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Abstract: Barriers to inventing electronic devices involve challenges of iterating electronic designs
due to long lead times for professional circuit board milling or high costs of commercial milling
machines. To overcome these barriers, this study provides open source (OS) designs for a low-cost
circuit milling machine. First, design modifications for mechanical and electrical subsystems of the OS
Distributed 3-D (D3D) Robotics prototyping system are provided. Next, Copper Carve, an OS custom
graphical user interface, is developed to enable circuit board milling by implementing backlash and
substrate distortion compensation. The performance of the OS D3D circuit mill is then quantified
and validated for: positional accuracy, cut quality, feature accuracy, and distortion compensation.
Finally, the return on investment is calculated for inventors using it. The results show by properly
compensating for motion inaccuracies with Copper Carve, the machine achieves a motion resolution
of 10 microns, which is more than adequate for most circuit designs. The mill is at least five times less
expensive than all commercial alternatives and the material costs of the D3D mill are repaid from
fabricating 20–43 boards. The results show that the OS circuit mill is of high-enough quality to enable
rapid invention and distributed manufacturing of complex products containing custom electronics.

Keywords: 3-D printing; circuit milling; circuit design; distributed manufacturing; electronics;
electronics prototyping; free and open-source hardware; P2P; P2P manufacturing

1. Introduction

Domestic commerce started in the U.S. as household-level distributed manufacturing (DM) [1,2].
However, standardized high-volume, centralized mass production overtook it with the first industrial
revolution and has made up the majority of domestic production until the present [3–8]. Recently,
many authors have argued that DM with 3-D printing can reduce costs for consumers for a wide range
of products [9–13]. This can be accomplished with 3-D printing businesses manufacturing and selling
products to consumers or other businesses [14–17]. As examples of the growing prevalence of this trend,
3-D printing stations are being added to commercial chains such as Home Depot [18] and the United
Postal Service [19]. However, free and open source hardware (FOSH) development [20,21] provides
a profitable investment for household-level DM with self-replicating rapid prototyper (RepRap)
3-D printers [22–24]. RepRap-centered DM of high-end products (e.g., scientific tools) has been
shown to significantly reduce costs [25–30] and provides a high return on investments (ROIs) for
science funders [31,32]. In addition, this model is being adopted by the average American consumer
and the number of free pre-designed 3-D products of all kinds is also growing rapidly because
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of the economic benefits of DM for both Do It Yourself (DIY) kits [33] as well as plug-and-play
commercial 3-D printers [34]. Most strikingly, a recent study showed commercial 3-D printers were
economically viable even when used for only fabricating hard plastic toys [35] or flexible products
from a relatively-expensive specialty 3-D printing filament [36].

However, currently DM has matured primarily in mechanical products and components because
of widespread cost declines due to the open sourcing of 3-D printing [37]. Open source electronics has
created many successful companies because various open hardware business models work well with
hobbyist electronics [38]; however, the DM of electronics is not as mature. For example, the fabrication
stations at Home Depot [18] and the U.S. Postal Service [19] only include mechanical prototyping, but
do not offer electronics prototyping. The lack of maturity in DM of open source electronics is a limiting
factor in the complexity of products. There are two primary reasons for the slow adoption of DM
circuit boards. First, there is a lack of unified sources for pre-designed projects, equivalent to sources
for 3-D printable models like MyMiniFactory [39], Thingiverse [40], and YouMagine [41], or the search
engine Yeggi [42]. There are some sources of FOSH circuitry, such as Open Circuit Institute [43] and
Open Circuits [44], though they have not been widely adopted. Most importantly, there are no widely
recognized low-price FOSH circuit milling machines equivalent to the RepRap 3-D printers that can
be built by consumers or purchased from companies like Lulzbot [45], re:3D [46], and Ultimaker [47].
The existing mills on the market are either prohibitively expensive [48], or lack proper documentation
and are difficult to tune due to reliance on closed source designs [49]. The current traditional methods
of circuit board procurement (ordering from fabrication shops) can be improved on in terms of both
lead time and cost [50] with a low-cost FOSH circuit board mill.

