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ABSTRACT 

Caisson foundations are often used in offshore engineering. However, for an optimum design 
understanding the failure process of a caisson during its installation and the subsequent external 
loadings is crucial. This paper focuses on the evolving failure of a caisson foundation in sand by 
advanced numerical modeling. A combined Lagrangian-smoothed particle hydrodynamics method is 
adopted to deal with the large deformation analysis. The method with parameters are first calibrated 
and validated by a simulation of cone penetration test in sand. The results of an experimental 
campaign of a caisson in the same sand are selected and validated for the numerical model. Then, 
more representative loading combinations are designated for numerical modeling of failure process 
and mode. Furthermore, three additional caisson dimensions D/d ¼ 0.5, 1.5, and 2.0 (changing the 
ratio of caisson diameter D to skirt length d while keeping the same soil-structure surface contact 
area) are simulated under six representative combined loading paths. Based on that, the influence of 
caisson dimension to the failure process and mode is investigated. All results are helpful to estimate 
all possible sliding surfaces under different monotonic combined loading paths for further limit 
analysis. 

Introduction 

A caisson is a closed-top steel tube, which is first lowered to 
the seafloor allowing bottom sediments to penetrate under 
its own weight, and then pushed to full depth with suction 
force produced by pumping water out of its interior. The 
main advantages of caissons are the convenient method of 
installation, their repeated use and the fact that they may 
mobilize a significant amount of passive suction during 
uplift. Recently, caissons have been widely used for different 
types of construction, such as gravity platform jackets, jack- 
ups, offshore wind turbines, subsea systems and seabed 
protection structures. For an optimum design, understanding 
the performance of the caisson foundation is however 
necessary. 

Extensive experimental field tests on small-scale and full- 
scale caisson foundations have been also conducted to 
determine the installation characteristics and the lateral load 
suction foundation capacity (Hogervorst 1980; Tjelta, 
Guttormsen, and Hermstad 1986; Tjelta 1995). Field tests are 
valuable as they help to obtain necessary data for the 
foundation design, nevertheless they are expensive and time 
consuming. For these reasons, model laboratory tests have also 
been conducted under controlled experimental conditions 
either in clay (Houlsby et al. 2005; Villalobos, Byrne, and 
Houlsby 2010; Barari and Ibsen 2012) or sand (Huxtable 
et al. 2006; Cox et al. 2013; Foglia and Ibsen 2013; Zhu, 

Byrne, and Houlsby 2013). Finally, 2D and 3D numerical stu-
dies have been performed (Erbrich and Tjelta 1999; 
Sukumaran et al. 1999; El-Gharbawy and Olson 2000; Deng 
and Carter 2002) to study the foundation bearing capacity 
under different loading combinations and drainage conditions. 
Unfortunately, in all these numerical studies the installation 
process was ignored, and the evolving failure and the final 
failure mode under different loading combinations were not 
discussed. 

Therefore, this paper focuses on the investigation of failure 
process and mode of a caisson foundation in sand by numeri-
cal modeling. As the evolving failure is with large deformation, 
a combined Lagrangian-smoothed particle hydrodynamics 
method (SPH) is adopted for simulations. The method with 
parameters is first calibrated and validated by a simulation 
of cone penetration test (CPT) in sand. Then, an experimental 
campaign of a caisson in the same sand was selected and vali-
dated for the numerical model. Then, more representative 
loading combinations are designated for numerical modeling 
of failure process and mode. Furthermore, three additional 
caisson dimensions D/d ¼ 0.5, 1.5, and 2.0 (changing the ratio 
of caisson diameter D to skirt length d while keeping the same 
soil-structure surface contact area) are simulated under six 
representative combined loading paths. Based on that, the 
influence of caisson dimension to the failure process and mode 
is investigated. 

none defined  
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SPH based modeling approach 

SPH method and combined Lagrangian-SPH technique 

The smooth particle hydrodynamics method was first 
developed by Gingold and Monaghan (1977) for simulations 
in astrophysics. Further developments of the method allowed 
for applications to a broad range of problems in solid 
mechanics. In SPH simulations, the computational domain is 
discretized into a finite number of particles, each representing 
a certain volume and mass of material (fluid or solid) and 
carrying simulation parameters such as acceleration, velocity, 
density, and pressure/stress. 

The material properties f(x)at any point x in the simulation 
domain are then calculated according to an interpolation pro-
cess over its neighboring particles that are within an influence 
domain Ω through 

f xð Þ ¼
Z

X

f x0ð ÞW x � x0; hð Þdx0 ð1Þ

where W is the kernel or smoothing function, which is 
essentially a weighting function. 

