i ∈ [0, h], we define the
following three ABoxes A3i+k (0 6 k 6 2):

A3i+0 =B ∪ B3i+0

A3i+k =B ∪ B3i+k ∪ {NotFirst(c)}, 1 6 k 6 2,

where

B ={T(x j), F(x j) | 1 6 j 6 m}∪

{ValY(y j,¬y j), | 1 6 j 6 r}

B3i+k ={Pos(c, x j), FromPos(x j, c)} if `k
i = x j
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B3i+k ={Neg(c, x j), FromNeg(x j, c)} if `k
i = ¬x j

B3i+k ={FromY(y j, c)} if `k
i = y j

B3i+k ={FromY(¬y j, c)} if `k
i = ¬y j.

Claim. Φ is valid iff K, 0 6|=brave φ.

Proof of claim. The repairs of K correspond to
the valuations of the x j. Indeed, since T is rigid
and disjoint from F, each pair of timed assertions
{(T(x j), i1), (N(x j), i2)} is inconsistent, so every x j
is such that a repair of K contains either (T(x j), i)
for every i, or (F(x j), i) for every i. For each repair
A′ = (A′i)06i63h+2 of K, we denote by νA

′

X the valua-
tion of the x j defined by νA

′

X (x j) = true if T(x j) ∈ A′1.
Correspondingly, for every valuation νX of the x j, we
denote by AνX = (AνX

i )06i63h+2 the repair of K de-
fined by T(x j) ∈ AνX

i for every i if νX(x j) = true.

Assume that Φ is valid and let A′ = (A′i)06i63h+2

be a repair of K. Since Φ is valid, there then exists
a valuation νY of the y j such that ϕ[x j ← νA

′

X (x j)]
is satisfied by νY . Let J = (Ii)i>0 be a model of
〈T , (A′i)06i63h+2〉 that respects rigid predicates and
such that for every i,

– yIi
j ∈ TIi iff νY(y j) = true,

– ¬yIi
j ∈ TIi iff νY(y j) = false, and

– if there exists some d such that (dIi , cIi) ∈ FromYIi

and dIi ∈ TIi , then cIi ∈ SatIi .

One can verify that such a model always exists.
First, because the role ValY connects only individuals
of the type y j and ¬y j, and we only assign T to one
of them, these additional constraints respect the TBox
axiom T u ∃ValY.T v ⊥. Second, the assignment of c
to Sat respects ∃FormY.Sat v T by construction.

It is easy to see that J , 0 |= �b(NotFirst(c) ∨
Sat(c) ∨ #Sat(c) ∨ ##Sat(c)). Indeed, at each time
point p ∈ [0, 3h + 2], either NotFirst(c) is true, or
p = 3i, in which case we show that Sat(c) is true at
time point 3i + k, where `k

i is the first literal of the
clause `0i ∨ `1i ∨ `2i satisfied by νA

′

X ∪ νY .

– If `k
i = x j, then νA

′

X (x j) = true. Thus, by construc-
tion, T(x j) ∈ A′3i+k, and therefore J , 3i + k |=
T(x j). Moreover, since J , 3i + k |= Pos(c, x j), also
J , 3i + k |= Sat(c), because J is a model of T .

– If `k
i = ¬x j, then νA

′

X (x j) = false. Thus, by con-
struction, F(x j) ∈ A′3i+k, and therefore J , 3i + k |=
F(x j). Moreover, since J , 3i + k |= Neg(c, x j), we
obtain J , 3i + k |= Sat(c) because J is a model
of T .

– If `k
i = y j, then νY(y j) = true. Thus J , 3i + k |=

T(y j), and since J , 3i + k |= FromY(y j, c), by con-
struction of J , it follows that J , 3i + k |= Sat(c).

– If `k
i = ¬y j, then νY(y j) = false. Thus J , 3i + k |=

T(¬y j), and since J , 3i + k |= FromY(¬y j, c), by
construction ofJ , it follows that J , 3i+k |= Sat(c).

It follows that J , 0 6|= φ, so 〈T , (A′i)06i63h+2〉, 0 6|= φ.
Hence, K, 0 6|=brave φ.

In the other direction, assume thatK, 0 6|=brave φ, and
let νX be a valuation of the x j. Since (AνX

i )06i63h+2 is a
repair of K, 〈T , (AνX

i )06i63h+2〉, 0 6|= φ, and there ex-
ists a model J = (Ii)i>0 of 〈T , (AνX

i )06i63h+2〉 that
respects rigid predicates and is such that J , 0 6|= φ,
i.e., J , 0 |= �b(NotFirst(c) ∨ Sat(c) ∨ #Sat(c) ∨
##Sat(c)). Let νY be the (partial) valuation of the y j

defined as follows: νY(y j) = true if there exists k such
that J , k |= T(y j), and νY(y j) = false if there exists k
such that J , k |= T(¬y j). The valuation νY is well-
defined because J is a model of T and respects rigid
predicates. Therefore, if J , k |= T(y j) for some k, then
J , k |= T(y j) for every k, and J , k 6|= T(¬y j). Other-
wise, we would have J , k |= T u ∃ValY.T(y j), which
contradicts our TBox axioms.

Since J , 0 |= �b(NotFirst(c) ∨ Sat(c) ∨#Sat(c) ∨
##Sat(c)), for every clause `0i ∨ `1i ∨ `2i , we have that
J , 3i + k |= Sat(c) for some k ∈ [0, 2]. For this k ∈
[0, 2], we show that νX ∪ νY satisfies `k

i .

– If `k
i = x j, then J , 3i + k |= FromPos(x j, c),

and since J , 3i + k |= Sat(c) and J respects
∃FromPos.Sat v T, also J , 3i + k |= T(x j). It fol-
lows that (T(x j), k) ∈ (AνX

i )06i63h+2 for every k
(otherwise, by maximality of repairs, (F(x j), k) ∈
(AνX

i )06i63h+2 and J assigns x j to T and F at some
time point, which would contradict the TBox axiom
T u F v ⊥). Hence, νX(x j) = true.

– If `k
i = ¬x j, then J , 3i + k |= FromNeg(x j, c),

and since J , 3i + k |= Sat(c) and J respects
∃FromNeg.Sat v F, also J , 3i + k |= F(x j). It fol-
lows that (F(x j), k) ∈ (AνX

i )06i63h+2 for every k
(otherwise (T(x j), k) ∈ (AνX

i )06i63h+2 and J as-
signs x j to T and F at some time point). Hence
νX(x j) = false.

– If `k
i = y j, then J , 3i + k |= FromY(y j, c), and since

J , 3i+k |= Sat(c), andJ respects ∃FromY.Sat v T,
also J , 3i + k |= T(y j). We obtain νY(y j) = true.

– If `k
i = ¬y j, then J , 3i + k |= FromY(¬y j, c),

and since J , 3i + k |= Sat(c) and J respects
∃FromY.Sat v T, also J , 3i + k |= T(¬y j), so that
we obtain νY(y j) = false.
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It follows that νX∪νY satisfies every clause `0i ∨`1i ∨`2i .
We have thus shown that ϕ[x j ← νX(x j), y j ← νY(y j)]
evaluates to true, and that Φ is valid.

Canonical model property.

Theorem 7.4. If L has the canonical model property
for BCQ entailment, then L also has the canonical
model property for entailment of BTCQs without nega-
tion.

Proof. Let ĨK̃ be the canonical model of K̃ and JK =

(Ii)i>0 = temp(ĨK̃). We show that JK is a canoni-
cal model of K for BTCQs without negation, that is,
for every BTCQ φ that does not contain any negation,
K, p |= φ iff JK, p |= φ.

Since by Lemma 6.2, JK is a model of K that
respects rigid predicates, if K, p |= φ, then also
JK, p |= φ. For the other direction, we show by in-
duction on the structure of φ that JK, p |= φ implies
K, p |= φ.

If φ = q is a BCQ, by Lemma 7.1, K, p |= q
iff K̃ |= q̃p, which is exactly the case iff ĨK̃ |= q̃p.
By construction of JK, it follows that K, p |= q iff
JK, p |= q.

Assume that for two BTCQs φ1, φ2 and any p > 0,
JK, p |= φi implies K, p |= φi (i ∈ {1, 2}). We can
show the following for BTCQs built from φ1, φ2.

– If JK, p |= φ1 ∧ φ2, then JK, p |= φ1 and JK, p |=
φ2. Hence by assumption, K, p |= φ1 and K, p |=
φ2, and thus K, p |= φ1 ∧ φ2.

– IfJK, p |= φ1∨φ2, thenJK, p |= φ1 orJK, p |= φ2.
Hence, by assumption,K, p |= φ1 orK, p |= φ2, and
thus K, p |= φ1 ∨ φ2.

– If JK, p |= #φ1, then JK, p + 1 |= φ1. Hence, by
assumption, K, p + 1 |= φ1, and thus K, p |= #φ1.

– We can show similarly that JK, p |=  b φ1 im-
plies K, p |=  b φ1, that JK, p |= #−φ1 implies
K, p |= #−φ1, and that JK, p |=  −φ1 implies
K, p |=  −φ1.

– If JK, p |= �φ1, then for every k > p, JK, k |= φ1.
Hence, by assumption, for every k > p, K, k |= φ1,
and thus K, p |= �φ1.

– We can show similarly that JK, p |= �bφ1 implies
K, p |= �bφ1, and that JK, p |= �−φ1 implies
K, p |= �−φ1.

– If JK, p |= ♦φ1, then there exists k > p such that
JK, k |= φ1. Hence, by assumption, there exists k >
p such that K, k |= φ1, and thus K, p |= ♦φ1 .

– We can show similarly that JK, p |= ♦bφ1 implies
K, p |= ♦bφ1, and that JK, p |= ♦−φ1 implies
K, p |= ♦−φ1.