This study provides open source designs for a low-cost circuit-milling machine in order to
overcome these limitations and enable DM of complex products containing custom electronics. The goal
of the design is to provide an enabling device for inventors to make novel electronic designs by
leveraging the same open source and peer to peer (P2P) methodologies found to be so successful in
3-D printing. The mill is thus designed around the open source D3D Robotics prototyping system [51],
because of a low part count, scalability, and ability to be DM. First, this study provides the design
modifications for the mechanical and electrical system of the D3D system. Next, a custom graphical user
interface (GUI) open source software called Copper Carve is developed to enable circuit board milling.
Copper Carve is minimalist in nature and made to be easily modified for other applications, although
here the implementations of two critical features, backlash compensation and substrate distortion
compensation, are discussed for their importance to circuit board milling. The mathematics of these
features are detailed and discussed. The performance of the open source circuit mill is quantified
and validated for (1) positional accuracy, (2) quality of cut, (3) feature accuracy, and (4) distortion
compensation. Finally, the cost of the machine is considered, as well as a return on investment (ROI)
analysis for using it.

2. Materials and Methods

First, the design (Figure 1) and construction of the device is discussed, as well as adaptions that
must be made to customize D3D to this new application. Next, the major components of the software
will be explained. Lastly, a standard operation procedure will be defined, as well as a validation
procedure to characterize the machine and test for proper operation.
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Figure 1. The FreeCAD model of the open source circuit mill. 
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2.1.1. D3D Design System 

The D3D construction has already been proven by Open Source Ecology (OSE) [52], as an 
effective fused filament fabrication (FFF) 3-D printer [51]. The system itself consists of few original 
components for motion axes; motor pieces, idler pieces, and carriage pieces (Figure 2). A breakdown 
of the quantities of each piece used can be found in the machine bill of materials (BOM) available at 
https://osf.io/mf78v/. 

 
(a) 

 
(b) 

 
(c) 

Figure 2. The 3-D printed component models for the D3D design system. The rendered designs of the 
(a) motor mounting block, (b) bearing mount block, and (c) carriage block are shown. 

The mill is built inside of a 406.4 mm (16 inch) cubic space frame for rigidity, and ease of 
mounting. The D3D building blocks are all designed with short sockets for 10-pound neodymium 
magnets [53], which are used to easily connect and reconfigure components like the end stop 
interfaces. Magnets are also used to fix the movement axes to the space frame. 

Though it is not necessarily a D3D requirement, OSE recommends the utilization of the open 
source Arduino Mega [54], paired with a RepRap Arduino Mega Pololu Shield (RAMPS) motor 
control board [55]. The firmware used is a slight variation on the Marlin 3-D printer firmware [56]. A 
12V DC power supply is used for motors [57], and a 0–50 V DC supply is used for powering the 
spindle [58]. 

Figure 1. The FreeCAD model of the open source circuit mill.

2.1. Construction

2.1.1. D3D Design System

The D3D construction has already been proven by Open Source Ecology (OSE) [52], as an effective
fused filament fabrication (FFF) 3-D printer [51]. The system itself consists of few original components
for motion axes; motor pieces, idler pieces, and carriage pieces (Figure 2). A breakdown of the
quantities of each piece used can be found in the machine bill of materials (BOM) available at https:
//osf.io/mf78v/.
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Figure 2. The 3-D printed component models for the D3D design system. The rendered designs of the
(a) motor mounting block, (b) bearing mount block, and (c) carriage block are shown.

The mill is built inside of a 406.4 mm (16 inch) cubic space frame for rigidity, and ease of mounting.
The D3D building blocks are all designed with short sockets for 10-pound neodymium magnets [53],
which are used to easily connect and reconfigure components like the end stop interfaces. Magnets are
also used to fix the movement axes to the space frame.

Though it is not necessarily a D3D requirement, OSE recommends the utilization of the open
source Arduino Mega [54], paired with a RepRap Arduino Mega Pololu Shield (RAMPS) motor control

https://osf.io/mf78v/
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board [55]. The firmware used is a slight variation on the Marlin 3-D printer firmware [56]. A 12V DC
power supply is used for motors [57], and a 0–50 V DC supply is used for powering the spindle [58].