The continuous integral representation of the field variable 
f(x)in Eq. (1) can be further approximated by the summation 
over neighboring particles as 

f xð Þ ¼
X

N

i¼1
f xið ÞW x � xi; hð ÞVi

¼
X

N

i¼1
f xið ÞW x � xi; hð Þmi

qi

ð2Þ

where Vi, mi, and qi are the volume, mass and density of the 
ith particle, respectively; and N is the number of particles 
within the influence domain. The spatial derivative of field 
variable f(x) can be approximated through the differential 
operations on the kernel function 

@f xð Þ
@x

¼
X

N

i¼1

mi

qi

f xið Þ @W x � xi; hð Þ
@xi

ð3Þ

It is indicated by Eq. (1) through Eq. (3) that the efficiency 
and accuracy of SPH simulations depend on the kernel func-
tion. The SPH particles are used as interpolation points and 
are the basis for calculating all the field variables in the 
continuum around them. The SPH particles, like the objects 
in astrophysics, can be separated by a large distance. The field 
variables between the SPH particles are approximated 
(smoothed) by the smoothing shape functions. The interaction 
between SPH particles starts when a particle gets to a certain 
distance (smoothing length h) from another one. SPH particles 
interact with each other only if they are within the influence 
domain. Otherwise, they are independent from each other. 
Therefore, larger smoothing length (i.e., larger influence 
domain) generally results in a smoother or more continuous 
behavior as the SPH particles are more interdependent with 
each other; whereas smaller smoothing length (i.e., smaller 
influence domain) generally yields more discrete behaviors as 
the SPH particles are more independent from each other. In a 
solid body, discretized with densely packed SPH particles there 
is still no connectivity defined between the particles through the 

mesh. A major attraction of the SPH technique is that the need 
for a fixed computational grid is removed when calculating 
spatial derivatives. Instead, estimates of derivatives are obtained 
from analytical expressions based on the derivatives of the 
smoothing functions (Li and Liu 2002). Since the connectivity 
between the particles is generated as a part of the computation 
and can change over the time, the SPH method can handle 
analysis of very large deformations and displacements. 

However, one disadvantage of the SPH method over the 
Lagrangian method is their computational demand 
(Bojanowski 2014). The SPH method is also less accurate 
under small deformations. For this reason, only a part of the 
soil domain can be modeled by the SPH method, and a 
Lagrangian model can be adopted for the rest, which is the 
so-called combined Lagrangian-SPH technique. In this study, 
the combined Lagrangian-SPH technique provided by the 
commercial finite element code ABAQUS was adopted. The 
function “Tie Constraint” was adopted to treat the interface 
of SPH domain and Lagrangian domain so that no relative 
motion exists. It allows fusing two domains even though their 
meshes are not identical. More detailed can be found in 
ABAQUS manual (Hibbitt, Karlsson, and Sorensen 2013). 

Combined Lagrangian–SPH model 

Selected experimental campaign 

The first task of the study is to calibrate a numerical model 
according to experiments, based on which the failure process 
and mode can be further investigated. For this purpose, a 
well-documented series of laboratory tests of caisson 
foundation in sand including the installation phase and the 
application of monotonic loadings by Foglia et al. (2015) was 
selected. The experimental set-up consists of a sand box (1,600  
� 1,600 � 1,150 mm), a loading frame and a hinged beam. A 
system of steel cables and pulleys induces loadings to the foun-
dation through an electric motor drive placed on the hinged 
beam. The load, set by three weight hangers, is transferred to 
the foundation through a vertical beam bolted on the caisson 
lid. The foundation is instrumented with three linear variable 
differential transformer (LVDTs) and two load cells. A CPT 
was first performed to assess the soil parameters. The caisson 
foundation is made of steel, with an outer diameter of 
300 mm, a lid thickness of 11.5 mm, a skirt length of 300 mm 
and a skirt thickness of 1.5 mm. Six tests of caisson foundation 
were performed under different monotonic loading combina-
tions (one pure vertical load up to failure and five different 
dimensionally homogeneous moment to horizontal load ratios 
(M/DH ¼ 1.1, 1.987, 3.01, 5.82, and 8.748) at constant vertical 
load). 

Numerical model 

The whole finite element model was created with the same 
dimension as the experimental box. On the lateral sides, the 
horizontal displacements are constrained, and on the bottom 
face the translational degrees of freedom with all displace-
ments are constrained. For modeling the soil, the perfect 
elastoplastic model Mohr–Coulomb was adopted in this study. 
The constitutive equations are presented in Appendix. Model 
parameters can be achieved using optimization (Jin et al. 2016, 
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2017) based on the test results by Ibsen et al. (2009) and 
presented as follows: the Young modulus E is 26 MPa, the 
Poisson ratio υ is 0.25, the frictional angle ϕ is 40.8°, the 
dilation angle ψ is 17.5°, and the cohesion c is 6 kPa. Further-
more, the density is 1,100 kg/m3, the friction coefficient of the 
soil-caisson interface is 0.35 (k ¼ tan(ϕ/2)) and the damping 
ratio is set to 0. 