– If JK, p |= φ1U φ2, then there exists k > p such
that JK, k |= φ2 and for every j such that p 6 j <
k, JK, j |= φ1. Hence, by assumption, there exists
k > p such that K, k |= φ2 and for every j such that
p 6 j < k, K, j |= φ1. As a consequence, K, p |=
φ1U φ2.

– We can show similarly that JK, p |= φ1Ub φ2 im-
plies K, p |= φ1Ub φ2, and that JK, p |= φ1S φ2 im-
plies K, p |= φ1S φ2.

We conclude that for every BTCQ φ without negation,
JK, p |= φ implies K, p |= φ, and that JK is a canon-
ical model of K for BTCQs without negation. It fol-
lows that if a DL L has the canonical model prop-
erty for BCQ entailment, then L also has the canoni-
cal model property for entailment of BTCQs without
negation.

Proposition 7.6. Assume L has the canonical model
property for BCQ entailment. Then, for every L-
TKBs K and K′, if K and K′ coincide for BCQ entail-
ment, thenK andK′ coincide for entailment of BTCQs
without negation. I.e., if for every time point p and
BCQ q, K, p |= q iff K′, p |= q, then for every time
point p and BTCQ φ without negation, K, p |= φ iff
K′, p |= φ.

Proof. Assume that for every time point p and BCQ
q, K, p |= q iff K′, p |= q. We can then show by
induction on the structure of φ that K, p |= φ iff
K′, p |= φ. For φ = ∃~y.ψ(~y), this holds by assump-
tion. Assume that for two BTCQs φ1, φ2, K, p |= φi iff
K′, p |= φi (i ∈ {1, 2}). Then, since by Theorem 7.4,
L has the canonical model property for entailment of
BTCQ without negation, by applying the definitions of
BTCQ satisfaction in Table 1 to the canonical models
of K and K′, we obtain the following about formulas
composed of φ1 and φ2.

– K, p |= φ1 ∧ φ2 iff K, p |= φ1 and K, p |= φ2,
which by assumption is the case iff K′, p |= φ1 and
K′, p |= φ2, i.e., iff K′, p |= φ1 ∧ φ2.

– K, p |= φ1 ∨ φ2 iff K, p |= φ1 or K, p |= φ2, which
by assumption is the case iff K′, p |= φ1 or K′, p |=
φ2, i.e., iff K′, p |= φ1 ∨ φ2.

– K, p |= #φ1 iffK, p+1 |= φ1, which by assumption
is the case iff K′, p + 1 |= φ1, i.e., iff K′, p |= #φ1.

– We show in the same way that K, p |=  b φ1 iff
K′, p |=  b φ1, that K, p |= #−φ1 iff K′, p |=
#−φ1, and that K, p |=  −φ1 iff K′, p |=  −φ1.

– K, p |= �φ1 iff for every k, k > p,K, k |= φ1, which
by assumption is the case iff for every k, k > p,
K′, k |= φ1, i.e., iff K′, p |= �φ1.
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– We show in the same way that K, p |= �bφ1 iff
K′, p |= �bφ1, and that K, p |= �−φ1 iff K′, p |=
�−φ1.

– K, p |= ♦φ1 iff there exists k, k > p, K, k |= φ1,
which by assumption is the case iff there exists k,
k > p, K′, k |= φ1, i.e., iff K′, p |= ♦φ1.

– We show in the same way that K, p |= ♦bφ1 iff
K′, p |= ♦bφ1, and that K, p |= ♦−φ1 iff K′, p |=
♦−φ1.

– K, p |= φ1U φ2 iff there exists k, k > p, K, k |=
φ2 and for every j, p 6 j < k, K, j |= φ1, which
by assumption is the case iff there exists k, k > p,
K′, k |= φ2 and for every j, p 6 j < k, K′, j |= φ1,
i.e., iff K′, p |= φ1U φ2.

– We show in the same way that K, p |= φ1Ub φ2

iff K′, p |= φ1Ub φ2, and that K, p |= φ1S φ2 iff
K′, p |= φ1S φ2.

We conclude that for every BTCQ without negation φ
and time point p, we have K, p |= φ iffK′, p |= φ.

Justification structures for brave entailment of BTCQs
without negation in the case NRC = NRR = ∅. We
show that if NRC = NRR = ∅ and φ is a BTCQ without
negation, then K, p |=brave φ iff there exists a correct
brave-justification structure J for φ inK that justifies φ
at time point p. We prove both directions in separate
lemmas.

Lemma A.3. If NRC = NRR = ∅ and there is a correct
brave-justification structure J for φ inK that justifies φ
at time point p, then K, p |=brave φ.

Proof. In order to show K, p |=brave φ, we determine
a cause (Ci)06i6n for φ. To do this, we first select
a sequence of tuples from J as follows, where we
make sure that we have exactly one tuple for every i,
0 6 i 6 n.

1. The tuple (p, Lp
now, F

p
now, F

p
prev, F

p
next) is such that

φ ∈ F p
now.

2. If the tuple (i, Li
now, F

i
now, F

i
prev, F

i
next) was selected

and 0 < i 6 p, then select a tuple of the form
(i− 1, Li−1

now , F
i−1
now , F

i−1
prev , F

i−1
next), where F i−1

now = F i
prev

and F i−1
next = F i

now.
3. If the tuple (i, Li

now, F
i
now, F

i
prev, F

i
next) was selected

and p 6 i < n, then select a tuple of the form
(i + 1, Li+1

now, F
i+1
now , F

i+1
prev, F

i+1
next), where F i+1

now = F i
next

and F i+1
prev = F i

now.

Because J is correct and justifies φ at time point p,
such a sequence can always be selected.

Based on this sequence, we construct a sequence
of ABoxes (Ci)06i6n. For this, we take for each of
the tuples (i, Li

now, F
i
now, F

i
prev, F

i
next) a cause Ci ⊆ Ai

that entails
∧

q∈Li
now

q. Such a cause exists because
〈T ,Ai〉 |=brave

∧
q∈Li

now
q by Condition 1. Since each Ci

is consistent and we do not have rigid predicates, the
TKB 〈T , (Ci)06i6n〉 is consistent.

We prove 〈T , (Ci)06i6n〉, p |= φ by showing that
〈T , (Ci)06i6n〉, p |= F p

now. To do this, we consider the
sets F i,d

now = {ψ | ψ ∈ F i
now, degree(ψ) 6 d} of LTL

formulas, where degree(ψ) is the maximal number of
nested LTL operators in ψ, and prove by induction on d
that for all 0 6 i 6 n and for all ψ ∈ F i,d

now, we have
〈T , (Ci)06i6n〉, i |= ψ, i.e., 〈T , (Ci)06i6n〉, i |= F i,d

now.
For d = 0, F i,0

now contains only conjunctive queries
of the form ∃~yϕ(~y). Since for every ψ ∈ BCQ(φ),
F i

now |= ψ implies ψ ∈ Li
now (Condition 4), we

have that F i,0
now ⊆ Li

now. From this, since 〈T , Ci〉 |=∧
q∈Li

now
q, it follows that 〈T , (Ci)06i6n〉, i |= F i,0

now.
Assume that for all 0 6 i 6 n, 〈T , (Ci)06i6n〉, i |=

F i,d
now. Let ψ ∈ F i,d+1

now for some 0 6 i 6 n. If ψ ∈ F i,d
now,

then 〈T , (Ci)06i6n〉, i |= ψ. Otherwise, degree(ψ) =
d + 1 and we distinguish the cases based on the syn-
tactical form of ψ.

– ψ = ψ1∧ψ2, where degree(ψ1) 6 d, degree(ψ2) 6
d. Since ψ ∈ F i

now, then F i
now |= ψ1 and F i

now |= ψ2,
and by Condition 5, ψ1 ∈ F i

now and ψ2 ∈ F i
now.

It follows that ψ1 ∈ F i,d
now and ψ2 ∈ F i,d

now, so
〈T , (Ci)06i6n〉, i |= ψ1 and 〈T , (Ci)06i6n〉, i |= ψ2.
Hence, 〈T , (Ci)06i6n〉, i |= ψ1 ∧ ψ2.

– ψ = ψ1∨ψ2, where degree(ψ1) 6 d, degree(ψ2) 6
d. Since ψ ∈ F i

now, then by Condition 7 either
ψ1 ∈ F i

now or ψ2 ∈ F i
now. It follows that ψ1 ∈ F i,d

now
or ψ2 ∈ F i,d

now, so that 〈T , (Ci)06i6n〉, i |= ψ1 or
〈T , (Ci)06i6n〉, i |= ψ2. Hence, 〈T , (Ci)06i6n〉, i |=
ψ1 ∨ ψ2.