2.1.2. Custom Adaptions

A few custom components must be designed to facilitate the tool spindle (Figure 3a), and board
holder (Figure 3b). In addition, each axis must be driven by two stepper motors to facilitate the loads
associated with carrying the tool spindle, as well as milling into the material. In addition, the Z-axis
requires a higher current supply than is on the RAMPS driver board, so a TB6600 based driver [59] is
selected and split to two stepper motors.
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Figure 3. (a) The spindle mount model. (b) The board holder model.

The last modifications are to add four compression springs to the Z-axis linear rails. They are
used to cancel the 1 kg of weight associated with the tool spindle. Since D3D is based around belt
driven axes, the failure mode of the loaded Z-axis would be to fall until it collides with the cutting
surface—effectively breaking cutting tools or ruining the work piece. The addition of the springs
mitigates this issue and changes the failure mode to lift the spindle or at least maintain its position
(when friction in the belt matches the forces caused by compressed springs).

2.2. Software—Copper Carve

Copper Carve (Figure 4) is programmed in C++ using the community edition of QT Creator [60]
available at https://github.com/ShaneOberloier/gcode_leveler. The software is designed specifically
to communicate with Marlin firmware and utilize the RAMPs board hardware configuration. Since
Copper Carve is also intended to be used for other D3D based projects, it is designed to be a
minimalistic backbone that can be expanded for other applications. Copper Carve is released under the
open source license GNU’s Not Unix (GNU is a recursively defined acronym) General Public License
(GNU GPL) [61]. In order to maintain flexibility, the software is made to be as modular as possible.
There are a few key required features that are described below.

https://github.com/ShaneOberloier/gcode_leveler
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2.2.1. Backlash Compensation

The first critical feature needed for printed circuit board (PCB) milling implemented in Copper
Carve is backlash compensation. Mechanical backlash is a phenomenon caused when a movement axis
changes direction. It is the maximum distance through which a mechanical component can be moved
in one direction without applying appreciable force [62]. For example, as the drive belt and pulley have
tolerances between their teeth, the pulley will “slip” a finite and predictable amount when moving
to push against the reverse sides of the belt teeth. Backlash causes movement axes to move slightly
smaller distances than commanded. This error can cause significant cutting errors when milling fine
features such as completely removing 0.5 mm circuit traces.

There are two necessary steps to compensate for backlash: (1) detecting backlash, and (2) injecting
movement instructions to accommodate the physical limitations of the system. Since all motion
commands are sent through Copper Carve, backlash can be predicted by examining the sequence of
sent G-Code commands. The algorithm is straightforward and detailed in pseudocode below.

If Motion Command

For Each Direction

If Direction != Previous Direction

Call Compensate for Backlash

End If

Store Direction

End For

End If

Once backlash has been detected, all other operations must be put on hold to allow the serial port
to become available for the compensation G-Code. This is detailed below in pseudocode.

Store Location

SendGCode(G91)//Relative Movement

For Each Direction

If Backlash Present

Move by backlash increment
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End If

End For

SendGCode(G90)//Absolute Movement

SendGCode(G92 Location)//Reset to Measured Location

2.2.2. Substrate Distortion Compensation

Commonly, inexpensive copper-clad fiberglass used as a circuit board base material has a large
degree of warpage as illustrated in Figure 5 (e.g., may vary in height by 2 mm). This warpage is
considerable relative to the isolation routing cut depth of 0.1 mm. Because of this distortion, a lack
of compensation will cause a failure to cut, or an increased cut depth—both of which will render the
work piece unusable.
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Figure 5. An illustration of substrate deformation.

This warpage can be compensated for by adjusting G-Code files to follow the measured Z axis
topology. This topology can be measured automatically using the cutting tool as a continuity probe for
the digital input on the RAMPS board. An alligator clamp is used to connect positive voltage to the
cutting tool, and another clamp is used to connect the substrate to the digital input. By default, Marlin
reports the location that the digital input is triggered (the digital input is configured as a Z end stop)
and halts motion. Using this concept, paired with automated movement, height data can be collected
for a grid of points of resolution and the size is determined automatically by Copper Carve (although
it can still be modified by the user).