In the combined Lagrangian-SPH model, only the portion 
of the soil experiencing the large deformation is modeled with 
SPH particles (Figure 1). The SPH domain is a length of 
1,400 mm at the side with horizontal or moment loading, a 
width of 800 mm at the other side, a height of 1,150 mm up 
to the bottom, with a total number of 88,407 particles. The 
outside Lagrangian mesh is composed by 1,05,984 hexahedral 
elements. For the model with densely packed SPH particles, 
the initial particle distance in each direction stays approxi-
mately constant to be homogenous. The calculation domain 
modeled with particles (SPH domain) can interact with the 
Lagrangian finite element via contact (Hibbitt, Karlsson, and 
Sorensen 2013). The contact interaction is the same as any 
contact interaction between a node-based surface (associated 
with the particles) and an element-based or analytical surface. 
Both general contact and contact pairs can be used. All 
interaction types and formulations available for contact 
involving a node-based surface are allowed, including cohesive 
behavior. Different contact properties can be assigned through 
the usual options (Hibbitt, Karlsson, and Sorensen 2013). For 
the reason of numerical stability, at least four SPH particles per 
face of a Lagrangian element in contact are considered. 

The caisson was modeled using 927 rigid tetrahedron ele-
ments with the same dimension and thickness as experiment. 
According to Foglia et al. (2015), the density of the caisson is 
taken equal to 7,800 kg/m3, the Young modulus 200 GPa and 
the Poisson ratio 0.3. The caisson was initially positioned on 
the surface of soil at the center of box. For the simulation of 
CPT, the caisson was replaced by a cylinder bar (using 807 rigid 
tetrahedron elements) with a diameter of 20 mm and a 60° cone 
at bottom according to Foglia et al. (2015). 

In SPH method, each particle represents one gauss 
integration point. Accordingly, similarly to the element in 
FEM, the total strain of each particle is composed of elastic 

and plastic parts when using the MC model in SPH. In this 
study, the equivalent plastic strain PEEQ defined as 

PEEQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 23= �3 _e
p
ij: _e

p
ij

� �

r

(where _e
p
ij is the tensor of plastic 

strain rate) was used to describe the plastic deformation. 

Model calibration for CPT 

To validate the combined Lagrangian-SPH model with 
material parameters, a CPT simulation was first performed. 
During the simulation, the velocity of cone penetration was 
equal to 5 mm/s according to Foglia et al. (2015). A rigid 
Mohr–Coulomb type interface model was adopted with a 
typical soil-structure interface friction coefficient assumed 
for the simulation. The interface model was applied on the 
entire (tip and shaft) surface of the cone. 

The comparison between experimental and numerical 
results is presented in Figure 2, where four CPT experimental 
results are provided by Foglia et al. (2015). A good agreement 
was achieved which reveals that the combined Lagrangian- 
SPH model with material parameters are therefore acceptable, 
and can be continued for caisson foundations. 

Figure 1. Combined Lagrangian-SPH model: (a) in 3D, and (b) for middle cross section.  

Figure 2. Comparison between experiments and simulation of CPT for tip 
resistance. Note: CPT, cone penetration test.   
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The fields of equivalent plastic strain (PEEQ, same as 
deviatoric plastic strain), deviatoric stress (S Mises, Pa), and 
mean effective stress (S Pressure, Pa) corresponding to a 
penetration of 400 mm are plotted in Figure 3, which 
shows reasonable distributions of these terms due to the cone 
penetration with an influence distance much smaller than the 
domain of SPH particles. 

Model calibration for caisson foundation 

The combined Lagrangian-SPH model of Figure 1 was used to 
simulate one pure penetration test by vertical displacement 
control at a rate of 5 mm/s, and five tests at different 
dimensionally homogeneous moment to horizontal load ratios 
(M/DH ¼ 1.1, 1.987, 3.01, 5.82, and 8.748) at a constant verti-
cal load of 241N by horizontal displacement control combined 
with rotation control at the middle point of caisson. For the 
simulation using explicit method, the loading rate is usually 
ten times the real loading rate for saving the computational 
time while the quasi-static state should be simultaneously 
guaranteed (Qiu, Henke, and Grabe 2011). In ABAQUS/ 
SPH, quasi-static state is defined such that the ratio of 
kinematic energy over internal energy is smaller than 5%. 
However, it is a pity that the real loading rates were unknown 
in this case. Accordingly, the displacement rate of 10 mm/s 
and rotation rate of 0.5°/s were selected which guarantee the 
quasi-static state. All monotonic loading paths were followed 
until the vertical bearing capacity (VM) or the horizontal 
capacity and moment capacity (MR) are reached. The simu-
lated deformations corresponding to the bearing capacities 
for all model tests are summarized in Table 1. 

