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Grafcet: Behavioural Issues and Control Synthesis

V. Carré-Ménétrier and J. Zaytoon™

LAM, Faculté des Sciences, France

This paper discusses the difficulties encountered in
identifying the correct behaviour of Grafcet specifica-
tions in view of synthesising a correct control execution
model. Formal algorithms for the synthesis of super-
visory controllers related to Grafcet are also proposed.
These algorithms consider the constraints induced by
the behaviour of the controlled plant so as to identify
the required correct behaviour of Grafcet during
control execution. The resulting control execution is
deadlock-free, and represents the minimal possible
restriction of the behaviour of a given Grafcet, subject
to a number of specified constraints.

Keywords: Grafcet; Automata; Control synthesis;
Supervisory control theory; Intersection; Behaviour

1. Introduction

Grafcet or function charts for control systems is an
international standard used for the specification and
the implementation of logic controllers in manu-
facturing systems [10,14]. Throughout the twenty
years that have passed since it was defined, Grafcet is
becoming widely used in the industry [3] and in edu-
cation [16]. The main contribution of Grafcet, which
uses a Petri-net like formalism, is that it allows a clear
modelling of inputs and outputs and of their relations.
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It also allows modelling of concurrency and syn-
chronisation. This simplifies the specification and the
simulation of the control logic of the system. Many
PLC builders today use the Grafcet as a specification
and/or as a programming language. Among the large
companies using it widely or recognising it as an
internal standard are: Siemens, Renault, Peugeot,
Michelin, and others. However, and in spite of its
advantages, Grafcet has long been criticised because it
is not supported by a formal foundation that guar-
antees correctness and safety requirements for the
target controller implementation. Many approaches
have, therefore, recently emerged [28,31] to provide
formal verification possibilities to Grafcet. A more
challenging problem is that of providing a formal
framework for the automatic synthesis of an optimal
control implementation for a given Grafcet.

The supervisory control theory has been introduced
[24] to provide algorithms for the synthesis of super-
visory controllers from their specifications. Despite
its theoretical appeal, there are very few control logic
synthesis applications based on this theory. This is due
to the fact that the proposed logical model assumes
a plant that generates events spontancously and the
only control mechanism available to the supervisor is
the ability to enable or to prevent the occurrence of
some events called controllable events. In contrast,
real time systems usually react to commands as inputs
with responses as outputs.

Despite the numerous extensions of the supervisory
control theory and intensive research efforts on
the theoretical modelling, only a few applications of
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supervisory controllers were reported [1,2,4,7,19]. In
[2], controlled automata are employed and a computer
in which the supervisory-control strategies resided was
directly wired to the devices to be controlled. The
control strategy in [1,4] was developed based on con-
trolled automata manually translated into a ladder
logic code, and subsequently programmed manually
into the PLC. In [19], an implementation method that
utilises results of the supervisory control theory in
conjunction with PLC technology is used for online
generation of limited-size control strategies. A host
PC generates the online control strategies and down-
loads them to a PLC that supervises a manufacturing
workcell, reacting to events and enforcing device
behaviour based on the current strategy. In [7],
implementation of the supervisory control theory for
control of a miniature assembly line from LEGO
blocks is presented. The controller is extracted from
the maximally permissive supervisor for the purpose
of implementing the control by selecting, when pos-
sible, only one controllable event among the ones
allowed by the supervisor. The controlled automata
used in these approaches provide a general framework
for establishing fundamental properties of discrete-
event controllers problems. However, they do not
always represent convenient or intuitive models for
practical systems because of the large number of states
they have to introduce to represent several interacting
subsystems, or because of the lack of structure.
These limitations have motivated the use of Petri
nets to provide compact descriptions in the context of
supervisory control [12,13,18,21,27,33] because the
structure of the net may be maintained small in size
even if the marking grows. Most of these existing Petri
net based approaches are concerned with the super-
visory control level, which refers to maintaining
overall control of a number of machines or subsystems
including PLCs to prevent conflicts and enable co-
operative or shared tasks. They don’t address the
control of the operating cycle of individual machines.
This paper addresses this local control level by using
Grafcet, which is derived from Petri nets and widely
spread in industrial applications for the specification

of PLC controllers.