Once the topology is measured, the G-Code file can be transformed to conform to the measured
mesh. This is accomplished by applying a 3-D linear interpolation [63]. To start, assume a 2-D array of
measured Z height data evenly spaced by ∆X and ∆Y. Four points P, Q, RI, and RII define a rectangular
region (visualized in Figure 6) that is offset from the reference origin (i.e., if P is (0, 0, Z), then Xoffset
and Yoffset will be 0).
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First, confirm that a given point from the G-Code falls in the region currently being examined.
Assume an arbitrary point (X,Y). In order for this point to fall in the region of concern, the following
inequalities must be true:

Xo f f set ≤ X ≤ Xo f f set + ∆X (1)
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Yo f f set ≤ Y ≤ Yo f f set + ∆Y (2)

Once a point is confirmed to be within the rectangular region, it must next be in sub-region I or II.
This is important because a plane can only be constrained by three points. The interpolation will always
use P and Q, but it must be determined whether RI or RII is to be used. The point is in sub-region I if
the following inequality is true. This will indicate that RII must be used for the interpolation.

X
∆X

>
Y

∆Y
(3)

If the above inequality is not satisfied, then the point is in sub-region II, and satisfies the following
relation. RII must be used.

X
∆X
≤ Y

∆Y
(4)

Once the location of the point in the height array is determined, the interpolation process can
begin. First, define the points used for interpolation:

P = (X1, Y1, Z1) (5)

Q = (X2, Y2, Z2) (6)

R = (X3, Y3, Z3) (7)

From these three points, two vectors can be defined:

→
PQ = 〈X2 − X1, Y2 −Y1, Z2 − Z1〉 (8)

→
PR = 〈X3 − X1, Y3 −Y1, Z3 − Z1〉 (9)

Now it is possible to find the normal vector formed by PQ and PR. This can be done by carrying
out the cross product:

→
n =

→
PQ×

→
PR =

∣∣∣∣∣∣∣
→
i

→
j

→
k

X2 − X1 Y2 −Y1 Z2 − Z1

X3 − X1 Y3 −Y1 Z3 − Z1

∣∣∣∣∣∣∣ (10)

The value of this determinate is found to be:

→
n = (Y2 −Y1)(Z3 − Z1)

→
i + (Z2 − Z1)(X3 − X1)

→
j + (X2 − X1)(Y3 −Y1)

→
k−

(Y2 −Y1)(X3 − X1)
→
k − (Z2 − Z1)(Y3 −Y1)

→
i − (X2 − X1)(Z3 − Z1)

→
j

(11)

In order to keep equations orderly, short hand representations are defined for
→
i ,
→
j , and

→
k

components of the above equation:

L = [(Y2 −Y1)(Z3 − Z1)− (Z2 − Z1)(Y3 −Y1)]
→
i (12)

M = [(Z2 − Z1)(X3 − X1)− (X2 − X1)(Z3 − Z1)]
→
j (13)

N = [(X2 − X1)(Y3 −Y1)− (Y2 −Y1)(X3 − X1)]
→
k (14)
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A 3-D plane can now be defined given the normal vector and a point on the plane, which is
assumed to be our point undergoing adjustment (X,Y,Z), where X and Y are known, and Z is a known
value that will be modified.

L(X− X2) + M(Y−Y2) + N(Z− Z2) = 0 (15)

Finally, solving for Z, a solution is attained:

Z =
−L(X− X2)−M(Y−Y2)

N
+ Z2 (16)

Using Equation (16), each G-Code position can be modified to conform to the measured
height mesh.

2.2.3. Usage of Timers

In an attempt to keep the code of Copper Carve as comprehensible as possible, QT timers are
implemented to handle long or continuing processes such as G-Code streaming or the auto leveling
procedure. The timers are used to break up the execution of a sub-process and allows for multiple
processes to be executed in a parallel and scheduled manner. These same processes could be handled
with multi-threading methods, however the implementation in QT would not be easily comprehensible
by the lay user.

2.2.4. Auto-Replace Functionality

Though Copper Carve is made to directly interface with the D3D mill, some considerations
have been made. Each G-Code command feeds through an auto-replace function that references
a file “substitutions.txt”. This can be used to alter the G-Code based on which computer-aided
manufacturing (CAM) software is being used, or which firmware the target machine contains.

2.3. Mill Usage Workflow

The mill has a specific set of constraints that define minimum specifications of the designed circuit
board. In this section, a process is detailed to ensure manufacturing that meets these specifications.