Figure 4 shows the applied vertical force versus vertical dis-
placement for the pure vertical loading test. Figure 5 presents 
the results of five typical M/DH values (1.100, 1.987, 3.010, 
5.820, and 8.748). For all five cases the horizontal load (H) 

versus the horizontal displacement (U) and the dimen-
sionally homogeneous moment (M/D) versus the rotational 
displacement (Dθ) are plotted for comparisons. Note that 
the calculated curves are not smooth, which is usually called 
numerical noise when using the SPH technique that uses the 
explicit time integration method. This numerical noise could 
be affected by various factors, such as the estimation of the 
stable time increment by element-by-element method, the 
applied contact law between pile and soil, and the application 
of mass scaling method for improving the calculation 
efficiency (Hibbitt, Karlsson, and Sorensen 2013). For all tests 
good agreement was achieved through comparisons between 
experiments and simulations. The combined Lagrangian- 
SPH model with material parameters was thus well calibrated, 
and can be used for further numerical investigations on failure 
process and mode. 

Two extreme cases were selected to examine the domain of 
large deformation: one pure vertical loading test and one 
moment combined horizontal loading test (M/DH ¼ 8.748). 
The fields of equivalent plastic strain (PEEQ), deviatoric stress 
(S Mises, Pa) and mean effective stress (S Pressure, Pa) are 
plotted in Figure 6 for pure vertical loading test and for 
moment combined horizontal loading test. Both results show 
reasonable distributions of three terms due to loadings with 
an influence distance (large deformation domain in both 

Figure 3. Results of CPT simulation: (a) field of equivalent plastic strain (PEEQ), (b) field of deviatoric stress (S Mises, Pa), and (c) field of mean effective stress 
(S Pressure, Pa). Note: CPT, cone penetration test.   

Table 1. Initial deformation under the capacity loadings for each case. 

M/DH u(mm) Dθ(mm) HR(N) MR/D(N)  

1.1  5.8  7.4  420 540 
1.987  4.6  6.0  330 640 
3.01  4.0  5.5  190 690 
5.82  5.0  6.8  110 700 
8.748  3.5  5.1  90 760   

Figure 4. Comparison between experimental and simulated results on vertical 
force versus vertical displacement for pure vertical loading test.  
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vertical and horizontal directions) much smaller than the 
domain of SPH particles. 

In addition, the failure envelope on the H:M/D loading plane 
summarized by Villalobos, Byrne, and Houlsby (2010), Ibsen 

et al. (2014) and Foglia et al. (2015), is plotted in Figure 7, 
comparing with all results obtained by simulations under the 
same vertical loading. Good agreement was achieved which 
reveals the numerical modeling in this study is appropriate. 

Figure 5. Comparison between experimental vs. Numerical results for tests of monotonic multidirectional loading paths: (a, c) horizontal force versus horizontal 
displacement, (b, d) dimensionally homogeneous moment versus rotational displacement.  

Figure 6. Contour of plastic deviatoric strain (PEEQ), deviatoric stress (S, Mises, Pa) and Mean stress (S Pressure, Pa) for (a–c) one pure vertical loading test and (d–f) 
one moment combined horizontal loading test (M/DH ¼ 8.748).  
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Analysis of failure process and mode 

Based on the calibrated model, various tests under different 
loading combinations were simulated: three single loading tests 
(P–V, P–H, and P–M for pure vertical, horizontal, and moment 
loading, respectively), four tests under two combined loadings 
(C–VH for horizontal and vertical loadings, C–VM for vertical 
loading and moment, C–H+M for horizontal loading and 
moment at the same direction, C–H−M for horizontal loading 
and moment in the opposite direction), and two tests under three 
combined loadings (C–VH+M and C–VH−M which are C–H+M 
and C–H−M with additional vertical loading). During all simula-
tions, the displacement rate was kept as 10 mm/s and rotation 
rate 0.5°/s. The displacement or rotation angle is big enough to 
ensure the complete development of sliding surface in sand. 

All test simulations are summarized in Table 2 for the evol-
ution of sliding surface of caisson foundation represented by 
the equivalent plastic strain. To have a good understanding 
on the evolution, five moments during the loading were 
selected and recorded with the contour of equivalent plastic 
strain: at 0.33 Fy (Fy is the yield force or moment), 0.66 Fy, 
0.95 Fy, 2 DFy (DFy is the displacement or rotation angle at 
0.95 Fy) and 4 DFy. All test simulations are summarized in 
Table 2. Thus, the evolution of sliding surface of caisson foun-
dation can be clarified by five selected successive moments 
during the loading. Figure 8 illustrates how to determine the 
yield force Fy, in which softening part is not taken into 
account, and only the peak value is used to define the failure. 
Note that the definition of yield strength presented in Figure 8 
was followed by the model tests by Foglia et al. (2015). The 
purpose was to completely reproduce the model test by SPH 
simulation. Table 3 presents different views of each simulation 
at 4 DFy. In particular, XZ section, XY section, YZ section, and 
overall (3D) view are included. 

