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 13 
Background 14 
Open-source, self-replicating rapid prototypers (RepRaps) have radically reduced the costs of 15 
3-D printing while expanding its access. 3-D printing’s model of distributed manufacturing can 16 
produce medical technologies at significantly reduced costs. We investigate this potential by 17 
evaluating the viability of an open-source 3-D printable infant clubfoot brace. 18 
Methods  19 
Starting with a list of key features present in currently available clubfoot braces, a 3-D printed 20 
clubfoot brace was developed in free and open-source CAD software (FreeCAD) to enable 21 
future customization. Poly-lactic acid (PLA), a biodegradable and recyclable bioplastic was 22 
selected among the various commercial 3-D printable materials based on strength and cost. 23 
Results  24 
The results show that the open-source clubfoot brace matches or surpasses the physical features 25 
and mechanical degrees of freedom of all commercial- and non-profit-developed brace designs 26 
while substantially reducing the costs of the braces to hospitals and families.  27 
Conclusions  28 
The 3-D printed brace has the features of commercially available braces while significantly 29 
reducing the cost, making this clubfoot brace particularly appropriate for use in developing 30 
countries. In addition, the results indicated that this model of distributed manufacturing of 31 
medical technology is technically and economically appropriate through much of the Global 32 
South.  33 
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Level of Evidence: II 34 
Keywords: clubfoot, clubfoot brace, foot abduction orthosis, 3-D printing, distributed 35 
manufacturing.  36 
 37 
1. Background 38 
 Congential talipes equinovarus (clubfoot) is one of the most common congenital 39 
physical deformities, with an incidence of at least one case per 1000 births1-3. The condition is 40 
characterized by infants being born with a foot in a position of cavus, forefoot adduction and 41 
calcaneal equinovarus1-3.  The condition may be idiopathic or associated with other medical 42 
conditions1-3. In developed countries, clubfoot is identified before or at the time of birth and is 43 
treated in early infancy4-8. Idiopathic clubfeet are effectively treated using the Ponseti method 44 
of weekly manipulation and casting, followed by Achilles tenotomy and a bracing protocol 45 
that includes a foot abduction orthosis (FAO or “boots and bar” brace shown in Figure 1) to 46 
prevent deformity recurrence4-8. The child initially wears the brace full-time except for 47 
bathing (> 95% of a typical day) for the first three months, followed by weaning it to nap and 48 
nighttime wear until the age of four years4-8. In developing countries, where treatment options 49 
may be far less available, however, clubfoot can lead to life-long disability9. In East Africa, in 50 
particular, clubfoot may be at least twice as prevalent2 with up to 8 cases per 1000 births10. 51 
Even in situations where treatment is possible, the costs of the FAOs are expensive. If the 52 
patients’ families do not comply with the FAO bracing after correction of the deformities, 53 
relapse is common11.  While still more expensive to American and European families (> $300 54 
in the U.S. and Europe12), the cost of braces (bar and AFO) to families across the developing 55 
world ($150 in China13, $90 - $200 in Latin America14, and an average of $60 in Africa15) can 56 
still be prohibitively expensive. 57 
 3-D printing has been shown to be a positive method of democratizing manufacturing 58 
for sustainable development, while radically reducing costs for products in marginalized 59 
communities16-20. This has been made possible by the technological evolution of the self-60 
replicating rapid prototyper (RepRap), an open-source 3-D printer that costs as little as a few 61 
hundred dollars and can fabricate more than half of its own parts21-23. The application of 3-D 62 
printers in the developing world has enabled the manufacturing of necessities in the field 63 
following humanitarian crises by groups such as Field Ready24,25. In addition, these low-cost 64 
open-source 3-D printers have been shown to be useful for fabricating both scientific and 65 
medical equipment26-32. It is thus possible that this method of distributed manufacturing could 66 
be useful for producing low cost FAO for clubfoot patients. 67 
 To investigate the potential of distributed manufacturing of an FAO for clubfoot patients 68 
in the developing world, this study makes a careful investigation of the use of RepRap 3-D 69 
printers to fabricate an open-source clubfoot brace.  70 
 71 
2. Methods 72 