– ψ = #ψ1, where degree(ψ1) 6 d. By Condition 8,
either i < n, or i = n and 〈∅, (∅)06i6n〉, n+1 |= �ψ1.
In the latter case, note that the canonical models of
〈T , (Ci)06i6n〉 and 〈∅, (∅)06i6n〉 coincide after time
point n (atomic concepts and roles have empty inter-
pretations), and since ψ1 does not contain any past
operators, 〈T , (Ci)06i6n〉, n + 1 |= �ψ1 is a direct
consequence of 〈∅, (∅)06i6n〉, n + 1 |= �ψ1. Then
ψ1 is true at any time point j > n and in particular,
〈T , (Ci)06i6n〉, n |= #ψ1.
In the former case, since #ψ1 ∈ F i

now = F i+1
prev, we

have
∧

q∈Li+1
now

q∧#−(
∧
χ∈Fi+1

prev
χ)∧#(

∧
χ∈Fi+1

next
χ) |=

#−#ψ1 |= ψ1, and by Condition 6, ψ1 ∈ F i+1
now .
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Hence, ψ1 ∈ F i+1,d
now , 〈T , (Ci)06i6n〉, i + 1 |= ψ1, and

〈T , (Ci)06i6n〉, i |= #ψ1.
– ψ = #−ψ1, where degree(ψ1) 6 d. This case is

similar to #ψ1.
– ψ =  b ψ1, where degree(ψ1) 6 d. If i < n, since
 b ψ1 ∈ F i

now = F i+1
prev, we have that

∧
q∈Li+1

now
q ∧

#−(
∧
χ∈Fi+1

prev
χ)∧#(

∧
χ∈Fi+1

next
χ) |= #− b ψ1 |= ψ1,

so that by Condition 6, ψ1 ∈ F i+1
now . Hence ψ1 ∈

F i+1,d
now and 〈T , (Ci)06i6n〉, i + 1 |= ψ1, which im-

plies 〈T , (Ci)06i6n〉, i |=  ψ1. Otherwise, i = n,
and 〈T , (Ci)06i6n〉, n |=  b ψ1 by definition of  b .

– ψ =  −ψ1 where degree(ψ1) 6 d. This case is
similar to  b ψ1.

– ψ = �ψ1, where degree(ψ1) 6 d. By Condition 7,
〈∅, (∅)06i6n〉, n + 1 |= �ψ1.
We show that 〈T , (Ci)06i6n〉, i |= �ψ1 by descend-
ing induction on i.
For i = n, note that the canonical models of
〈T , (Ci)06i6n〉 and 〈∅, (∅)06i6n〉 coincide after time
point n (atomic concepts and roles have empty inter-
pretations), and since ψ1 does not contain any past
operators, 〈T , (Ci)06i6n〉, n + 1 |= �ψ1 is a direct
consequence of 〈∅, (∅)06i6n〉, n + 1 |= �ψ1. Then,
〈T , (Ci)06i6n〉, n |= �ψ1 iff 〈T , (Ci)06i6n〉, n |= ψ1,
that is iff ψ1 ∈ Fn,d

now by induction. This is the case
by Condition 5.
For i < n, we assume by inductive hypothesis that
�ψ1 ∈ F i+1

now implies 〈T , (Ci)06i6n〉, i + 1 |= �ψ1.
Since�ψ1 ∈ F i

now = F i+1
prev, we have that

∧
q∈Li+1

now
q∧

#−(
∧
χ∈Fi+1

prev
χ) ∧ #(

∧
χ∈Fi+1

next
χ) |= #−�ψ1 |=

�ψ1, so that by Condition 6, �ψ1 ∈ F i+1
now , and

by assumption 〈T , (Ci)06i6n〉, i + 1 |= �ψ1. More-
over, since �ψ1 ∈ F i

now, then F i
now |= ψ1, and

ψ1 ∈ F i
now by Condition 5. Hence, ψ1 ∈ F i,d

now and
〈T , (Ci)06i6n〉, i |= ψ1.
It follows that 〈T , (Ci)06i6n〉, i |= �ψ1.

– ψ = �bψ1 where degree(ψ1) 6 d. We show
〈T , (Ci)06i6n〉, i |= �bψ1 by descending induction
on i.
For i = n, if �bψ1 ∈ Fn

now, then ψ1 ∈ Fn
now

by Condition 8, and therefore ψ1 ∈ Fn,d
now and

〈T , (Ci)06i6n〉, n |= ψ1. As a consequence, we ob-
tain that 〈T , (Ci)06i6n〉, n |= �bψ1.
For i < n, we assume by inductive hypothesis that
�bψ1 ∈ F i+1

now implies 〈T , (Ci)06i6n〉, i + 1 |= �bψ1.
Then, since �bψ1 ∈ F i

now = F i+1
prev, we have that∧

q∈Li+1
now

q ∧ #−(
∧
χ∈Fi+1

prev
χ) ∧ #(

∧
χ∈Fi+1

next
χ) |=

#−�bψ1 |= �bψ1. Therefore, by Condition 6,
�bψ1 ∈ F i+1

now , and by assumption, 〈T , (Ci)06i6n〉, i+
1 |= �bψ1. Moreover, since �bψ1 ∈ F i

now, then

F i
now |= ψ1, and ψ1 ∈ F i

now by Condition 5. Hence,
ψ1 ∈ F i,d

now and 〈T , (Ci)06i6n〉, i |= ψ1. It follows
that 〈T , (Ci)06i6n〉, i |= �bψ1.

– ψ = �−ψ1, where degree(ψ1) 6 d. This case is
similar to �bψ1.

– ψ = ♦ψ1, where degree(ψ1) 6 d. We prove
〈T , (Ci)06i6n〉, i |= ♦ψ1 by descending induction
on i.
For i = n, if ♦ψ1 ∈ Fn

now, then ψ1 ∈ Fn
now or

〈∅, (∅)06i6n〉, n + 1 |= �ψ1 by Condition 8.
In the former case, ψ1 ∈ Fn,d

now and 〈T , (Ci)06i6n〉, n |=
ψ1, which implies that 〈T , (Ci)06i6n〉, n |= ♦ψ1.
In the latter case we can show as in the proof for #
that 〈T , (Ci)06i6n〉, n+1 |= �ψ1, which implies that
〈T , (Ci)06i6n〉, n + 1 |= ♦ψ1.
For i < n, we assume by inductive hypothesis that
♦ψ1 ∈ F i+1

now implies 〈T , (Ci)06i6n〉, i + 1 |= ♦ψ1.
Since ♦ψ1 ∈ F i

now, by Condition 7, either (i) ψ1 ∈
F i

now, ψ1 ∈ F i,d
now and 〈T , (Ci)06i6n〉, i |= ψ1, and

therefore 〈T , (Ci)06i6n〉, i |= ♦ψ1, or (ii) ♦ψ1 ∈
F i

next = F i+1
now , and by assumption 〈T , (Ci)06i6n〉, i +

1 |= ♦ψ1. It follows that 〈T , (Ci)06i6n〉, i |= ♦ψ1.
– ψ = ♦bψ1, where degree(ψ1) 6 d. This case is

similar as for ♦ψ1.
– ψ = ♦−ψ1, where degree(ψ1) 6 d. This case is

similar to ♦ψ1.
– ψ = ψ1Uψ2 where degree(ψ1) 6 d, degree(ψ2) 6

d. We show that 〈T , (Ci)06i6n〉, i |= ψ1Uψ2 by de-
scending induction on i.
For i = n, if ψ1Uψ2 ∈ Fn

now, then ψ2 ∈ Fn
now, or

〈∅, (∅)06i6n〉, n + 1 |= �ψ2 by Condition 8.
In the former case, ψ2 ∈ Fn,d

now, so 〈T , (Ci)06i6n〉, n |=
ψ2, which implies that 〈T , (Ci)06i6n〉, n |= ψ1Uψ2.
In the latter case, we can show as in the proof
for # that 〈T , (Ci)06i6n〉, n + 1 |= �ψ2, which im-
plies that 〈T , (Ci)06i6n〉, n + 1 |= ψ1Uψ2. Then
〈T , (Ci)06i6n〉, n |= ψ1Uψ2 iff 〈T , (Ci)06i6n〉, n |=
ψ1 or 〈T , (Ci)06i6n〉, n |= ψ2, that is iff ψ1 ∈ Fn,d

now
or ψ1 ∈ Fn,d

now by induction. This is the case by Con-
dition 5.
For i < n, we assume by inductive hypothesis
that ψ1Uψ2 ∈ F i+1

now implies 〈T , (Ci)06i6n〉, i+1 |=
ψ1Uψ2. Then, since ψ1Uψ2 ∈ F i

now, by Condi-
tion 7, either (i) ψ2 ∈ F i

now, ψ2 ∈ F i,d
now and

〈T , (Ci)06i6n〉, i |= ψ2, which in turn implies
〈T , (Ci)06i6n〉, i |= ψ1Uψ2, or (ii) ψ1 ∈ F i

now and
ψ1 ∈ F i,d

now, which implies 〈T , (Ci)06i6n〉, i |= ψ1,
and ψ1Uψ2 ∈ F i

next = F i+1
now . Therefore, by assump-

tion we obtain 〈T , (Ci)06i6n〉, i + 1 |= ψ1Uψ2 and
〈T , (Ci)06i6n〉, i |= ψ1Uψ2.
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– ψ = ψ1Ub ψ2, where degree(ψ1) 6 d, degree(ψ2) 6
d. This case can be shown in the same way as for
ψ1Uψ2.

– ψ = ψ1Sψ2, where degree(ψ1) 6 d, degree(ψ2) 6
d. This case is similar to ψ1Uψ2.

Lemma A.4. If NRC = NRR = ∅ and K, p |=brave φ,
then there exists a brave-justification structure for φ
in K that is correct and justifies φ at time point p.

Proof. AssumeK, p |=brave φ. Then there exists a TKB
K′ = 〈T , (Ci)06i6n〉, such that Ci ⊆ Ai and K′ is
consistent and K′, p |= φ. Based on K′, we construct
a brave-justification structure J for φ in K that jus-
tifies φ at time point p. The elements of the tuples
(i, Li

now, F
i
now, F

i
prev, F

i
next) are selected as follows.

1. Li
now is the largest subset of BCQ(φ) such that
K′, i |=

∧
q∈Li

now
q,

2. F i
now is the largest subset of F(φ) such that K′, i |=

F i
now,

3. F i
prev = F i−1

now for i > 0,
4. F i

next = F i+1
now for i < n, and

5. F0
prev = Fn

next = ∅.