2.3.1. Board Design

It is recommended that circuit boards are designed in KiCAD [64], since the software is free and
open source software (FOSS), and fits well with the toolchain. It is required to have a minimum trace
spacing of 0.2 mm and a minimum trace width of 0.5 mm. Any smaller trace width will result in the
trace being cut completely off of the board.

Once the board is designed, the auxiliary axis must be placed near the circuit board (preferably
in the bottom-left corner of the edge.cuts layer) in order to reduce any large locational offset from
the origin.

2.3.2. FlatCAM

The Gerber files are converted to machine-readable G-Code files. This is done with the open
source PCB CAM package, FlatCAM [65]. Tool settings may vary depending on the specific tool
selected. However, a typical cut depth for traces and pads is 0.1 mm. Feed rate for V-shaped engraving
bits [66] should be 50 mm/min, and end mills should be 100 mm/min.

2.4. Validation

Circuit board milling requires tight tolerances, otherwise the board will likely malfunction.
Because of this, the machine must be tightly calibrated and characterized.
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2.4.1. Positional Accuracy

First, the positional accuracy of each axis must be measured. This can be done with a dial indicator
set up similar to Figure 7.
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First, the axis is jogged a small value (1 mm) in the positive direction. The indicator is zeroed,
then another positive movement is called of a known value. The actual movement is measured and
compared. If there is a discrepancy between the two, the steps per mm value for that axis must be
adjusted using the M92 command.

Using the same dial indicator setup, the backlash can be measured, but only after the steps per
mm value has been validated. To measure backlash, the position is moved in the negative direction
a small value (1 mm). The indicator is then zeroed, and the axis is jogged in the positive direction.
The difference between command and the measured distance is the backlash value. This value is
placed in Copper Carve’s option screen for each axis. With these values updated, the same test can be
performed, and if the compensation is successful, there should be no difference between the movement
command and the measured movement.

2.4.2. Quality of Mill Cut

A quality cut is defined as a non-destructive cut in the substrate with minimum burring on the
copper edges. This is observed both visually, and with an Olympus PME3 optical microscope, using
50×magnification.

2.4.3. Feature Accuracy

Trace width can be a critical dimension, so it is important that their parameters appear on the
board as designed. Using an optical microscope, a known trace width can be measured and compared
with the intended value. If the measurement is off, this can indicate that either the steps per mm, or
backlash values were not properly calibrated.

As an additional test, the pattern in Figure 8 is milled out 20 times in both the X- and Y-axis.
This pattern is designed such that the left-most rectangle’s width will not be affected by backlash errors.
The right rectangle will be affected by backlash in movement 3, causing the width of the rectangle to
be thinner than the left rectangle. Data gathered from this experiment will show both feature variation,
and compensation effectiveness.



Inventions 2018, 3, 64 10 of 19

Inventions 2018, 3, x 10 of 19 

be thinner than the left rectangle. Data gathered from this experiment will show both feature 
variation, and compensation effectiveness. 

 
Figure 8. A test pattern to verify feature repeatability and backlash compensation effectiveness. Grey 
dashed arrows indicate that the mill is moving above the substrate. Green Circles indicate that the 
tool has plunged into the surface. Blue arrows indicate the path the mill is cutting into the copper. 

2.4.4. Distortion Compensation Accuracy 

The distortion compensation can be observed by introducing an extreme situation. The copper 
clad fiber glass is fastened to a piece of wood, cut to set the board at a 10-degree angle to the cutting 
surface. A test pattern is then milled, and observed for Z-axis accuracy (i.e., under or over-cutting). 

3. Results 

3.1. Overall Results 

The completed design in Figure 9 has been proven to be robust and suitably accurate. The D3D 
design system has proven itself as a framework for creating low-cost, minimalist, and scalable 
machines. The machine itself can be constructed during a small 8 h build time. A comprehensive bill 
of materials (see https://osf.io/mf78v/) shows that the mill costs US$500 in parts. 

 
Figure 9. An image of the completed circuit mill. 

Figure 8. A test pattern to verify feature repeatability and backlash compensation effectiveness.
Grey dashed arrows indicate that the mill is moving above the substrate. Green Circles indicate that
the tool has plunged into the surface. Blue arrows indicate the path the mill is cutting into the copper.