The methodology includes first selecting among the various commercial 3-D printing 73 
materials based on material properties and cost, developing an open-source design using only 74 
open-source tools, and describing the open-source 3-D printer used and the settings to fabricate 75 
the clubfoot brace. Then, the brace’s features were examined to ensure that it met the required 76 
features for foot abduction orthoses designed for treating clubfoot. Finally, this brace was then 77 
examined by doing a cost and functionality comparison with existing designs. 78 
2.1 Material Selection 79 

In the RepRap community, poly-lactic acid (PLA), a biodegradable and recyclable 80 
bioplastic, is the most popular 3-D printing material, being available from the vast majority of 81 
3-D printing supplies vendors. PLA has a relatively low melting point, 150°-160°C, thus 82 
requiring less energy to print - a distinct advantage for off-grid applications in the developing 83 
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world33,34. The mechanical properties of RepRap 3-D printing materials are well established35,36 84 
and PLA has the highest strength to cost ratio for commercial 3-D printing filaments37, and was 85 
thus chosen for the brace in this study. 86 

2.2 Open-Source Design 87 
The open-source clubfoot brace was entirely designed with FreeCAD, an open-source 88 

CAD software38, which will enable customization or changes by anyone in the world with no 89 
software costs. The design was made for ease of printing (e.g., minimizing overhangs and 90 
material usage, while achieving strength and dimensional accuracy). It was created with the 91 
intent of being able to meet criteria collected from the literature and shown in Table 1. 92 

The features determined to be of importance in the design of the FAO are as follows: 93 
(1) the ability to maintain foot positioning in order to prevent relapses, (2)  the ability to adjust 94 
the angle of abduction, (3) the ability to dorsiflex the feet is an optimal feature for proper 95 
bracing12,39-41. An adjustable width between the feet allows for a more cost effective product, 96 
as the brace needs to be replaced far less frequently as the child grows. The ability of the foot 97 
pads to move independently and attach and detach from the abduction bar increases comfort 98 
and encourages proper usage42.  99 
2.3 3-D Printer Settings 100 

Although any RepRap class FFF 3-D printer capable of printing PLA, with or without 101 
a heated bed could fabricate this open source design43, the 3-D printer used to fabricate the 102 
brace components was a MOST delta RepRap44. Cura version 15.04.645 was the software used 103 
to slice the CAD models into printing layers using the following settings: layer height of 0.2mm, 104 
shell thickness of 1mm, fill density of 80%, print speed of 40mm/s, and a print temperature of 105 
185°C.  106 
 107 

2.4. Cost Calculations 108 
A multivariable cost analysis was run on the three primary driving variables in the cost 109 

of locally manufacturing the clubfoot brace - 1) labor cost, 2) filament cost, and 3) electricity 110 
cost. Because economic specifics can vary greatly throughout the developing world, the cost 111 
sensitivity analysis was performed using data collected on labor, electricity, and filament costs 112 
in the context of manufacturing them in a single economy: Kenya. Clubfoot is especially 113 
prevalent in Kenya, with clubfoot being the most common congenital malformation occurring 114 
throughout the country with approximately 3 instances per 1000 children46. Even when 115 
subsidized, the cost of procuring braces in Kenya can be difficult for many Kenyan families47. 116 

 Kenyan labor costs were varied from $0 (volunteers or zero marginal cost for existing 117 
employees that could periodically monitor the 3-D printer and do the simple assembly 118 
procedure while doing other tasks) to $1.30/hr (the government dictated wage for a Kenyan 119 
machinist in an urban area48) in $0.10 increments. Three commercial filament sources were 120 
found to be available in Kenya (prices, including shipping and VAT shown in Table 2). It should 121 
be noted that these are real consumer costs in Kenya and not the costs per kg at the manufacturer. 122 
These values were then compared to less than $0.10/kg for filament generated by a recyclebot 123 
(post-consumer waste plastic extruder capable of making 3-D printer filament from 124 
thermopolymers)49,50. 125 

The electricity was varied between the cost to run a solar powered printer ($0/kWh), to 126 
21.08 KES/kWh ($0.2029/kWh), which is the highest standardized rate for electricity in Kenya 127 
based on January 2017 data52. 128 