And distribution (start
parallel sequences)

a single arc
(sequence)

And junction (end
parallel sequences)
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The objective of the paper is to discuss the aspects
related to the generation of a correct behavioural
model for a given Grafcet, and then to give formal
algorithms for the synthesis of the corresponding
optimal control implementation. The description of
the behaviour of Grafcet in terms of an automaton
of reachable situations will be presented in Section 2.
The first contribution of this paper (Section 3) is to
provide an extensive discussion, illustrated through
an example of a parts-handling system, about the
behavioural and semantic issues to be considered
when using Grafcet as a specification model in view
of synthesising a control execution model. This
presentation emphasises the necessity of modelling
the controlled plant in view of identifying the
correct behaviour of Grafcet. The concepts to con-
sider for the synthesis of an optimal control imple-
mentation for a given Grafcet has been intuitively
presented in a previous paper by the authors [30].
The second contribution of this paper (Section 4) is to
provide an algorithm formalising these concepts,
and to illustrate the results of the application of the
consecutive steps of the algorithm using the same
example of the parts-handling system. This synthesis
algorithm generates an execution control model
representing the most permissible subset of the beha-
viour of Grafcet that is deadlock-free, and satisfies
the imposed constraints.

2. Grafcet and the Automaton of
Stable Situations

Grafcet (or sequential function charts) is an interna-
tional standard used for the specification of logic
controllers in manufacturing systems [9,15]. This
model consists in describing parallel and synchronised
sequences of elementary operations (Fig. 1) applied to
the plant with due consideration to plant’s response.
The basic concepts of Grafcet are quite clear and
simple. The step, drawn as a square, represents a
partial state of the controller to which orders can be
associated. A step can be active or idle; associated
orders are performed when the step is active and

55w
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Fig. 1. Different configurations of Grafcet.
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remains asleep when it is idle. A situation is given by
the set of active steps. The transition, represented as
a bar, links one (or several) previous step(s) to one
(or several) following step(s). A logical expression,
called receptivity, is associated to each transition. This
expression manipulates Boolean variables, represent-
ing controller inputs or the activation state of indivi-
dual steps, and events corresponding to rising edges,
T, or falling edges, |, of Boolean inputs.

To achieve both reactivity and determinism, it is
desirable to extract a behavioural model for Grafcet
that evolves instantaneously from one stable situation
to another, upon the occurrence of input events. A
stable situation is a state in which the Grafcet cannot
evolve without acquiring a new input. To ensure that
deterministic semantics are conferred to Grafcet,
orders are only performed during stable situations;
orders related to the intermediate unstable situations
remain asleep [11,20,26].

The Automaton of Stable Situations, ASS [25,29] is
traditionally used to express the behaviour of Grafcet
model. The extraction of this Automaton will be
illustrated using the didactic Grafcet depicted in
Fig. 2(a). Despite its simplicity, this example illus-
trates many of the convenient features of Grafcet,
including parallel sequences, simultaneous transitions,
search for stability, logical expressions involving input
variables, events and/or Boolean-step variables.
Capital letters are used for Grafcet orders, and small
letters for the input variables. Note that a variable
“Xyy” represents the activation state (true if active and
false if inactive) of step yy and that the expression /a
stands for the logical negation of the variable a.

Each state of the ASS (Fig. 2(b)) represents a stable
situation of Grafcet, and is therefore defined in terms
of a set of simultancously active steps, as well as
the orders to be performed during the situation.

{ACT6}

{ACT6, ACT3, ACT4}
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A transition of ASS, which represents an evolution
from one stable situation of Grafcet to another, is
labelled with an event that can be associated with a
logical expression. Each transition is identified with
the corresponding transition(s) of Grafcet.