Failure modes under paths of single loading 

For the single vertical loading test (P–V), plastic zone expands 
along with vertical direction at the beginning. With increasing 

displacement, the soil underneath the caisson is compressed 
and plastic zone expands also along with the horizontal direc-
tion at the same time. High plastic zone mainly concentrates 
on the bottom of the caisson. The final plastic zone looks like 
a matrass, as shown in Table 2. 

For the single horizontal loading test (P–H), as presented in 
Table 2, the plastic zone expands along with the horizontal 
direction. Because the shear stress level at the bottom of 
caisson is higher than above, the plastic zone at bottom 
expands smaller than above layer. As a result, the final sliding 
surface is similar to the spheroidicity, shown in Table 3. High 
plastic zone mainly centralizes on sliding plane and near the 
right skirt of caisson. 

For the single moment loading test (P–M), the plastic zone 
expands along with circumferential direction. Comparing with 
above two cases, expanded area of plastic zone is smaller. High 
plastic zone primarily concentrates on the sliding plane near 
the left inner skirt of caisson. 

Failure modes under paths of two combined loadings 

For the case of C–VH, the plastic zone extends following the 
resultant force direction of H and V first, 45° with the horizontal 
direction. With the displacement increasing, a polarization of 
plastic zone occurs. As shown in Table 2, the plastic zone 
extends obviously along with two directions, one is horizontal 
and the other is vertical. High plastic zone mainly concentrates 
on the 45° glide plane, the area near the right skirt of caisson and 
the area near the bottom of caisson. Compared to the cases of 
pure vertical and pure horizontal loading, the plastic zone of 
C–VH can be considered as the superposition of the former two. 

Under combined loadings V and M for the case of C–VM, 
the plastic zone expands along with vertical and circumfer-
ential directions. Compared to the case of pure moment, the 
extension of plastic zone along with circumference is larger 
in this case. The final sliding surface approximates as a sphe-
roidicity. High plastic zone primarily centralizes on the sliding 
plane near the left inner skirt of caisson. 

Figure 7. Failure envelope on the H:M/D loading plane: simulation results and predictions of models of reference.  
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As shown in Table 2, the plastic zone expands along with 
circumferential and horizontal direction under combined 
loadings of H and M for the case of C–H+M. As mentioned 
above, because the shear stress level of the upper soil layer is 
lower, the plastic area expands more obviously. As a result, 
the sliding surface looks like a basin and the plastic zone is 
basically bilateral symmetric. Compared to the case of pure 
moment, the plastic zone in this case extends more obviously 
at the left side. The distribution of high plastic zone is 
relatively discrete. 

Similar to the above case, the plastic zone of C–H−M 
expands along with circumferential and horizontal directions. Figure 8. Determination of the peak values.  

Table 3. Specified views of sliding surface of caisson foundation under different loading paths.  

XZ-section view XY-section view YZ-section view Overall view  

P–V 

P–H 

P–M 

C–HV 

C–VM 

C–H+M 

(Continued) 
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Compared to C–H+M, because of the opposite direction of 
horizontal loading, the plastic extension is more obvious in 
this case. The plastic extension of H and M is mutually 
stimulative, with a positive correlation. The high plastic area 
mainly centralizes on the sliding plane, presented with a 
continuous zone combining horizontal and circumferential 
extension. 

Failure modes under paths of three combined loadings 

As shown in Table 2, the extension of plastic zone for C–H 
+VM follows three directions, i.e., horizontal, vertical, and 
circumferential. The final sliding surface is a shape of hemi-
spheroidicity. The high plastic zone primarily concentrates 
on the left skirt (including inner and outer side) of caisson 
with the area near the caisson bottom. 

For the case of C–H−VM, the edge of plastic zone presents 
as the shape of smooth arc. With the rotational displacement 
increasing, the upper soil layer is lifted off the ground. The 
high plastic zone primarily concentrates on the sliding plane 
near the caisson bottom. Like the case of C–H−M, the exten-
sion of plastic zone due to H and M is mutually stimulative. 
Compared to the case of C–H−M, the final sliding surface is 
smaller. The reason is that the vertical loading enhances the 

interaction between the caisson and the soil, thereby reducing 
the displacement and rotation of the caisson. 