To calculate the total cost of producing the entire assembly, methodology from Laplume 129 
et al.53 was used and modified to include labor costs (Equations 1-5). Equation 1 shows the 130 
components of the cost of the brace – electricity, materials, and labor. 131 
 132 
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C = CE + Cc + CL + Ch Equation 1 133 
Where  134 

C = Total cost of producing the brace ($) 135 
  CE = Cost of electricity ($) 136 
  CC = Cost of filament consumed ($) 137 
  CL = Cost of labor ($) 138 

Ch = Cost of non-printed hardware ($) 139 
The cost of the electricity can be calculated with Equations 2 and 3. 140 
CE = ECu Equation 2 141 

Where  142 
  E = Total energy usage (kWh) 143 

Cu = unit energy costs ($/kWh) 144 
The energy used by the printer was measured directly with a multimeter (+/- 0.01 kWh) 145 

and the value of Cu is dependent upon the cost of electricity fees at the site of manufacturing. 146 
E = Ppt + Ew Equation 3 147 

Where  148 
Pp = Average power use while printing (kW) 149 

 t = Time of print (hr) 150 
Ew = Energy consumption for warming the printer (kWh) 151 

The cost of filament consumed is calculated by looking at the cost of the filament per 152 
kilogram and multiplying it by the number of kilograms used, as seen in Equation 4. 153 

CC = mpCf Equation 4 154 
Where  155 

mp = Mass of the filament used in print (kg) 156 
 157 

Cf  = unit cost of filament ($/kg) 158 
Finally, labor costs can be calculated with Equation 5. This assumes that the operator is 159 

paid for the entire time the printer is in operation, though due to the automated nature of 3-D 160 
printing, labor charges may only be incurred while preparing and completing prints.  161 

CL = wt Equation 5 162 
Where  163 

w = Hourly wages ($/hr) 164 
 165 
3. Results 166 
3.1 Design and Biomechanics 167 

The final clubfoot brace, based upon the requirements discussed in section two, is shown 168 
in Figure 3. There are 13 printed components in the clubfoot brace assembly (Figure 2). These 169 
parts, their masses, their required printing time, and their estimated material costs (using PLA 170 
costs of $30/kg) can be seen in Table 3.The non-printed components can be seen in Table 4. 171 
The total cost of the materials necessary to produce the clubfoot brace was found to be $10.92 172 
through totaling the values seen in Tables 3 and 4. 173 

The base of the brace is comprised of top and bottom sliders together held together by 174 
the closing bracket, two carriage bolts, and two nuts press-fit into printed flattened knob pieces. 175 
The tightening and loosening of these knobs allows for adjusting the feet width. The minimum 176 
width of the braces is 18 cm, and it can be extended to 27 cm according to the notches along 177 
the edge of the slider piece.  The brace should be adjusted to place the feet shoulder width apart, 178 
and the distance between the feet should be increased as the child grows. 179 

At the far end of the slider pieces are attachment points for the two angle brackets. These 180 
brackets (Figure 3) can be printed at different angles to allow for dorsiflexion (included in the 181 
source code are predefined angle brackets with angles of 90, 95, 100, 105, and 110 degrees). 182 
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As shown here they are at 90 degrees, which provides a dorsiflexion of 0 degrees. They are able 183 
to be locked into place or, if reversed (Figure 4), allow for motion of the legs as the footpads 184 
are not locked relative to the slider pieces. 185 
  The footpads are also able to be tightened onto the angle brackets with carriage bolts 186 
and locked into place by securing them onto interlocking ridges on the angle brackets (Figure 187 
5). Figure 6 shows the fully assembled clubfoot brace and highlights the degrees of motion that 188 
it is able to be moved and locked into. Due to the simplicity of the assembly, the infant’s shoes 189 
can be first attached to the footpad via Velcro straps before attaching the footpad to the bar.  The 190 
shoes employed should be “low rise” at the heel to allow observation that the heel remains 191 
against the foot pad, which is lost if a “high top” shoe is employed. 192 

This open-source clubfoot brace detailed here was evaluated based for the positive 193 
presence of FAO design features outlined in Table 1 above. The results of this evaluation and a 194 
comparison of the features, cost, and manufacturability of the open-source 3-D printed brace 195 
and four other existing FAOs can be seen in Table 5. 196 