We show that J is correct and justifies φ at time point p.
The latter case is easy: since K′, p |= φ, we have φ ∈
F p

now, and therefore φ is justified by J at time point p. It
remains to show that J is correct, i.e., that every tuple
of J satisfies all conditions in the definition of justified
tuples.

Conditions 1, 2, 3 and 4 follow straightforwardly
from the construction. Condition 5 is satisfied because
if ψ ∈ F(φ) is such that ψ /∈ F i

now, then K′, i 6|= ψ and
F i

now 6|= ψ.
For Condition 6, we show that for every ψ ∈

F(φ) and for every 0 6 i 6 n, if
∧

q∈Li
now

q ∧
#−(

∧
χ∈Fi

prev
χ) ∧ #(

∧
χ∈Fi

next
χ) |= ψ, then K′, i |= ψ,

which in turn implies ψ ∈ F i
now. Since K′ entails ev-

ery CQ in Li
now at time point i, every TCQ in F i

prev at
time point i − 1, and every TCQ in F i

next at time point
i + 1, every TCQ that corresponds to a formula en-
tailed by Li

now, #−(
∧
χ∈Fi

prev
χ) or #(

∧
χ∈Fi

next
χ) is en-

tailed from K′ at time point i. Hence, if
∧

q∈Li
now

q ∧
#−(

∧
χ∈Fi

prev
χ) ∧#(

∧
χ∈Fi

next
χ) |= ψ, then K′, i |= ψ.

For Condition 7, we do a case analysis based on the
structure of the elements in Fnow, using the Proposi-
tion 9.12 and the fact that NRC = NRR = ∅.

– If K′, i |= ψ ∨ ψ′, then K′, i |= ψ or K′, i |= ψ′.
Therefore, if ψ ∨ ψ′ ∈ F i

now, either ψ ∈ F i
now, or

ψ′ ∈ F i
now.

– If K′, i |= ♦ψ, then K′, i |= ψ or K′, i + 1 |= ♦ψ.
Therefore, if ♦ψ ∈ F i

now, either ψ ∈ F i
now or ♦ψ ∈

F i+1
now = F i

next.
– If K′, i |= ♦bψ, then K′, i |= ψ or K′, i + 1 |= ♦bψ.

Therefore, if ♦bψ ∈ F i
now, either ψ ∈ F i

now or ♦bψ ∈
F i+1

now = F i
next.

– If K′, i |= ♦−ψ, then K′, i |= ψ or K′, i− 1 |= ♦−ψ.
Therefore, if ♦−ψ ∈ F i

now, either ψ ∈ F i
now or

♦−ψ ∈ F i−1
now = F i

prev.
– If K′, i |= ψUψ′, then K′, i |= ψ′, or K′, i |= ψ and
K′, i+1 |= ψUψ′. Therefore, if ψUψ′ ∈ F i

now, either
ψ′ ∈ F i

now, or ψ ∈ F i
now and ψUψ′ ∈ F i

next.
– If K′, i |= ψUb ψ′, then K′, i |= ψ′ or K′, i |= ψ and
K′, i + 1 |= ψUb ψ′. Therefore, if ψUb ψ′ ∈ F i

now,
either ψ′ ∈ F i

now, or ψ ∈ F i
now and ψUb ψ′ ∈ F i

next.
– If K′, i |= ψSψ′, then K′, i |= ψ′, or K′, i |= ψ and
K′, i− 1 |= ψSψ′. Therefore, if ψSψ′ ∈ F i

now, then
either ψ′ ∈ F i

now, or ψ ∈ F i
now and ψSψ′ ∈ F i

prev.
– If ψ is of the form �ϕ and ψ ∈ Fnow, i.e., K′, i |=
�ϕ, then for every j > n, K′, j |= ϕ. Since ϕ
contains no past operators, and without rigid pred-
icates, no BCQ is entailed from K′ at time point
j > n, the only possibility is that ϕ is trivially
entailed at any time point j > n. It follows that
〈∅, (∅)06i6n〉, n + 1 |= �ϕ.

The proof of Condition 8 is as follows.

– If ψ ∈ F(φ) is of the form b ϕ , thenK′, n |= ψ and
also ψ ∈ Fn

now.
– Assume ψ ∈ F(φ) is of the form #ϕ and such

that 〈∅, (∅)06i6n〉, n + 1 6|= �ϕ. Note that, because
〈∅, (∅)06i6n〉, n + 1 6|= �ϕ, ϕ cannot be trivially en-
tailed at any time point j > n, and consequently also
not at n + 1. In the absence of rigid roles, and be-
cause ψ cannot contain past operators, we therefore
have K′, n + 1 6|= ϕ, which implies K′, n 6|= #ϕ and
ψ /∈ Fn

now.
– If ϕ ∈ Fn

now, then K′, n |= ϕ, which in turn im-
plies K′, n |= ♦ϕ, K′, n |= ♦bϕ, K′, n |= �bϕ,
K′, n |= ϕ′Uϕ and K′, n |= ϕ′Ub ϕ. It follows that
if any of those entailed TCQs are in F(φ), then they
are also in Fn

now For the other direction, we do a case
analysis.

∗ Assume ♦ϕ ∈ Fn
now and 〈∅, (∅)06i6n〉, n + 1 6|=

�ϕ. Note that, because 〈∅, (∅)06i6n〉, n+1 6|= �ϕ,
ϕ cannot be trivially entailed at any time point j >
n. If this would be the case, due to the absence of
rigid predicates, ϕ would also be trivially entailed
at every time point j > n. Because K′, n |= ♦ϕ,
we must have K′, n |= ϕ, since i) without rigid
predicates, ϕ cannot be entailed at any time point
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j > n, and ii) ϕ does not contain past operators.
Therefore, ϕ ∈ Fn

now.
∗ If ♦bϕ ∈ Fn

now, then K′, n |= ♦bϕ, which in turn
implies K′, n |= ϕ and ϕ ∈ Fn

now.
∗ If �bϕ ∈ Fn

now, then K′, n |= �bϕ, which in turn
implies K′, n |= ϕ and ϕ ∈ Fn

now.
∗ Assume ϕ′Uϕ ∈ Fn

now and 〈∅, (∅)06i6n〉, n + 1 6|=
�ϕ. Similar to the case for ♦, then K′, n |= ϕ′Uϕ
and K′, n |= ϕ, because i) ϕ cannot be entailed at
time point j > n in the absence of rigid predicates,
and ii) ϕ does not contain past operators. Conse-
quently, ϕ ∈ Fn

now.
∗ If ϕ′Ub ϕ ∈ Fn

now, also K′, n |= ϕ′Ub ϕ, which in
turn implies K′, n |= ϕ and ϕ ∈ Fn

now.

Condition 9 can be shown similarly as Condition 8.
We have shown that every tuple in J is justified, and

consequently that J is correct and justifies φ at p.

A.2. Proofs for Section 9

The following properties of chaserig(K) will be use-
ful for the proofs of Subsection 9.1.

Proposition A.5. chaserig(K) satisfies the following
properties.

(P1) xi1
aP1
∈ ΓN implies P1(a, xi1

aP1
) ∈ chaseKrig(Ai1).

(P2) xi1...il
aP1...Pl

∈ ΓN , l > 1 implies that chaseKrig(Ail)

contains Pl(xi1...il−1

aP1...Pl−1
, xi1...il

aP1...Pl
).

(P3) chaseKrig(Ai) |= B(xi1...il
aP1...Pl

) implies that T |=
∃P−l v B.

(P4) xi1...il
aP1...Pl

∈ ΓN , l > 1 implies T |= ∃P−l−1 v ∃Pl.

(P5) chaseKrig(Ai) |= B(a), a ∈ NKI implies 〈T ,Ai〉 |=
B(a) or there exists B′ := A|∃R|∃R− with A ∈
NRC,R ∈ NRR such that T |= B′ v B and there ex-
ists j such that 〈T ,A j〉 |= B′(a).

(P6) chaseKrig(Ai) |= B(xi1...il
aP1...Pl

) implies i = il or there
exists B′ := A|∃R|∃R− with A ∈ NRC,R ∈ NRR such
that T |= B′ v B and chaseKrig(Ail) |= B′(xi1...il

aP1...Pl
).

(P7) P(a, b) ∈ chaseKrig(Ai), a, b ∈ NKI implies
〈T ,Ai〉 |= P(a, b) or there exists P′ := R|R− with
R ∈ NRR such that T |= P′ v P and there exists j
such that 〈T ,A j〉 |= P′(a, b).

(P8) P(a, xi1
aP1

) ∈ chaseKrig(Ai), a ∈ NKI , i1 = i im-
plies T |= P1 v P and 〈T ,Ai〉 |= ∃x.P1(a, x) or
there exists B := A|∃R|∃R− with A ∈ NRC,R ∈ NRR

such that T |= B v ∃P1 and there exists j such that
〈T ,A j〉 |= B(a).

(P9) P(a, xi1
aP1

) ∈ chaseKrig(Ai), a ∈ NKI , i1 6= i implies
there exists P′ := R|R− with R ∈ NRR such that
T |= P1 v P′ v P.

(P10) P(x, y) ∈ chaseKrig(Ai), x, y ∈ ΓN implies
x = xi1...il

aP1...Pl
, y = xi1...ilil+1

aP1...PlPl+1
and T |= Pl+1 v P or

x = xi1...ilil+1

aP1...PlPl+1
, y = xi1...il

aP1...Pl
and T |= Pl+1 v P−.

(P11) P(xi1...il
aP1...Pl

, xi1...ilil+1

aP1...PlPl+1
) ∈ chaseKrig(Ai), il+1 6= i

implies there exists P′ := R|R− with R ∈ NRR

such that T |= Pl+1 v P′ v P and
P′(xi1...il

aP1...Pl
, xi1...ilil+1

aP1...PlPl+1
) ∈ chaseKrig(Ail+1

).