2.4.4. Distortion Compensation Accuracy

The distortion compensation can be observed by introducing an extreme situation. The copper
clad fiber glass is fastened to a piece of wood, cut to set the board at a 10-degree angle to the cutting
surface. A test pattern is then milled, and observed for Z-axis accuracy (i.e., under or over-cutting).

3. Results

3.1. Overall Results

The completed design in Figure 9 has been proven to be robust and suitably accurate. The D3D
design system has proven itself as a framework for creating low-cost, minimalist, and scalable machines.
The machine itself can be constructed during a small 8 h build time. A comprehensive bill of materials
(see https://osf.io/mf78v/) shows that the mill costs US$500 in parts.
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3.2. Positional Accuracy

The positional accuracy of the machine was found to be suitable for the purpose of cutting most
circuit board designs. Thanks to properly implemented motion compensation techniques, the machine
step resolution is at the hard limit of 0.01 mm for the X- and Y-axis, and 0.008 mm for the Z-axis.
The overall machine characteristics are shown in Table 1.

When measuring the machine backlash, a dial indicator can allow for accurate measurements
up to 0.0254 mm. This value cannot be directly input into Copper Carve, however. Instead, the
value must be some multiple of the resolution. This is because the stepper motors cannot physically
make a “fraction” of a step. Once the values are measured to the fullest accuracy of the dial indicator,
they are fine-tuned incrementally by cutting the test pattern in Figure 8, until the rectangles have
identical widths.

Table 1. Motion specifications for the circuit mill.

Motion Parameter X-Axis (mm) Y-Axis (mm) Z-Axis (mm)

Resolution 0.01 0.01 0.01
Backlash 0.252 0.075 0.1

Rounded Backlash 0.25 0.08 0.1

3.3. Quality of Mill Cut

It is desirable to minimize post-processing of the boards. One large post-processing step is sanding
the circuit board to rid the copper cut edges of burrs. By sweeping different cutting feed rates and
depth, an optimal configuration could be found. The following samples in Figure 10 were all analyzed
visually for the amount and size of burrs present. In this case, it appeared that operating at a feed rate
of 50 mm/min and a cutting depth of 0.2 mm yielded the fewest and smallest burrs.
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Figure 10. Top row from left to right: (a) Feed rate of 50 mm/min, plunge depth of 0.1 mm; (b) feed
rate of 100 mm/min, plunge depth of 0.1 mm; (c) feed rate of 150 mm/min, plunge depth of 0.1 mm;
and (d) feed rate of 50 mm/min, plunge depth of 0.2 mm.
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3.4. Feature Accuracy

A semi-octagon shape was cut into the copper with copper trace of widths 0.5 mm and 1 mm.
An octagonal shape was chosen to view all common cutting orientations (Figure 11). The minimum
width of each feature is measured and compared with the target in Table 2. The width of the cut was
also measured and used to adjust the error percentage. This adjustment was made by subtracting the
error of the nominal cut width (0.2 mm). This shows that if proper adjustments are made in the CAM
software, the indicated error can be achieved.
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Table 2. A comparison of feature accuracies at different cutting speeds.

Cutting Speed Width of
0.5 mm Trace

% Error of
0.5 mm Trace

Width of
0.2 mm Cut

% Error of 0.5 mm
Trace Adjusted

50 mm/min 0.40 mm 20% 0.25 mm 10%
100 mm/min 0.35 mm 30% 0.35 mm 0%
150 mm/min 0.20 mm 60% 0.40 mm 20%

The 20 patterns for X and Y are milled according to Figure 8. The widths of both the control (right
rectangle) and variable (left rectangle) were measured in ImageJ [67] by analyzing a photograph taken
with an Olympus Stylus digital camera and a reference scale. The results are displayed in a histogram
to demonstrate the distribution of widths of the control and variable rectangles.

Figure 12 suggests that the X-axis follows a Gaussian distribution, with a standard deviation of
0.03 mm. This measured deviation was well below the threshold for significant error. Additionally,
comparing the means of the distributions for no-backlash shapes with backlash induced shapes, there
was an offset of 0.045 mm. This indicates that the backlash compensation used during this test was off
by 0.045 mm. Ideally, the two distributions should be overlapped completely.