The design of the FAO is such that the affected feet maintain hip abduction of 70 197 
degrees and dorsiflexion of 15 degrees (with a 105 degree L bracket) to maintain static stretch 198 
on the posteromedial ligamentous structures of the hindfoot and (tibialis anterior, tibialis 199 
posterior, flexor digitorum longus, flexor hallucis longus and the deltoid and spring 200 
ligaments)54.  These posteromedial soft tissue structures are thought to be the main etiology of 201 
recurrence of deformity when the maintenance phase of the deformity correction is not 202 
complied with.  Fibrosis and contracture of these tissues that have been stretched out in the 203 
active deformity correction phase allows recurrence of the deformity.  To maintain correction, 204 
compliance with the bracing protocol is critical.  The ability of parents to comply with the 205 
bracing treatment is made possible by having an affordable and seemingly comfortable brace 206 
with which the parents can treat their children.  The parents must understand the reason for 207 
the bracing and must be able to easily fit a well-sized brace to their child.  As the components 208 
of the 3-D printed brace are individually printed, sizing the brace to the child, even as the 209 
child grows is economical and it is possible to achieve a custom fit.  The 3-D printed brace 210 
described herein is modelled after the Dobb’s dynamic brace to allow flexion and extension of 211 
each leg independently while maintaining the feet in the abducted and dorsiflexed position55.  212 

It should be noted that the customization and degrees of freedom possible with this 213 
open-source design requires education of the people providing and fitting the braces so that the 214 
feet are placed and maintained in an optimal position.  It should also be noted that the brace is 215 
designed and made of hard plastic and as such, the shoes worn by the child need to provide 216 
protection to the child’s skin from developing pressure points and sores.  The use of the child’s 217 
own shoes within the brace also allows an additional degree of customization of the brace.  If 218 
shoes are not to be worn with the brace, the brace would need to be padded to provide protection 219 
to the skin. However, it should be pointed out that common shoes may not achieve the desired 220 
biomechanical principles, and infant / toddler shoes also may slip, with the inability to hold a 221 
child's foot in a desired position for a prolonged amount of time. Users should carefully consider 222 
the shoes to ensure that the Velcro straps are adequate to hold the positions over extended 223 
periods. 224 
 225 
3.2 Cost Analysis 226 

While the open-source 3-D printed brace is in the same cost range as the Steenbeck56 227 
and Miraclefeet57 braces, the open-source brace was more comparable in features to the 228 
commercially available models. Its ability to be locally manufactured also presents an 229 
advantage over commercial models and the Miraclefeet in allowing for point-of-use 230 
customization and creating local employment opportunities similar to the Steenbeck model.  231 

Using Equations 1-5 and the values seen in Table 6, a cost sensitivity analysis was 232 
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performed. The mass of the filament used (mp) and the time used to print the parts (t) were 233 
calculated using the open-source 3-D printing software Cura. The power usage (PP) and energy 234 
consumption (Ew) were monitored using a multimeter during the printing. 235 

Using the inputs from Table 6, a starting scenario was created with the following 236 
assumptions:  237 

1. Printing is considered to be mostly automated and done by professional while 238 
working on other tasks (labor cost of $0/hr). This estimate is relevant when there is no 239 
opportunity cost to using existing salaried employee (e.g., the use of a lab technician or 240 
other position that is paid a fixed cost, and for which there is no opportunity cost for 241 
them working on the fabrication of the device). It should be noted that with the STL 242 
files provided by this study enable anyone familiar with FFF-based 3-D printing 243 
operation to begin the prints in less than one minute. Although the actual printing will 244 
take over 20 hours, 3-D printers operate unattended and no labor is involved in the 245 
printing process itself. The operator then needs to remove the printed components from 246 
the bed and assemble them in a process that takes only a few minutes depending on the 247 
experience of the individual. The base case used here does not include the labor cost as 248 
setting up prints, removing them and assembly are roughly equivalently time consuming 249 
to placing an order, inputting payment information, acquiring and unpacking/removing 250 
packaging from a commercial brace. 251 
2. There is an electrical fee of $0.19/kWh (Kenyan electricity costs for domestic usage52) 252 
3. Filament is purchased at $30/kg (least expensive commercial option found in Nairobi 253 
although filament is available less expensively elsewhere).  254 