(P12) Pl(xi1...il−1

aP1...Pl−1
, xi1...il

aP1...Pl
) ∈ chaseKrig(Ail) implies

∃ j, 〈T ,A j〉 |= ∃xy.Pl−1(x, y).

Proof. We refer to [54] for a detailed proof of these
properties.

Lemma 9.3. If K is consistent, then JK is a model
of K that respects rigid predicates.

Proof. We first show that JK is a model of K, i.e., that
for every i ∈ [0, n], Ii |= Ai and for every i > 0,
Ii |= T . It is easy to see that for every i ∈ [0, n],
Ii |= Ai, because Ai ⊆ chaseKrig(Ai). We can show
that Ii satisfies every PI in T with similar arguments
as those used in [50]. We only consider the case where
i 6 n + 1 explicitly. For the case where i > n + 1,
we assume Ai to be replaced by An+1 in what fol-
lows. If a PI α ∈ Tp is not satisfied, there is an as-
sertion β ∈ chaseKrig(Ai) such that α is applicable to β
in chaseKrig(Ai). This is impossible given that every PI
applicable to β in S j

i at step j of the construction of
the rigid chase becomes not applicable to β in Sk

i for
some k > j. Indeed, because each PI can only be ap-
plied once to a given assertion, there are only finitely
many assertions before β, and only finitely many PIs
are applied to the assertions that precede β. Finally, we
show that because K is consistent, Ii satisfies every
negative inclusion of T . Indeed, if a negative inclusion
would not be satisfied, this would imply the existence
of a conflict B in chaseKrig(Ai). If B = {α}, the timed
assertion (α′, j) ∈ (Ai)06i6n from which α has been
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derived by applying PIs from Tp is clearly inconsis-
tent. Otherwise B = {α, β} with α derived from (α′, j)
and β derived from (β′, k). If j = k, {(α′, j), (β′, k)}
is clearly inconsistent. If j 6= k, since α and β belong
to chaseKrig(Ai), if j 6= i (resp. k 6= i), there exists
α′′ ∈ chaseKrig(Ai) rigid such that α derives from α′′,
which derives from α′ (resp. β′′ ∈ chaseKrig(Ai) rigid
such that β derives from β′′, which derives from β′).
Therefore, and because no sequence of interpreta-
tions that respects rigid predicates can be a model of
{(α′, j), (β′, k)} and T , {(α′, j), (β′, k)} is inconsis-
tent.

Moreover, the model JK respects rigid predicates,
because if an assertion β of chaseKrig(Ai) is rigid, either
β ∈ Ai and by construction β ∈ S0

k = A′k for every k,
or β has been derived at some step j by applying some
PI to an assertion of S j and β ∈ S j+1

k for every k, so
that in both cases β ∈ chaseKrig(Ak) for every k.

Lemma 9.4. If K is consistent, then for every BTCQ
without negation φ such that Nφ

I ⊆ NKI , K, p |= φ iff
JK, p |= φ.

Proof. Since JK = (Ii)i>0 with Ii = 〈∆, ·Ii〉 is
a model of K that respects rigid predicates, the first
direction is clear, and we only need to show that
JK, p |= φ implies K, p |= φ. Let J = (I ′i )i>0 with
I ′i = 〈∆′, ·I′i 〉 be a model ofK that respects rigid pred-
icates. We show by structural induction on φ that if
JK, p |= φ, then J , p |= φ.

If φ is a BCQ ∃~y.ψ(~y), we show that if there ex-
ists a homomorphism π of ∃~y.ψ(~y) into Ip, then I ′p |=
∃~y.ψ(~y). We define a mapping h from ∆ into ∆′, where
we assume w.l.o.g. that ∆ and ∆′ are disjoint.

1. For every a ∈ NKI , set h(aIp) = aI
′
p .

2. For every xi1
aP1
∈ ΓN , set h(xi1Ip

aP1
) = y, where

(aI
′
p , y) ∈ P

I′i1
1 . If there are several such y, choose

one of them randomly.
3. For every xi1...il

aP1...Pl
∈ ΓN with l > 1, set h(xi1...ilIp

aP1...Pl
) =

y, where (h(xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
I′il
l . If there are sev-

eral such y, choose one of them randomly.

We first show that h is well-defined, i.e., that in the
two latter cases, there always exists a y as required. We
show this by induction on l. For l = 1, because xi1

aP1
∈

ΓN , by (P1) P1(a, xi1
aP1

) ∈ chaseKrig(Ai1). Therefore, by
(P8), either (i) 〈T ,Ai1〉 |= ∃x.P1(a, x), and since I ′i1
is a model of 〈T ,Ai1〉, there exists (aI

′
p , y) ∈ P

I′i1
1 ,

or (ii) there exists B := A|∃R|∃R− with A ∈ NRC,

R ∈ NRR, such that T |= B v ∃P1, and there ex-
ists j such that 〈T ,A j〉 |= B(a). In the latter case,
since J is a model of K that respects rigid predicates,
I ′i1 |= B(a). Since I ′i1 is a model of T , there exists

(aI
′
p , y) ∈ P

I′i1
1 . Then, for l > 1, since xi1...il

aP1...Pl
∈ ΓN , by

(P4), T |= ∃P−l−1 v ∃Pl. Since by induction we have

(x, h(xi1...il−1Ip
aP1...Pl−1

)) ∈ P
I′il
l−1, it follows that there exists

(h(xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
I′il
l .

Next, we show that h is a homomorphism of Ip

into I ′p, which then implies that h ◦ π is a homomor-
phism of ∃~y.ψ(~y) into I ′p. We only consider the case
p 6 n explicitly, and assume Ap to be replaced with
An+1 for the case p > n.

For every a ∈ NKI and concept A, if aIp ∈
AIp , i.e., A(a) ∈ chaseKrig(Ap), then by (P5), ei-
ther (i) 〈T ,Ap〉 |= A(a), and since I ′p is a model
of 〈T ,Ap〉, also h(aIp) = aI

′
p ∈ AI

′
p , or (ii) there

exists a concept B = C|∃R|∃R− with C ∈ NRC,
R ∈ NRR, such that T |= B v A and there ex-
ists j such that 〈T ,A j〉 |= B(a). In the latter case,
since J is a model of K that respects rigid predi-
cates, I ′p |= B(a). Since I ′p is a model of T , it fol-
lows that I ′p |= A(a), so h(aIp) = aI

′
p ∈ AI

′
p . For

every pair a, b ∈ NKI and role P, if (aIp , bIp) ∈ PIp ,
by (P7), similar arguments can be used to prove that
(h(aIp), h(bIp)) = (aI

′
p , bI

′
p) ∈ PI

′
p .

For every xi1...il
aP1...Pl

∈ ΓN , such that xi1...ilIp
aP1...Pl

∈ AIp ,
i.e., A(xi1...il

aP1...Pl
) ∈ chaseKrig(Ap), by (P6) we are in one

of the following cases.

1. il = p. By (P3), T |= ∃P−l v A and by construction

of h, h(xi1...pIp
aP1...Pl

) = y with (h(xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
I′p
l .

Note that if l = 1, then xi1...il−1

aP1...Pl−1
= a. Since I ′p is a

model of T , it follows that y ∈ AI
′
p .

2. There exists B := C|∃R|∃R− with C ∈ NRC,R ∈
NRR such that T |= B v A and chaseKrig(Ail) |=
B(xi1...il

aP1...Pl
). As in Case 1, by (P3) and definition of h

we have that h(xi1...ilIp
aP1...Pl

) = y ∈ BI
′
il . Since B is rigid,

y ∈ BI
′
p . Since I ′p is a model of T , it follows that

y ∈ AI
′
p .

For every pair x, y ∈ ΓN and role P such that
(xIp , yIp) ∈ PIp , by (P10) x = xi1...il

aP1...Pl
, y =

xi1...ilil+1

aP1...PlPl+1
and T |= Pl+1 v P, or x = xi1...ilil+1

aP1...PlPl+1
,

y = xi1...il
aP1...Pl

and T |= Pl+1 v P−. We can assume
w.l.o.g. that we are in the first case. Otherwise we
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consider (yIp , xIp) ∈ P−Ip . If il+1 = p, by defini-

tion of h, (h(xIp), h(yIp)) ∈ P
I′p
l+1, and since I ′p is a

model of T , (h(xIp), h(yIp)) ∈ PI
′
p . Otherwise, by

(P11), there exists P′ := R|R− with R ∈ NRR such that
T |= Pl+1 v P′ v P and P′(x, y) ∈ chaseKrig(Ail+1).
With the same arguments as in the first case, we show
that (h(xIp), h(yIp)) ∈ P′I

′
il+1 , and since P′ is rigid

(h(xIp), h(yIp)) ∈ P′I
′
p . Since I ′p is a model of T , it

follows that (h(xIp), h(yIp)) ∈ PI
′
p .

Finally, if a ∈ NKI and x ∈ ΓN , then (aIp , xIp) ∈
PIp only if x = xi1

aP1
. If i1 = p, by definition

of h, (h(aIp), h(xIp)) ∈ P
I′p
1 . Since by (P8), T |=

P1 v P and I ′p is a model of T , it follows that
(h(aIp), h(xIp)) ∈ PI

′
p . If i1 6= p, by (P9), there ex-

ists a rigid role P′ such that T |= P1 v P′ v P,

and since by definition of h, (h(aIp), h(xIp)) ∈ P
I′i1
1 ,

then (h(aIp), h(xIp)) ∈ P′I
′
i1 . Since J respects rigid

predicates, it follows that (h(aIp), h(xIp)) ∈ P′I
′
p and

(h(aIp), h(xIp)) ∈ PI
′
p .