Yield strength and sliding surface area under  

different loading conditions 

To analyze the relationship between yield strength and sliding 
surface expansion under different loading conditions, the 
sliding surface area of each case was calculated. The shape of 
sliding surface of all above cases can be approximated as 
ellipsoid, which can be described as, 

x2

a2 þ
y2

b2 þ
z2

c2 ¼ 1 ð4Þ

where a, b, and c represent the length of three dimensions, 
expressed as follows: 

a ¼ 0:25a1 þ 0:5a2 þ 0:25a3
b ¼ 0:25b1 þ 0:5b2 þ 0:25b3
c ¼ 0:25c1 þ 0:5c2 þ 0:25c3

(

ð5Þ

To measure (a1, a2, and a3), (b1, b2, and b3), and (c1, c2, and c3), 
an illustrative example was given, as shown in Figure 9. For 
the XZ-section, because of the irregular shape, the weights of 

Table 3. Continued.  

XZ-section view XY-section view YZ-section view Overall view 

C–H−M 

C–H+VM 

C–H−VM 

Figure 9. Illustrative example for calculating the sliding surface area: (a) for XZ-section view and (b) XY-section view.  
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a1, a2, and a3 for calculating a are 0.25, 0.5, and 0.25, respectively. 
Same method was adopted in another two directions. 

By measuring the length of three dimensions for each case, 
the sliding surface area was calculated by following the Knud 
Thomsen formula, 

S � 4p
anbn þ ancn þ bncn

3

� �

1
n

ð6Þ

where n � 1:6075 with the relative error approximated to 
1.061% (Krajcik and McLenithan 2001); The related results 
are summarized in Table 4. Figure 10 shows the sliding surface 
area under different loading conditions. 

As shown in Table 4 and Figure 10, among the single 
loading cases, while specifying the vertical loading, the sliding 
surface develops more notably representing higher strength 
than other two pure loading conditions. The sliding surface 
area of pure H and M cases stays nearly the same. 

For the two combined loading cases, while specifying the 
C–MH loadings, the sliding surface area reaches the 
minimum. Besides, while V combined with H or M, compared 
to single loading case, the global bearing capacity is improved. 

For the three combined loading cases, comparing the case 
C–VH+M to C–VH−M, when the direction of H and M keep 
the same rotational direction, the sliding surface develops 
more obviously with the bearing capacity of H and M also 
being higher than the opposite one. 

Influence of caisson dimension to failure  

progress and mode 

The dimension of caisson needs to be optimized during 
design, for which its influence needs to be estimated. For this 
purpose, three additional dimensions were designated with 
D/d ¼ 0.5, 1.5, and 2 (D is the diameter of caisson and d is 
the skirt length of caisson) keeping the same soil-structure 
contact area: the narrow-deep caisson R0.5 (D ¼ 224 mm, 
d ¼ 447 mm), wide-shallow caissons R1.5 (D ¼ 350 mm, 
d ¼ 233 mm) and R2.0 (D ¼ 387 mm, d ¼ 193 mm). For each 
dimension, six representative combined loading paths were 
selected for simulations, as: H–V, V–M, H+–M, H−–M, 
H+–V–M, H−–V–M. 

Note that the failure progress and failure mode are very 
similar to that of D/d ¼ 1.0 only with different size of sliding 
surface, models with plastic zone are thus not plotted in this 
section. Only yield strength and sliding surface area are 
estimated for comparisons. As presented in Figure 11, in all 
six cases of specified combined loadings, with the ratio D/d 
increasing, the yield strength of vertical loading increases 
slightly and linearly, while the horizontal and moment 
capacities show a slightly linear decrease. Comparing figure 
case H+–M to H−–M, H+–V–M to H−–V–M, for the opposite 
direction of applied horizontal loading, the capacities of hori-
zontal force and moment present a reducing trend. Besides, 
when the vertical loading is applied, the capacities of H and 
M are improved. 

Table 4. Yield strength and sliding surface area under various loading paths.  

a (mm) b (mm) c (mm) s (mm2) V (N) H (N) M/D (N)  

P–V  665.9  665.9  866.3 21,60,432  87,949 \ \ 
P–H  991.7  693.3  441.4 15,47,919 \ 720 \ 
P–M  887.6  647.9  530.1 14,73,167 \ \  810 
C–VH  1012.5  729.4  729.5 21,17,608  4,227 923 \ 
C–VM  1070.1  817.7  660.7 22,47,553  4,019 \  1,237 
C–H+M  913.0  670.8  480.8 14,68,090 \ 652  793 
C–H−M  807.6  572.1  511.6 12,35,435 \ 563  652 
C–VH+M  1,239.5  786.8  659.5 24,65,439  3,771 852  939 
C–VH−M  807.6  572.1  757.5 15,89,610  4,625 671  576   

Figure 10. Sliding surface area under different specified loading conditions.  
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The sliding surface area was calculated for all cases, and is 
plotted in Figure 12. In all six cases of specified loading com-
binations, with the ratio D/d increasing, the sliding surface 
area decreases slightly and then increases linearly. Comparing 
the case H+–M to H−–M, H+–V–M to H−–V–M, for the 
opposite direction of applied horizontal loading, the expansion 
of sliding surface presents a reducing trend. Besides, when the 
vertical loading is applied, the sliding surface area is enlarged. 