Using these assumptions and Equations 2-5 yields a cost of electricity (CE) of $0.16, a cost of 255 
filament consumed (Cc) of $8.22, a cost of labor (CL) of $0, and a cost of non-printed hardware 256 
(CL) of $2.70. Summing these values together using Equation 1, the total material cost of the 257 
brace is calculated to be $11.08. 258 

By varying each one of three variable inputs (Cu, Cf, w) in the ranges specified in Table 259 
7, while keeping the other two variables constant (e.g. varying Cu while keeping Cf and w 260 
constant), a sensitivity analysis was conducted to show how the price of the 3-D printed brace 261 
varies. Figure 6 shows the range of costs that can be incurred with variations in the electrical, 262 
material, and labor costs. Figure 7 also highlights each of the filament sources listed in Table 2 263 
above. 264 
 265 

The cost of the 3-D printed brace can be seen to vary significantly depending upon the 266 
source of filament, electricity costs, and any costs that may be incurred from labor. As seen in 267 
Figure 6, the variable with the most potential for affecting the final cost of the brace is the labor. 268 
In the extreme case, the labor cost is set at a local machinist’s wages ($1.30/hour) for the entirety 269 
of the print time and results in a final cost for the brace of over $37. It should be made clear 270 
that this is an unrealistic scenario as the ‘3-D printer operator’ would use the vast majority of 271 
the 20 hours on other tasks, while only spending a few minutes focused on brace manufacture. 272 
Realistically the labor costs in this market are well under one U.S. dollar with all actual 273 
opportunity time cost included.   274 

The cost of the filament also has significant effects on the final cost of the brace, with 275 
the most expensive filament source resulting in a brace costing over $30. On the other hand, 276 
using recycled filament produces a brace costing less than $5 in total to manufacture. Electricity 277 
costs vary the least, with a total fluctuation in cost being $0.17.   278 

Finally, when comparing this method of distributed manufacturing to conventional 279 
manufacturing the cost of tooling is often included in the manufacturers cost analysis. In this 280 
case, the tooling cost was $500 for the 3-D printer and follows previous estimates of a minimum 281 
of a five-year lifetime61 as the most likely components to fail on the printer can be manufactured 282 
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by the printer itself. Although it could be used to manufacture a wide range of  medical devices 283 
with substantial economic savings62-64, it is instructive to determine the tooling cost for an 284 
individual FAO. If it is conservatively assumed that 1 FAO can be manufactured per day with 285 
a printer over 5 years, 1825 FAOs can be made with a machine resulting in a tooling cost of 286 
27.4 cents/FAO. One 3-D printer operator can of course manage many 3-D printers 287 
simultaneously so if a given medical facility needed more FAOs/day additional printers could 288 
be used. One person working full time with hand tools manufacturing low-cost Steenbeek 289 
braces can produce about 100 braces per month.65 Thus, 3-4 conventional 3-D printers under a 290 
single operator would be needed to produce the same number of 3-D printed FAOs/month. It 291 
should be noted that the values given in this study are not the maximum production speed, but 292 
those that should be able to be achieved widely. With 3-D printing, the number of FAOs 293 
produced per month could be increased by increasing print speed and/or layer height, but there 294 
are physical limits to the fabrication speed of a single headed printer. However, for production 295 
of many of the same parts, 3-D printer manufacturing can be scaled by using a 3-D printer with 296 
multiple heads. So, for example, this can be done vertically with a quad-delta style 3-D printer 297 
that could produce four identical FAOs per day66 or a multi-head (5 head) Cartesian style 298 
printer67 on an open source Gigabot platform68 that could produce five identical FAOs per day.  299 
 In addition to offering greater functionality at lower costs, this approach to FAOs also 300 
has the advantage of reducing the environmental impact (albeit small) from the manufacturing 301 
process due to the decrease in shipping embodied energy and the ability to print with partial 302 
infill69,70. Finally, these cost estimations for the device can be considered conservative as 303 
recycling post-consumer thermoplastic waste into 3-D printing filament using recyclebots 304 
(waste plastic extruders) has already been shown to be feasible49,50,71-76, which indicates that 305 
the cost of the printed parts could be significantly reduced as shown in Table 5. 306 
 307 
3.3 Open Source Designs and Future Work 308 
 The open source design was intended to be printed in PLA on any number of FFF-based 309 
3-D printers. Previous work77 has shown that increasing the thickness of a 3-D printed polymer 310 
based mechanical component as compared to an aluminum component was sufficient to match 311 
the strength as was done here. However, it has been pointed out that in addition to the changes 312 
in strength expected from slicing78,79, materials80, and color36, there is also variability due to 313 
different realistic environmental conditions35. To ensure that the designed mechanical 314 
properties, are realized when printed the two step process outlined in ref. 80 is recommend, 315 
which has a reasonably high expectation that a part will have the desired tensile strengths. First, 316 
the exterior of the 3-D printed object is inspected visually for sub-optimal layers. Then, on 317 
critical components that will undergo substantial loads to determine if there has been under-318 
extrusion in the interior, the mass of the sample is measured. This mass is compared to the 319 
theoretical value using densities for the material and the volume of the object. As the infill 320 
density used in this study is 80% and the forces expected from a young child using the brace 321 
are relatively small, exterior observation is adequate unless there is a concern about filament of 322 
inconsistent diameter or properties (e.g. recycled waste used for filament without quality 323 
control 81-84). 324 
 This article discusses both the distributed manufacturing cost and the FAO systems 325 
design and function, which enables but fails to address outcomes of the treatment of clubfoot 326 
itself. For this, future clinical work is needed using the 3-D printed FAOs. To enable this for 327 
researchers anywhere in the world, all 3-D printable designs shown here (both the FreeCAD 328 
models and STL files) are available for free at the Open Science Framework under a GNU 329 
General Public License 3.0.85 330 
4. Conclusions 331 