The initial state of ASS corresponds to the initial
situation of Grafcet, in which only step 0 is active and
order ACT6 is performed. In this state, transition 1 is
taken when 7f occurs to activate the situation {1},
which performs the orders ACT1, ACT2, ACT3 and
ACT4. Then, when Ta occurs, and provided that d is
true, transition 2 activates steps 10 and 20. In this
situation, where no orders are performed, only tran-
sition 3 can occur (because transition 6 is conditioned
with the activation of step 11) to activate the situation
{11, 20}. The next evolution depends on the values of
the inputs «, b and e. If a is true when Th occurs,
transition 6 activates the situation {11,21}. On the
other hand, if b becomes true before a, the next evo-
lution will be conditioned by e. If e is false when Ta
occurs, transition 4 is taken and the resulting situation
{12,20} is stable, because transitions 5 and 6 are not
enabled. Otherwise, a true value for e when Ta occurs
implies that {12, 20} is unstable, because transition 5
can be taken immediately. Therefore, order ACTS5 will
not be performed in this case and a second evolution
step will take place instantaneously to attain the stable
situation {13,20}, which causes ACT6 to be per-
formed. This two-step evolution is represented on
ASS of Fig. 2(b) by the transition labelled with
“(4 then 5)”. The resulting situation {13,20}, which
can also be reached when Te occurs in situation
{12, 20}, is a deadlock because it has no output tran-
sition; deadlock should be properly removed by the
synthesis process. All the evolutions starting from
situation {11, 21} will take a few transitions to return
to the initial state.

{ACT1, ACT2, ACT3, ACT4} {ACT6}

G To20) e @
B N W o
ba ©) 0 MR 7

{ACTI1, ACT2, ACT3, ACT4}

Tab.e
(4 then 5)

Tec (4 then 5
(5 then 9) then 9)

then 9)

Fig. 2. A didactic Grafcet (a) and the corresponding automaton ASS (b).
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From a mathematical point of view, ASS is defined
by a 5-tuple (E, Z, Y, T, yo), where

— Eis the set of Grafcet inputs.

— Z is the set of Grafcet outputs.

— Y is the set of states, each of which represents a
distinct reachable situation of Grafcet. To each
state y of Y, is associated the following two sets:
- Z,CZ, the set of active outputs during the

state y.
— Step,, the set of Grafcet steps that are active
during the state y.

— T: YXf(E)— Y is a partial function representing
the transitions (evolutions) between Grafcet states.
A transition is represented by the 3-tuple
. M(E),y")€ T, where y is the input state, )’ the
output state, and f(F) is a logical expression com-
bining input (binary) variables and their edges.

— yp is the initial state.

The role of the automaton ASS in view of the
synthesis of a correct behavioural execution model for
Grafcet will be discussed in the following sections.
Section 3 also shows that an explicit model of the
controlled plant must be used together with the
automaton ASS to obtain a correct behaviour of
Grafcet. The synthesis procedure given in Section 4 is
based on the use of these two models (ASS and
a model of the plant) as well as a model of the con-
straints to be satisfied by the synthesised controller.

3. Behavioural Aspects: Illustrative
Example

The parts-handling example depicted in Fig. 3 will be
used to illustrate the necessity of using an explicit
model of the plant to identify the correct behaviour of
Grafcet in view of the synthesis of a correct control
implementation. The system controls the arrival, the

Electro-magnet

Loading area

Conveyor

Storage area for parts

1 (outward position) Storage area for parts 2

(inward position)

Intermediate area

Rotating platform
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storage, and the retrieval of parts having a similar
physical structure, but belonging either to type 1
or type 2.

The mechanical structure is composed of a con-
veyor transporting pieces in two possible movement
directions, a platform with clockwise or anti-
clockwise rotation, and a moving bridge comprising a
carriage for horizontal movement and an electro-
magnet for vertical movement. The pieces are stored
on the platform, which is divided into four sub-
sections, each including an inward and an outward
storage position. The moving bridge is used to transfer
the parts from the conveyor to the platform.

The electromagnet moves downward and then
upward to seize the parts. These movements are per-
formed when the orders DOWN and UP, respectively,
are issued by the controller, and the sensors high and
low are used to indicate the upper and lower positions
of the electromagnet, respectively. The order EM is
used to activate the electromagnet.

The carriage, supporting the electromagnet, can
move to the left and to the right when it receives the
orders LEFT and RIGHT, respectively. The loading
position above the conveyor, p_conv, the intermediate
position between the conveyor and the platform,
p_inter, and the storage positions above the platform
(outward position of the platform: p_ext and inward
position of the platform: p_int) inform the controller
about the location of the carriage.