We have thus shown that JK, p |= ∃~y.ψ(~y) implies
J , p |= ∃~y.ψ(~y).

Now for the inductive step, assume that for two
BTCQs φ1, φ2 such that Nφ1

I ⊆ NKI and Nφ2
I ⊆ NKI , we

have that JK, p |= φi implies J , p |= φi (i ∈ {1, 2}).
We show that then, for every BTCQ φ that we can con-
struct in one step from φ1 and φ2, JK, p |= φ also im-
plies J , p |= φ. We distinguish the cases based on φ.

– If JK, p |= φ1 ∧ φ2, then JK, p |= φ1 and
JK, p |= φ2, and therefore by assumption,J , p |= φ1

and J , p |= φ2. Hence, J , p |= φ1 ∧ φ2.
– IfJK, p |= φ1∨φ2, thenJK, p |= φ1 orJK, p |= φ2,

and therefore by assumption, J , p |= φ1 or J , p |=
φ2. Hence, J , p |= φ1 ∨ φ2.

– If JK, p |= #φ1, then JK, p+1 |= φ1, and therefore
by assumption, J , p+1 |= φ1. Hence, J , p |= #φ1.

– In the same way as in the last case, we can show
that JK, p |=  b φ1 implies J , p |=  b φ1, that
JK, p |= #−φ1 implies J , p |= #−φ1, and that
JK, p |=  −φ1 implies J , p |=  −φ1.

– If JK, p |= �φ1, then for every k > p, JK, k |=
φ1, and therefore, by assumption, for every k > p,
J , k |= φ1. Hence, J , p |= �φ1.

– In the same way as in the last case, we can show
that JK, p |= �bφ1 implies J , p |= �bφ1 and that
JK, p |= �−φ1 implies J , p |= �−φ1.

– If JK, p |= ♦φ1, then there exists k > p, JK, k |=
φ1, and therefore by assumption J , k |= φ1. Hence,
J , p |= ♦φ1.

– In the same way as in the last case, we can show
that JK, p |= ♦bφ1 implies J , p |= ♦bφ1, and that
JK, p |= ♦−φ1 implies J , p |= ♦−φ1.

– If JK, p |= φ1U φ2, then there exists k > p such that
JK, k |= φ2 and for every j, p 6 j < k, JK, j |= φ1.
Therefore, by assumption J , k |= φ2, and for every
j, p 6 j < k, J , j |= φ1. Hence, J , p |= φ1U φ2.

– We can show in the same way as in the last case that
JK, p |= φ1Ub φ2 implies J , p |= φ1Ub φ2, and that
JK, p |= φ1S φ2 implies J , p |= φ1S φ2.

We conclude by induction that for every BTCQ φwith-
out negation such that Nφ

I ⊆ NKI , JK, p |= φ implies
J , p |= φ. It follows that JK, p |= φ impliesK, p |= φ.

We have thus shown that for every BTCQ φ without
negation such that Nφ

I ⊆ NKI , we have K, p |= φ iff
JK, p |= φ.

Lemma 9.7. Let q = ∃~y.ψ(~y) be such that Nq
I ⊆ NKI .

Then, for every p ∈ [0, n], ifKR, p |= q thenK, p |= q.

Proof. Assume that KR, p |= ∃~y.ψ(~y). By Proposi-
tion 3.6, since NRC = NRR = ∅, 〈T , (Ap ∪ R)〉 |=
∃~y.ψ(~y). Let IRp = 〈∆I

R
p , ·I

R
p 〉 be the canonical model

of 〈T , (Ap ∪R)〉, and let JK = (Ii)i>0 be the canon-
ical model of K, where Ii = 〈∆, ·Ii〉. There exists a
homomorphism π of ∃~y.ψ(~y) into IRp . We first define a

mapping σ from {xI
R
p | x ∈ NKI or occurs inR} into

{xIp | x ∈ NKI ∪ ΓN , x occurs in chaseKrig(Ap)}, where

we assume ∆ and ∆I
R
p to be disjoint, by

– σ(aI
R
p ) = aIp for a ∈ NKI ,

– σ(x
IRp
aP ) = xIp such that P(a, x) ∈ chaseKrig(Ap),

– σ(x
IRp
P ) = xIp such that there exists P(y, x) ∈⋃n

i=0 chaseKrig(Ai), and

– σ(x
IRp
PP′) = xIp such that P′(y, x) ∈ chaseKrig(Ap)

with σ(x
IRp
P ) = yIp .

Claim 1. σ is well-defined.

Proof of claim. If xaP occurs in R, there exists i
such that 〈T ,Ai〉 |= ∃x.P(a, x). Since Ii is a model
of 〈T ,Ai〉, it follows that there is some P(a, x) ∈
chaseKrig(Ai). Moreover, since P is rigid, P(a, x) ∈
chaseKrig(Ap).

If xP occurs inR, there exists i such that 〈T ,Ai〉 |=
∃xy.P(x, y). Since Ii is a model of 〈T ,Ai〉, it follows
that there exist x, y ∈ NKI ∪ ΓN such that P(y, x) ∈
chaseKrig(Ai). Moreover, x occurs in chaseKrig(Ap) be-
cause there exists B := A|∃R|∃R− with A ∈ NRC
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and R ∈ NRR such that T |= ∃P− v B, and there-
fore there is a rigid assertion β |= B(x) such that
β ∈ chaseKrig(Ap).

If xPP′ occurs in R, then xP also occurs in R. It
follows that there exist i and y ∈ NKI ∪ ΓN such that

P(y, σ(x
IRp
P )) ∈ chaseKrig(Ai). Moreover, by construc-

tion of R, P′ is rigid and such that T |= ∃P− v ∃P′.
Since Ii is a model of T , there then exists x ∈
NKI ∪ ΓN such that P′(σ(x

IRp
P ), x) ∈ chaseKrig(Ai).

Hence, P′(σ(x
IRp
P ), x) ∈ chaseKrig(Ap). �

Claim 2. σ is a partial homomorphism of IRp into Ip.

Proof of claim. For every a ∈ NKI and concept A,
if aI

R
p ∈ AI

R
p , since IRp is the canonical model of

〈T , (Ap ∪ R)〉, then 〈T , (Ap ∪ R)〉 |= A(a). Let
{α} be a cause for A(a). If α ∈ Ap, then α ∈
chaseKrig(Ap). In this case, since Ip is a model of T
and 〈T , α〉 |= A(a), then σ(aI

R
p ) = aIp ∈ AIp . Oth-

erwise, α ∈ R, and α is either of the form A′(a)
with A′ ∈ NRC, or of the form P(a, b) or P(a, xaP),
where P is rigid. In the first two cases, there exists i
such that 〈T ,Ai〉 |= α. Therefore, since Ii is a model
of 〈T ,Ai〉, α ∈ chaseKrig(Ai). Since α is rigid, α ∈
chaseKrig(Ap), and therefore, since Ip is a model of T
and 〈T , α〉 |= A(a), we obtain that σ(aI

R
p ) = aIp ∈

AIp . In the last case, if α = P(a, xaP), there exists i
such that 〈T ,Ai〉 |= ∃x.P(a, x). Since Ii is a model of
〈T ,Ai〉, there is some P(a, x) ∈ chaseKrig(Ai). Since P
is rigid, P(a, x) ∈ chaseKrig(Ap), and since Ip is a
model of T and 〈T , P(a, x)〉 |= A(a), we obtain
σ(aI

R
p ) = aIp ∈ AIp .

For every pair a, b ∈ NKI and role P, if (aI
R
p , bI

R
p ) ∈

PI
R
p , we can use similar arguments to show that

(σ(aI
R
p ), σ(bI

R
p )) = (aIp , bIp) ∈ PIp .

For every xaP that occurs in R and A ∈ NC, if

x
IRp
aP ∈ AI

R
p , since IRp is the canonical model of

〈T , (Ap∪R)〉, then 〈T , (Ap∪R)〉 |= A(xaP). Let {α}
be a cause for A(xaP). By construction, the only asser-
tion ofAp∪R that involves xaP is P(a, xaP). Therefore,
α = P(a, xaP) and 〈T , P(a, xaP)〉 |= A(xaP). Since

σ(x
IRp
aP ) = xIp is such that P(a, x) ∈ chaseKrig(Ap), and

Ip is a model of T , then σ(x
IRp
aP ) ∈ AIp .

For every a ∈ NKI , x /∈ NKI that occurs in R and
role P, if (aI

R
p , xI

R
p ) ∈ PI

R
p , since IRp is the canon-

ical model of 〈T , (Ap ∪ R)〉, then 〈T , (Ap ∪ R)〉 |=
P(a, x). Let {α} be a cause for P(a, x). By construc-

tion of R, x = xaP1
and α = P1(a, xaP1

), and by

definition of σ, (σ(aI
R
p ), σ(x

IRp
aP1P)) ∈ PIp

1 . Since
〈T , P1(a, x)〉 |= P(a, x) and Ip is a model of T , it fol-

lows that (σ(aI
R
p ), σ(x

IRp
aP1P)) ∈ PIp .

For every xP1
that occurs in R and A ∈ NC, if

x
IRp
P1
∈ AI

R
p , since IRp is the canonical model of

〈T , (Ap ∪ R)〉, then 〈T , (Ap ∪ R)〉 |= A(xP1
). Let

{α} be a cause for A(xP1
). By construction, either α =

A′(xP1
) with A′ ∈ NRC and T |= ∃P−1 v A′, or α =

P2(xP1 , xP1P2) with P2 rigid and T |= ∃P−1 v ∃P2.