While treatable, clubfoot continues to prove to be a challenge to many throughout the 332 
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developing world, and the cost of necessary orthotics can be prohibitively expensive and 333 
difficult to obtain. This study has shown that through the use of 3-D printing, it is possible to 334 
manufacture a low-cost children’s foot abduction orthosis. When compared to existing 335 
alternatives for the treatment of clubfoot in the developing world, the open-source 3-D printed 336 
orthosis presented in this paper is able to have the same physical features of all of the 337 
commercial alternatives while significantly reducing the cost and allowing improved 338 
customization to occur locally. Future work is needed to test the efficacy and outcomes of these 339 
devices in the clinical environment. With continued growth of 3-D printing technology and 340 
improved material sourcing, 3-D printing can provide a cost-effective way to provide FAOs and 341 
other orthotic devices to the developing world. 342 
 343 
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Figure Captions 569 

 570 
Figure 1 - Simple FAO using the Denis Browne bar (Source: 571 
https://commons.wikimedia.org/wiki/File:Botas.JPG) 572 
 573 
 574 

 575 
 576 
Figure 2 – Bill of Materials all 3-D printed components laid out and labeled. 577 
 578 
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 579 
Figure 3 - Angle brackets locked into place. 580 
 581 
 582 

 583 
Figure 4 - Angle brackets reversed to allow for increased leg motion. 584 
 585 
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 586 
Figure 5 - Attachment of the footpads to the assembly via angle brackets with interlocking 587 
ridges to lock footpads into place. 588 
 589 

 590 
Figure 6 - Fully assembled, showing ranges of motion. 591 
 592 
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 593 
Figure 7. Cost sensitivity analysis: Cost of manufacturing brace vs percentage change in 594 
variable costs. 595 
  596 
 597 
 598 
  599 

https://journals.lww.com/jpojournal/Abstract/publishahead/Open_Source_Three_Dimensional_Printable_Infant.99895.aspx


Preprint: Savonen, B., Gershenson, J., Bow, J.K.; Pearce, J.M., Open-Source Three-Dimensional Printable Infant Clubfoot Brace, Journal of 
Prosthetics and Orthotics: 2019. doi: 10.1097/JPO.0000000000000257 

 

17 
 

Table 1. Design criteria for FAOs seen in literature 600 

Design Criteria Description 
Ability to adjust angle of abduction 12,39-

41 
The feet pads/boots, should be able to be locked into 60-90 degrees 
of external rotation for affected feet and 20-45 degrees for non-
affected feet. 

Ability to dorsiflex the feet12,39-41 When wearing the brace, the feet should be able to be dorsiflexed to 
an angle of 0-20 degrees. 