Conclusion 

The evolving failure of a caisson foundation in sand was 
modelled under different loading combinations. A combined 

Lagrangian-SPH method was adopted to deal with the large 
deformation analysis. The method with parameters were first 
calibrated and validated by a simulation of CPT in sand. 
The results of an experimental campaign of a caisson in the 
same sand were selected for simulations, based on which the 
numerical model with parameters was validated. 

Then, more representative loading combinations were 
designated for numerical modeling of failure process and 
mode. It can be concluded that, (1) the final shape of sliding 
surface under different combined loadings with H or/and M 
is similar to each other, but with different size; (2) the vertical 
loading improves the horizontal strength or/and moment 
strength and thus reinforces generally the bearing capacity of 
the caisson foundation; (3) for the case with the same direction 
of H and M, the sliding surface develops more obviously 
and the bearing capacity is bigger than the case of opposite 
direction of H and M. 

Furthermore, three additional caisson dimensions 
D/d ¼ 0.5, 1.5, and 2.0 (changing the ratio of caisson diameter 
D to skirt length d while keeping the same soil-structure 
surface contact area) were simulated under six representative 
combined loading paths. Based on that, the influence of 
caisson dimension to the failure process and mode was 
investigated. 

It was found that with the ratio D/d increasing, the 
yield strength of vertical loading increases slightly and 
linearly, while the horizontal and moment capacities 
show a slightly linear decrease. The sliding surface area 
presents a trend of slightly decreasing and then increasing 
linearly. 

All simulation results are helpful to estimate all possible 
sliding surfaces under different monotonic combined loading 

Figure 12. Sliding surface area under specified combined loadings with 
different ratio of D/d.  

Figure 11. Yield strength under specified combined loadings with different ratio of D/d: (a) H–V and V–M, (b) H+–M and H-–M, (c) H+–V–M and H-–V–M.  
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paths for further limit analysis. Along this line, the critical 
state based soil model with the real scale suction bucket 
foundation will be analyzed in the future. 

Funding 

The financial support for this research came from the National Natural 
Science Foundation of China (Grant No. 51579179). These supports are 
greatly appreciated. 

References 

Barari, A., and L. B. Ibsen. 2012. Undrained response of bucket 
foundations to moment loading. Appl. Ocean Res. 36:12–21. 
doi:10.1016/j.apor.2012.01.003. 

Bojanowski, C. 2014. Numerical modeling of large deformations in soil 
structure interaction problems using FE, EFG, SPH, and MM-ALE 
formulations. Arch. Appl. Mech. 84:743–55. doi:10.1007/s00419-014- 
0830-5. 

Cox, J. A., S. Bhattacharya, D. Lombardi, and D. M. Wood. 2013. 
Dynamics of offshore wind turbines supported on two foundations. 
Proc. ICE—Geotech. Eng. 166 (2):159–69. doi:10.1680/geng.11.00015 

Deng, W., and J. P. Carter. 2002. A theoretical study of the vertical uplift 
capacity of suction caissons. Int. Soc. Offshore Polar Eng. 12 (2):342–49. 

El-Gharbawy, S., and R. Olson. 2000. Modeling of suction caisson 
foundations. The Tenth International Offshore and Polar Engineering 
Conference, International Society of Offshore and Polar Engineers, 
28 May–2 June 2000, Seattle, Washington, USA, vol. 2, 670–77. 

Erbrich, C. T., and T. I. Tjelta. 1999. Installation of bucket foundations 
and suction caissons in sand-geotechnical performance. Offshore 
Technology Conference, 3–6 May, 1999 Houston, TX. doi:10.4043/ 
10990-MS. 

Foglia, A., G. Gottardi, L. Govoni, and L. B. Ibsen. 2015. Modelling the 
drained response of bucket foundations for offshore wind turbines 
under general monotonic and cyclic loading. Appl. Ocean Res. 
52:80–91. 

Foglia, A., and L. B. Ibsen. 2013. A similitude theory for bucket 
foundations under monotonic horizontal load in dense sand. Geotech. 
Geol. Eng. 31:133–42. doi:10.1007/s10706-012-9574-6. 

Gingold, R. A., and J. J. Monaghan. 1977. Smoothed particle 
hydrodynamics: Theory and application to non-spherical stars. Mon. 
Not. R. Astron. Soc. 181:375–89. doi:10.1093/mnras/181.3.375. 

Hibbitt, K., B. Karlsson, and P. Sorensen. 2013. ABAQUS/explicit user’s 
manual (version 6.14). Pawtucket, RI: Hibbitt, Karlsson & Sorensen, 
Inc. 