Figure 13 shows the two distributions for shapes cut with respect to the Y axis. Unlike Figure 12,
the distributions did not follow any apparent trend. However, the standard deviation of the
backlash-induced rectangles had a standard deviation of 0.02 mm. The means of each distribution had
a space of 0.253 mm, indicating that the backlash compensation used to cut these patterns was not
properly selected.
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3.5. Distortion Compensation

The milling on an incline was executed successfully. The cut board could be viewed in Figure 14.
The board was inspected using a flashlight to verify full cuts at all necessary areas. The inspection
revealed one error, namely a failed cut (indicated by the red circle in Figure 14). This error could be
remedied by increasing the cut depth by a small increment (0.01 mm). Additionally, the G-Code tool
path is rendered in Figures 15 and 16, and visually inspected to follow the expected incline. The code
successfully followed the angle, and the error likely occurred from slight measurement error, or a
too-shallow cut depth.
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4. Discussion

4.1. Open Source as a Development Platform

This study joins several others [21,25,67] and stands as a testament to the effectiveness of
open source technology as a hardware development platform. Very few components to this mill
were designed from scratch thanks to contributions like D3D [51], RAMPS [55], Marlin [56], and
communities, such as OSE and Arduino that provide helpful support groups and openly welcome
contributions back to their library of work. A full list of the open source components used in this
toolchain are described in Table 3. Open source is typically modular and scalable, which maximizes its
potential applications [68]. Because of the open source emphasis on DM, this machine was capable
of being manufactured with a minimum number of tools or knowledge of manufacturing processes.
Now the mill explored in this paper can act as an enabling device for encouraging electronics-based
invention and the proliferation of DM of open source electronics.

Table 3. All open source tools used in the designed tool-chain.

Name Usage URL

Arduino MEGA Main Controller https://www.arduino.cc/
RAMPS 1.4 Motor Controller Breakout https://reprap.org/wiki/RAMPS_1.4

D3D Universal Axis System Axes https://www.opensourceecology.org/
QT Creator Creating Control Software https://www.qt.io/

Arduino IDE Editing and Marlin https://www.arduino.cc/
KiCAD Designing Test circuits http://kicad-pcb.org/

FlatCAM Converting Boards to G-Code http://flatcam.org/
Marlin Firmware to Execute G-Code http://marlinfw.org/

4.2. D3D and Other Applications

The circuit mill explored in this application is one many potential applications of the D3D design
system. The same setup could easily be scaled to mill large circuit boards. Copper Carve would require
no adaptions to control the larger machine. The machine could also easily be adapted to hold different
tools, such as a suction nozzle, making the machine into a pick-and-place tool. The machine could be
adapted to utilize a syringe pump [48], which could then be used as a solder paste applicator. The mill,
paired with the two bespoke hypothetical machines, could act as an entire tool chain to fabricate, and
assemble circuit boards, furthering the capabilities of DM at the home, fablab, or small business levels.

4.3. Software Design Philosophy

Copper Carve is built around the philosophy that open source software should be coded in a
way that the target audience can make meaningful modifications to the software. This philosophy
requires a skilled programmer to prefer lower level (potentially more complex) solutions, than efficient
solutions that invoke obscure or higher-level functions. For example, Copper Carve works for an
electronics mill. Typical users of the mill will be electrical engineers, students, inventors, and hobbyists.
Therefore, it makes sense to consider what kind of modifications the target audience may be making,
and what level of programming they may be familiar with. That is why Copper Carve does not
utilize a multi-threaded process, as they require a relatively high knowledge of computer science to
properly utilize and modify. A core group of hardy functions, such as “SendGCode” are established
so they can easily be implemented for purposes such as scripted buttons or custom processes by the
target audience.

4.4. Market Comparison

Commercial circuit board milling machines can cost as much as 3199 United States Dollars
(USD) [69], which is expensive when compared with the D3D mill explored in this study. All mills

https://www.arduino.cc/
https://reprap.org/wiki/RAMPS_1.4
https://www.opensourceecology.org/
https://www.qt.io/
https://www.arduino.cc/
http://kicad-pcb.org/
http://flatcam.org/
http://marlinfw.org/
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have identical resolutions, and though the maximum speeds seen in commercial systems can improve
cutting times, they are limited by the maximum feed rate allowed by the cutting tool, which is well
below 1000 mm/min. Thus, the maximum travel speeds are not a major advantage in real-world
milling. The final category compared in Table 4, maximum milling speed, is thus a non-issue when
considering the maximum allowable speeds used while milling. This high speed found in other
devices is only useful in manual jogging operations, which is a small part of the overall operation.
Commercial alternatives are often shipped assembled and ready to use, but because of that, are not
scalable nor easily maintainable in cases of a part breakage. The cost of the D3D mill is for the
materials only.