Sinceσ(x
IRp
P1

) = xIp is such that there exists i such that
P1(y, x) ∈ chaseKrig(Ai) and Ii is a model of T , then
A′(x) ∈ chaseKrig(Ai) (resp. there is some P2(x, z) ∈
chaseKrig(Ai)). Therefore A′(x) ∈ chaseKrig(Ap) (resp.
there is some P2(x, z) ∈ chaseKrig(Ap)). Because Ip is

a model of T , it follows that σ(x
IRp
P1

) ∈ AIp .
For every xP1P2

that occurs in R and A ∈ NC,

if x
IRp
P1P2

∈ AI
R
p , since IRp is the canonical model

of 〈T , (Ap ∪ R)〉, then 〈T , (Ap ∪ R)〉 |= A(xP1P2
).

Let {α} be a cause for A(xP1P2). By construction,
α = P2(xP1

, xP1P2
), P2 is rigid, and T |= ∃P−1 v

∃P2. Since σ(x
IRp
P1P2

) = xIp is such that there exists

P2(y, x) ∈ chaseKrig(Ap) (with yI
R
p = σ(x

IRp
P1

)) and Ip

is a model of T , then σ(x
IRp
P1P2

) ∈ AIp .
Finally, for every x, y /∈ NKI that occur in R

and for every role P, if (xI
R
p , yI

R
p ) ∈ PI

R
p , since

IRp is the canonical model of 〈T , (Ap ∪ R)〉, then
〈T , (Ap ∪ R)〉 |= P(x, y). Let {α} be a cause for
P(x, y). By construction, x = xP1

, y = xP1P2
, α =

P2(xP1
, xP1P2

), and P2 is rigid, and therefore, as pre-

viously, (σ(x
IRp
P1

), σ(x
IRp
P1P2

)) ∈ PIp . �

Claim 3. σ can be extended to a homomorphism σ′

of IRp into Ip.

Proof of claim. Since IRp is the canonical model of
〈T , (Ap ∪ R)〉, Ip is a model of T , and σ preserves
the concept or role memberships, we can extend σ to
a homomorphism σ′ of IRp into Ip by mapping the

anonymous part of IRp rooted in xI
R
p ∈ {xI

R
p | x ∈

NKI or occurs inR} to the part of Ip rooted in σ(xI
R
p ).
�

From Claim 3, it follows that σ′ ◦ π is a homo-
morphism of ∃~y.ψ(~y) into Ip. We have thus shown
that KR, p |= ∃~y.ψ(~y) implies Ip |= ∃~y.ψ(~y), i.e.,
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JK, p |= ∃~y.ψ(~y). Hence, if KR, p |= ∃~y.ψ(~y), then
K, p |= ∃~y.ψ(~y).

Lemma 9.8. Let q = ∃~y.ψ(~y) be such that Nq
I ⊆ NKI .

For every p ∈ [0, n], if K, p |= q then KR, p |= q.

Proof. Assume that K, p |= ∃~y.ψ(~y). Let JK =
(Ii)i>0 be the canonical model of K, where Ii =
〈∆, ·Ii〉. Then, Ip |= ∃~y.ψ(~y), and there exists a homo-
morphism π of ∃~y.ψ(~y) into Ip. Let IRp = 〈∆I

R
p , ·I

R
p 〉

be a model of 〈T , (Ai ∪R)〉. We define a mapping hRp
from {xIp | x ∈ NKI ∪ ΓN , x occurs in chaseKrig(Ap)}
into ∆I

R
p , where we again assume that ∆ and ∆I

R
p are

disjoint.

– For every a ∈ NKI , we set hRp (aIp) = aI
R
p .

– For every xi1
aP1

, where i1 6= p and P1 is rigid, we set

hRp (xi1Ip
aP1

) = x
IRp
aP1

.
– For every xi1...il

aP1...Pl
with l > 1, such that for every

j ∈ [1, l], i j 6= p, Pl is rigid, and Pl−1 is not rigid,

we set hRp (xi1...ilIp
aP1...Pl

) = x
IRp
Pl−1Pl

.
– For every xi1...il

aP1...Pl
with l > 1, such that for every

j ∈ [1, l], i j 6= p, and Pl and Pl−1 are rigid, we set

hRp (xi1...ilIp
aP1...Pl

) = y, where (hRp (xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
IRp
l

If there are several such y, we choose one of them
randomly.

– For every xi1...il
aP1...Pl

such that for every k ∈ [1, l],
i j 6= p, and non-rigid role Pl, we set hRp (xi1...ilIp

aP1...Pl
) =

x
IRp
Pl

.
– For every xi1...il

aP1...Pl
such that for some j ∈ [1, l],

i j = p, we set hRp (xi1...ilIp
aP1...Pl

) = y, where we have

(hRp (xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
IRp
l . If there are several

such y, we choose one of them randomly.

Claim 1. hRp is well-defined.

Proof of claim. We distinguish the cases based on the
argument of hRp .

– Case xi1
aP1

with i1 6= p and P1 is rigid, hRp (xi1Ip
aP1

) =

x
IRp
aP1

.
Since xi1

aP1
∈ ΓN , by (P1) and (P8), ∃x.P1(a, x) is

entailed by some 〈T ,A j〉. Therefore, xaP1
appears

inR.
– Case xi1...il

aP1...Pl
with l > 1, such that for every j ∈

[1, l], i j 6= p, Pl is rigid and Pl−1 is not rigid,

hRp (xi1...ilIp
aP1...Pl

) = x
IRp
Pl−1Pl

.

Since xi1...il
aP1...Pl

∈ ΓN , by (P4), T |= ∃P−l−1 v ∃Pl,
and by (P2) and (P12), there is some j such that
〈T ,A j〉 |= ∃xy.Pl−1(x, y). Moreover, Pl is rigid and
Pl−1 is not rigid, and therefore xPl−1Pl appears inR.

– Case xi1...il
aP1...Pl

with l > 1, such that every j ∈ [1, l],
i j 6= p, and Pl and Pl−1 are rigid, hRp (xi1...ilIp

aP1...Pl
) = y,

where (hRp (xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
IRp
l .

We show by induction on the length length = l − r
of the sequence of rigid roles Pr...Pl−1 that there is

always such a (hRp (xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
IRp
l .

– If length = 1, we are in one of the following cases.

(i) r > 1 and hRp (xi1...il−1Ip
aP1...Pl−1

) = x
IRp
Pl−2Pl−1

. Then

(x
IRp
Pl−2

, x
IRp
Pl−2Pl−1

) ∈ P
IRp
l−1, because IRp is a model

of R. Since xi1...il
aP1...Pl

∈ ΓN , by (P4), T |= ∃P−l−1 v
∃Pl. Therefore, since IRp is a model of T , there is

some (hRp (xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
IRp
l .

(ii) r = 1 and hRp (xi1...il−1Ip
aP1...Pl−1

) = hRp (xi1Ip
aP1

) =

x
IRp
aP1

is such that (aI
R
p , x

IRp
aP1

) ∈ P
IRp
1 because

P1(a, xaP1) ∈ R. Since xi1i2
aP1P2

∈ ΓN , T |= ∃P−1 v
∃P2 by (P4). Therefore, since IRp is a model of T ,

there exists (x
IRp
aP1

, y) ∈ P
IRp
2 .

– For length > 1, T |= ∃P−l−1 v ∃Pl by (P4).
It follows that, since by inductive hypothesis there

exists (x, hRp (xi1...il−1Ip
aP1...Pl−1

)) ∈ P
IRp
l−1, there then exists

(hRp (xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
IRp
l .

– Case xi1...il
aP1...Pl

such that for every j ∈ [1, l], i j 6= p,

and role Pl that is not rigid, hRp (xi1...ilIp
aP1...Pl

) = x
IRp
Pl

.
Since T does not contain any role inclusion of the
form P′ v P with P′ := R1|R−1 , R1 ∈ NR\NRR

and P := R2|R−2 , R2 ∈ NRR, and Pl is not rigid,
there is no P such that Pl v P and P is rigid.
Therefore, since il 6= p, there is no P such that
P(xi1...il−1

aP1...Pl−1
, xi1...il

aP1...Pl
) ∈ chaseKrig(Ap). We obtain

that xi1...il
aP1...Pl

occurs in chaseKrig(Ap) only if there
is B := A|∃R|∃R− with A ∈ NRC, R ∈ NRR

such that chaseKrig(Ap) |= B(xi1...il
aP1...Pl

). By (P3),
T |= ∃P−l v B, and by (P2) and (P12), there is some
j such that 〈T ,A j〉 |= ∃xy.Pl−1(x, y). It follows that
xPl appears inR.

– Case xi1...il
aP1...Pl

such that for some j ∈ [1, l], i j = p,

hRp (xi1...ilIp
aP1...Pl

) = y, where (hRp (xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
IRp
l .

We show by induction on the length length = l − r
of the chain of roles that links xi1...il

aP1...Pl
to the first in-

dividual xi1...ir
aP1...Pr

such that ir = p that there is always



C. Bourgaux et al. / Ontology-mediated query answering over temporal and inconsistent data 45

such (hRp (xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
IRp
l .

– If length = 0, then il = p and there
is no j < l such that i j = p. We are
thus in one of the following cases. Either (i)

hRp (xi1...il−1Ip
aP1...Pl−1

) = aI
R
p , (ii) hRp (xi1...il−1Ip

aP1...Pl−1
) = x

IRp
aP1

,

(iii) hRp (xi1...il−1Ip
aP1...Pl−1

) = x
IRp
Pl−2Pl−1

, (iv) hRp (xi1...il−1Ip
aP1...Pl−1

)

is such that (hRp (xi1...il−2Ip
aP1...Pl−2

), hRp (xi1...il−1Ip
aP1...Pl−1

)) ∈ P
IRp
l−1,

or (v) hRp (xi1...il−1Ip
aP1...Pl−1

) = x
IRp
Pl−1

.