Ability to adjust feet width12,39-41 When wearing the brace, the heels of the feet should be adjusted to 
be the same distance apart as the width of the infant’s shoulders. 

Allow feet to move independently42 Each foot can move relative to the other foot while maintaining the 
necessary outward angle for correction. 

Removable footpads12,39-41 Footpads are large enough to accommodate children wearing shoes. 
Footpads can be removed for easier application. 

 601 

 602 

Table 2. Sources of commercial 3-D printer filament (PLA) available in Kenya 603 

Filament Source Cost (USD/kg), including 
shipping and VAT 

Source of Data 

ESun 30 Mitchell, B., 2016, personal communication, August 5 
AB3D ~50 AB3D-African Born 3D Printing51 
Objet Kenya Limited 100 Shah, A., 2016, personal communication, August 12 

 604 

 605 

Table 3. Bill of Materials 3-D printed components 606 

Component Quantity Print Time (hrs:min)  Mass (gm) Cost 
Angle Bracket 2 1:39 24 $0.72 
Bottom Slider 1 3:36 47 $1.41 
Closing Bracket 1 0:16 4 $0.12 
Foot Pad 2 4:20 59 $1.77 
Knob (Flat) 5 0:14 3 $0.09 
Knob (Raised) 1 0:14 2 $0.06 
Top Slider 1 2:57 40 $1.20 
Total 13 20:11 274 $8.22 

 607 
 608 
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Table 4. Prices of Non-printed hardware BOM58 610 

Component Quantity Cost 
1/4-20 1" carriage bolt, 18-8 stainless steel 2 $0.20 
1/4-20 1.25" carriage bolt, 18-8 stainless steel 1 $0.24 
1/4-20 0.75" carriage bolt, 18-8 stainless steel 3 $0.14 
1/4-20 hex nut, 18-8 stainless steel 6 $0.04 
Velcro 1m $1.40 
Total Cost $2.70 

 611 
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Table 5: Comparison of FAO alternatives 613 

FAO Type 3-D Printed 
Brace 

Ponseti AFO59 Dobbs Bar60 Steenbeek56 Miraclefeet57 

Cost $11.08 (without 
labor commercial 
filament)  
~$37 (with max 
labor and 
commercial 
filament) 
<$5 (with 
recycled filament 
and realistic 
labor) 

~$300 >$300 $10 <$20 

Description Low-cost brace 
designed for 3-D 
printing with 
open-source 
hardware and 
software. 

The standard 
commercial foot 
abduction 
orthotic for 
children with 
clubfoot. 
Consists of two 
boots connected 
by a laterally 
adjustable bar. 

Modification of 
Ponseti AFO that 
allows for 
increased 
mobility through 
semi-
independent 
motion of the 
feet. 

Brace specifically 
designed for local 
manufacture in 
Uganda. Uses 
local materials 
(steel and leather) 
and local 
craftsmen for 
manufacture. 

Low-cost, 
plastic orthotic 
designed by 
Standford team 
for use in the 
developing 
world. 

Locally 
manufactured 

Yes, with 
distributed 3-D 
printing 

No No Yes, with local 
materials 

No 

Ability to 
adjust angle 
of abduction 

Yes Yes Yes Yes to a degree as 
the angle can be 
adjusted by 
contouring the bar 

Yes 

Allows for 
dorsiflexion 
of feet 

Yes Yes Yes Yes Yes 

Ability to 
adjust feet 
width 

Yes Yes Yes No No 

Allows feet to 
move 
independently 

Yes No Yes No No 

Removable 
footpads 

Yes Yes Yes No Yes 

 614 

 615 

 616 
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Table 6. Values used in cost estimation and sensitivity analysis 618 

Fixed Inputs Value Variable Inputs Low Value High Value 

Mass of filament used, mp (from Table 
3) 

0.274kg Unit energy costs, Cu $0/kWh $0.20/kWh 

Average power usage during print, Pp 43W Unit cost of filament, Cf $0.10/kg $100/kg 

Energy consumption for warming the 
printer, Ew 

0.0014kWh Hourly wages, w $0.00/hr $1.30/hr 

Time to print, t 20.11hr  
  

Cost of additional hardware, Ch $2.70 

 619 
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