Hogervorst, J. R. 1980. Field trails with large diameter suction piles. 
Offshore Technology Conference, 5–8 May, 1980, Houston, TX, 
217–22. doi:10.4043/3817-MS. 

Houlsby, G. T., R. B. Kelly, J. Huxtable, and B. W. Byrne. 2005. Field trials 
of suction caissons in clay for offshore wind turbine foundations. 
Géotechnique 55:287–96. doi:10.1680/geot.2005.55.4.287. 

Huxtable, J., R. B. Kelly, G. T. Houlsby, and B. W. Byrne. 2006. Field trials 
of suction caissons in sand for offshore wind turbine foundations. 
Géotechnique 56:3–10. doi:10.1680/geot.2006.56.1.3. 

Ibsen, L. B., M. Hanson, T. Hjort, and M. Thaarup. 2009. Mc-parameter 
calibration of baskarp sand. No. 15, Department of Civil Engineering, 
Aalborg University, Denmark. 

Ibsen, L. B., K. A. Larsen, and A. Barari. 2014. Calibration of failure 
criteria for bucket foundations on drained sand under general loading. 
J. Geotech. Geoenviron. Eng. 140:4014033. doi:10.1061/(ASCE)GT. 
1943-5606.0000995. 

Jin, Y.-F., Z.-Y. Yin, S.-L. Shen, and P.-Y. Hicher. 2016. Selection of sand 
models and identification of parameters using an enhanced genetic 

algorithm. Int. J. Numer. Anal. Methods Geomech. 40:1219–40. 
doi:10.1002/nag.2487. 

Jin, Y.-F., Z.-Y. Yin, S.-L. Shen, and D.-M. Zhang. 2017. A new hybrid 
real-coded genetic algorithm and its application to parameters 
identification of soils. Inverse Probl. Sci. Eng. 25:1343–66. 
doi:10.1080/17415977.2016.1259315. 

Krajcik, R. A., and K. D. McLenithan. 2001. Final answers. http://www. 
numericana.com/answer/ellipsoid.htm#thomsen. Accepted date: 23 
October, 2001. 

Li, S., and W. K. Liu. 2002. Meshfree and particle methods and their 
applications. Appl. Mech. Rev. 55:1–34. 

Qiu, G., S. Henke, and J. Grabe. 2011. Application of a coupled Eulerian– 
Lagrangian approach on geomechanical problems involving large 
deformations. Comput. Geotech. 38:30–39. 

Sukumaran, B., W. O. McCarron, P. Jeanjean, and H. Abouseeda. 1999. 
Efficient finite element techniques for limit analysis of suction caissons 
under lateral loads. Comput. Geotech. 24:89–107. 

Tjelta, T. I. 1995. Geotechnical experience from the installation of 
the Europipe jacket with bucket foundations. Offshore Technology 
Conference, 1–4 May, 1995, TX. doi:10.4043/7795-MS. 

Tjelta, T. I., T. R. Guttormsen, and J. Hermstad. 1986. Large-scale 
penetration test at a deepwater site. Offshore Technology Conference, 
5–8 May, 1986, TX. doi:10.4043/5103-MS. 

Villalobos, F. A., B. W. Byrne, and G. T. Houlsby. 2010. Model testing of 
suction caissons in clay subjected to vertical loading. Appl. Ocean Res. 
32:414–24. doi:10.1016/j.apor.2010.09.002. 

Zhu, B., B. W. Byrne, and G. T. Houlsby. 2013. Long-term lateral cyclic 
response of suction caisson foundations in sand. J. Geotech. Geoen-
viron. Eng. 139:73–83. doi:10.1061/(ASCE)GT.1943-5606.0000738. 

Appendix 

The basic equations of MC model in ABAQUS are presented 
as follows: 

Yield function: 

F ¼ Rmcq � p tan/� c ¼ 0 ðA1Þ

Rmc H;/ð Þ ¼ 1
ffiffiffi

3
p

cos/
sin Hþ p

3

� �

þ 1
3

cos Hþ p

3

� �

tan/ with cos 3Hð Þ¼ J3

q

� �3 ðA2Þ

Potential function: 

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ec0 tanwð Þ2 þ Rmwqð Þ2
q

� p tanw ðA3Þ

Rmw ¼ 4 1 � e2ð Þcos2
Hþ 2e � 1ð Þ2

2 1 � e2� �

cosHþ 2e � 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 1 � e2ð Þ cosHð Þ2 þ 5e2 � 4e

q

Rmc
p

3
;/

� �

with e¼ 3 � sin/

3 þ sin/

ðA4Þ

where F is yield function, q is deviatoric stress, p is mean 
stress, ϕ is friction angle, c is cohesion, J3 is the third invariant 
of the deviatoric strain tensor, G is potential function, ψ is 
dilatancy angle, c0 is the initial value of cohesion, ε ¼ 0.1 as 
default in the ABAQUS.  
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