(i) If hRp (xi1...il−1Ip
aP1...Pl−1

) = aI
R
p , by definition of hRp ,

xi1...il−1

aP1...Pl−1
= a, and therefore xi1...p

aP1...Pl
= xp

aP1
. Since

xp
aP1
∈ ΓN , by (P1), P1(a, xp

aP1
) ∈ chaseKrig(Ap). By

(P8), either (a) 〈T ,Ap〉 |= ∃x.P1(a, x), and there

is some (aI
R
p , y) ∈ P

IRp
1 because IRp is a model of

〈T ,Ap〉, or (b) there exists B := A|∃R|∃R− with
A ∈ NRC, R ∈ NRR, such that T |= B v ∃P1 and
there exists j such that 〈T ,A j〉 |= B(a). In the latter
case,R |= B(a) by construction ofR, and since IRp
is a model ofR, we obtain IRp |= B(a). Since IRp is

a model of T , there exists (aI
R
p , y) ∈ P

IRp
1 .

(ii) If hRp (xi1...il−1Ip
aP1...Pl−1

) = x
IRp
aP1

, by definition of hRp ,

xi1...il−1

aP1...Pl−1
= xi1

aP1
and P1 is rigid. By (P1),

P1(a, xi1
aP1

) ∈ chaseKrig(Ai1), and therefore by
(P8), either (a) 〈T ,Ai1〉 |= ∃x.P1(a, x) and
P1(a, xaP1

) ∈ R, since P1 is rigid, or (b) there ex-
ists B := A|∃R|∃R− with A ∈ NRC, R ∈ NRR,
such that T |= B v ∃P1, and there exists j such
that 〈T ,A j〉 |= B(a). In the latter case, 〈T ,A j〉 |=
∃x.P1(a, x), and therefore P1(a, xaP1) ∈ R. In both

cases, (aI
R
p , x

IRp
aP1

) ∈ P
IRp
1 since IRp is a model ofR.

Moreover, since xi1...il
aP1...Pl

= xi1p
aP1P2

∈ ΓN , by (P4),
T |= ∃P−1 v ∃P2. Therefore, since IRp is a model

of T , there exists (x
IRp
aP1

, y) ∈ P
IRp
2 .

(iii) If hRp (xi1...il−1Ip
aP1...Pl−1

) = x
IRp
Pl−2Pl−1

, by def-
inition of R, since xPl−2Pl−1

appears in R,
Pl−1(xPl−2

, xPl−2Pl−1
) ∈ R, and therefore

(x
IRp
Pl−2

, x
IRp
Pl−2Pl−1

) ∈ P
IRp
l−1. Since xi1...il

aP1...Pl
∈ ΓN ,

by (P4), T |= ∃P−l−1 v ∃Pl, and there exists

(x
IRp
aPl−2Pl−1

, y) ∈ P
IRp
l .

(iv) If (hRp (xi1...il−2Ip
aP1...Pl−2

), hRp (xi1...il−1Ip
aP1...Pl−1

)) ∈ P
IRp
l−1,

since xi1...il
aP1...Pl

∈ ΓN , by (P4), T |= ∃P−l−1 v ∃Pl,

and there exists (hRp (xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
IRp
l .

(v) If hRp (xi1...il−1Ip
aP1...Pl−1

) = x
IRp
Pl−1

, by (P2) and

since il = p, we obtain Pl(xi1...il−1

aP1...Pl−1
, xi1...p

aP1...Pl
) ∈

chaseKrig(Ap). By (P6), since chaseKrig(Ap) |=
∃Pl(xi1...il−1

aP1...Pl−1
) and il−1 6= p, there exists B :=

A|∃R|∃R− with A ∈ NRC,R ∈ NRR, such that T |=
B v ∃Pl and chaseKrig(Ail−1) |= B(xi1...il−1

aP1...Pl−1
). By

(P3), T |= ∃P−l−1 v B, and R |= B(xPl−1
) (since

xPl−1
occurs in R and B is rigid). We obtain that

〈T ,R〉 |= ∃x.Pl(xPl−1
, x). Since IRp is a model of

〈T ,R〉, there exists (x
IRp
Pl−1

, y) ∈ P
IRp
l .

– For length > 0, since xi1...il
aP1...Pl

∈ ΓN , by (P4),
T |= ∃P−l−1 v ∃Pl. Since by the inductive hypoth-

esis, there exists (x, hRp (xi1...il−1Ip
aP1...Pl−1

)) ∈ P
IRp
l−1, there

then exists (hRp (xi1...il−1Ip
aP1...Pl−1

), y) ∈ P
IRp
l . �

Claim 2. hRp is a homomorphism of Ip into IRp .

Proof of claim For every a ∈ NKI and concept A, if
aIp ∈ AIp , i.e., A(a) ∈ chaseKrig(Ap), then by (P5),
either (i) 〈T ,Ap〉 |= A(a), and since IRp is a model

of 〈T ,Ap〉, then hRp (aIp) = aI
R
p ∈ AI

R
p , or (ii) there

exists B := C|∃R|∃R− with C ∈ NRC, R ∈ NRR,
such that T |= B v A, and there exists j such that
〈T ,A j〉 |= B(a). In the latter case R |= B(a). There-
fore, since IRp is a model of R, IRp |= B(a), and
IRp |= A(a) because IRp is a model of T . It follows

that hRp (aIp) = aI
R
p ∈ AI

R
p . For every pair a, b ∈ NKI

and role P, if (aIp , bIp) ∈ PIp , by (P7), similar argu-
ments can be used to prove that (hRp (aIp), hRp (bIp)) =

(aI
R
p , bI

R
p ) ∈ PI

R
p .

For every xi1...il
aP1...Pl

∈ ΓN , such that xi1...ilIp
aP1...Pl

∈ AIp ,
by (P3), T |= ∃P−l v A, and by construction of hRp ,

hRp (xi1...ilIp
aP1...Pl

) = y is such that either (i) there exists

(x, y) ∈ P
IRp
l , and since IRp is a model of T , we have

y ∈ AI
R
p , or (ii) y = x

IRp
Pl

, Pl is not rigid, and for ev-
ery j ∈ [1, l], i j 6= p. In the latter case, by (P6), there
exists B := C|∃R|∃R− with C ∈ NRC, R ∈ NRR, such
that T |= B v A and chaseKrig(Ail) |= B(xi1...il

aP1...Pl
).

By (P3), T |= ∃P−l v B. Therefore, by construction
of R, R |= B(xPl) and 〈T ,R〉 |= A(xPl). It follows
that y ∈ AI

R
p .

For every pair x, y ∈ ΓN and role P such that
(xIp , yIp) ∈ PIp , by (P10), either (i) x = xi1...il

aP1...Pl
,

y = xi1...ilil+1

aP1...PlPl+1
and T |= Pl+1 v P, or (ii) x =

xi1...ilil+1

aP1...PlPl+1
, y = xi1...il

aP1...Pl
and T |= Pl+1 v P−. We
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can assume w.l.o.g. that we are in the first case. Other-
wise, we consider (yIp , xIp) ∈ P−Ip . If il+1 = p, by

definition of hRp , we have (hRp (xIp), hRp (yIp)) ∈ P
IRp
l+1.

Otherwise, by (P11), there exists P′ := R|R− with
R ∈ NRR such that T |= Pl+1 v P′ v P and
P′(x, y) ∈ chaseKrig(Ail+1

). In this case, there are two
possibilities.

(i) If Pl is not rigid, given that T |= Pl+1 v P′ and P′

is rigid, Pl+1 is rigid by our hypothesis on the TBox.

It follows that hRp (yIp) = x
IRp
PlPl+1

. If there is no

i j = p, then hRp (xIp) = x
IRp
Pl

. Therefore, since
Pl+1(xP1

, xPlPl+1
) ∈ R, then (hRp (xIp), hRp (yIp)) ∈

P
IRp
l+1. Otherwise, there exists i j = p, and we obtain

(hRp (xIp), hRp (yIp)) ∈ P
IRp
l+1 by definition of hRp .

(ii) If Pl is rigid, then hRp (yIp) is such that

(hRp (xI
R
p ), hRp (yI

R
p )) ∈ P

IRp
l+1.

Since in all cases, (hRp (xIp), hRp (yIp)) ∈ P
IRp
l+1

and IRp is a model of T , we obtain that PI
R
p contains

(hRp (xIp), hRp (yIp)).

Finally, if a ∈ NKI and x ∈ ΓN , we have that

(aIp , xIp) ∈ PIp only if x = xi1
aP1

. If i1 = p,

by definition of hRp , (hRp (aIp), hRp (xIp)) ∈ P
IRp
1 ,

and since by (P8), T |= P1 v P, we obtain that
(hRp (aIp), hRp (xIp)) ∈ PI

R
p . If i1 6= p, by (P9), there

exists a rigid role P′ such that T |= P1 v P′ v

P, and by our restriction on the TBox, P1 must be

rigid. By (P1) and (P8), there is some j such that

〈T ,A j〉 |= ∃x.P1(a, x). Therefore, P1(a, xaP1
) ∈ R

and (hRp (aIp), hRp (xIp)) = (aI
R
p , x

IRp
aP1

) ∈ P
IRp
1 . We

obtain that (hRp (aIp), hRp (xIp)) ∈ PI
R
p . �

It follows from Claim 2 that hRp ◦ π is a homo-
morphism of ∃~y.ψ(~y) into IRp . Therefore, we have

shown that Ip |= ∃~y.ψ(~y) implies KR, p |= ∃~y.ψ(~y).

This means that K, p |= ∃~y.ψ(~y) implies KR, p |=

∃~y.ψ(~y).
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