Table 4. A comparison of commercial circuit mills to the D3D mill.

Name Price (USD) Resolution (mm) Working Area Max Travel Speed (mm/min)

D3D Mill * 500 0.01 140 × 200 1000
Othermill [69] 3199 0.01 140 × 114 2600

Prometheus [70] 1799 0.01 160 × 100 3800
DWR-0906 [71] 1495 0.01 220 × 160 2500
3D Nomad [72] 2499 0.01 203 × 203 2500

* Materials costs only.

The mill can be constructed in 10 h and requires only a RepRap-class 3-D printer, a chop
saw, a power sander, and a soldering iron. This time does not include time spent 3-D printing
axis components. The machine construction requires minimal knowledge of electrical wiring and
mechanical assembly. Once the mill is assembled, basic knowledge of mechanical measurements is
required in order to validate axial motion.

The price of each mill also weighs heavily on their respective return on investment (ROI). For this
analysis, it assumed that unique 100 mm × 80 mm single layer circuit boards are being manufactured.
Based on quotes generated from many PCB fabrication sources [50], a board can be ordered for
12.22 USD, if 27-day shipping is selected. From the same source, a board can be ordered for 25.36 USD
if 10-day shipping is selected. The labor costs in using the D3D system are relatively trivial and the
system does not need to be monitored during fabrication of a circuit. The energy used during the
milling of a standard board was 0.5 kWh, and therefore the energy costs were also ignored. Thus, the
only consumable material for the D3D circuit mill is the copper-clad fiber glass, which can cost as low
as 0.42 USD [73]. Simply dividing the cost of the mill by the cost per board less the cost to produce on
the D3D mill, 43 boards (27-day shipping) or 20 boards (10-day shipping) must be produced in order
to recoup the investment for the material costs of the D3D Mill. Compared to commercial alternatives,
this can be as six times as many boards (258 27-day boards, 120 10-day boards). Although, the use of
DM for circuit manufacture will cost less with any of the systems in Table 4, the most valuable asset of
DM is the quick turnaround delivered by circuit mills: 2 to 3 h compared to a minimum of 10 days.
This allows inventors and circuit designers to quickly iterate on designs of new boards.

Milling 43 boards is a highly achievable feat during the lifetime of the mill. For example, the base
power meter used to monitor an open source home includes 11 boards [74]. With this single project,
the mill has already paid for a quarter of its BOM cost. Also, the design process itself for perfecting
a new invention is likely to go through multiple iterations and revisions. There are also many cases
where the mill could be used as a communal tool, such as research laboratories, fablabs or makerspaces.
In all cases, the 43-board threshold can be met in a very short span of time.

4.5. Additional Applications and Future Work

The D3D circuit mill has added utility that has not yet been explored. The mill can be used to
cut out 2-D components from wood, or plastics. Additionally, the mill can be used to engrave many
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materials from wood, plastic, and most metals. Due to the relatively low torques the mill is designed
for, it is likely that these tasks can be achieved by using small cut depths and lower feed rates.

In addition to exploring additional applications of the milling machine, the machine can be
fabricated for lower costs with 3-D printed vertices and aluminum extrusion. Copper Carve can also
be modified to have many desirable features such as tool path preview, motion optimization, height
map output, and multi-machine communication (for large production systems).

5. Conclusions

The open source D3D based circuit mill has proven to be a fully-functional circuit board mill that
is constructed entirely on open source platforms. By properly compensating for motion inaccuracies
with the open source Copper Carve, the machine has achieved a motion resolution of 0.01 mm, which
corresponds to the step size of the stepper motor. The mill is at least five times less expensive than all
commercial alternatives, with manufacturing capabilities that can fabricate according to most design
standards. This allows the materials costs of the D3D mill to be recouped in as little as 20 boards
while offering users a several-hour turnaround time between design iterations for inventors instead of
10 days.
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