The platform is divided into four sections and it
performs clockwise or anti-clockwise rotations when
it receives the orders TURN_c or TURN_ac, respect-
ively. The c1 sensor signals a % revolution of the plat-
form.

The conveyor advances (or moves back) upon the
reception of the order MOVE (MOVE_back), and
the sensor p_ part signals the presence of a part in the
loading area. If a part crosses the loading area without
being seized by the electromagnet, it will be evacuated
by an auxiliary system when it reaches the conveyor
end-point.

RIGHT

LEFT

TURN_c @ TURN _ac

Fig. 3. Parts-handling system.
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3.1. Control Specifications

For reasons of simplicity, and size limitation, only the
storage mode will be treated here. The input parts are
supplied to the conveyor alternatively (in the order:
type 1, type 2, type 1,...) by means of an auxiliary
system. In the storage mode, the system is required to
place the type 1 parts on the outward position of the
platform, and type 2 parts on the inward positions. An
intuitive controller specification is given by the 4
partial Grafcets (G1, G2, G3, and G4) depicted in
Fig. 4. Grafcet G1 is used to translate the carriage,
G2 controls the displacement and the activation of the
electromagnet, G3 is used to advance the conveyor,
whereas G4 controls the rotation of the platform.
These partial Grafcets are cyclic and hence each
of them returns to its initial step upon the accom-
plishment of the corresponding cycle. They are

1
100

(1) == p_part
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synchronised by means of the internal variables X102
and X106 corresponding to the seizure of a piece, and
the variables X108 and X205 indicating the end of
placement of the type 2 part.

Description of Grafcet GI. This Grafcet is used to
store a part of type 1 then a part of type 2, before
returning to the initial situation. The arrival of a part
activates step 101 to translate the carriage to the left
until the position above the conveyor, where the
sensor p_conv activates step 102 to wait for the seizure
of the type 1 part. At this point, the carriage is
translated to the outward position of the platform,
p_ext, where step 104 is activated to wait for the
deposit of the part. When the end of the deposit is
signalled (variable X205), transition 5 is fired to acti-
vate step 105 which translates the carriage again to the
position above the conveyor. The seizing of a type 2

(10) == p part.p conv

101 |LEFT

(2) ==Tp_conv

LIDOWN | EM

(11) mm low

W

102 | Wait for seizing
the type 1 part [
() == lp_part (12)4= X102 + X106 (13) = p_ext+p_int
103 _|RIGHT 203 UP | EM 205 [|UP
(14)=t=high (15) 2= high
(4) == Tp_ext

104 | Wait for depositing 204 |EM G2: electro-magnet control
the type 1 part (16) mtmp_ext+p_int
(5) == X205 -
105 | {LEFT — 1 —
L IMOVE i i
(6) 4= Tp_cony 300 200]| Wait until the two

Wait for seizing

1
06 the type 2 part

(17) o Tp_part

®) + Tp_int

108 | Waiting for depositing
the type 2 part
(©) ==x205

G1: control of carriage
displacement

parts are placed

(19) == X108.X205

7) Wait for seizin
@ = Lp_part 301 the pﬁr, & 401 [JTURN ac
107 [|RIGHT a8 Lo
- p_part (20) == Tey s

G3: conveyor control

G4: platform control

Fig. 4. Grafcet for the example.
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part, |p_part, activates step 107 to order the
movement of the carriage to the inward position,
p_int, of the platform. After placing the part, the
carriage starts a new cycle.

Description of Grafcet G2: When a part arrives in
the loading area and provided that the carriage is
above the conveyor, step 201 is activated to order the
activation and the descent of the electromagnet. When
the lower position, low, is reached, the descent is
stopped while the activation of the electromagnet is
maintained (step 202). Two evolutions are possible
from step 202:

— If the system is waiting for the seizure of a part
(variables X102 or X106), the electromagnet is
ordered to go up, and its activation is maintained.
Then, the arrival of the carriage above a storage
area of the platform, p_ext or p_int, activates a new
descent (step 201 then 202) to depose the part.

— If the carriage is above a storage area of the plat-
form (p_ext or p_int), the electromagnet is deactiv-
ated and ordered to move up (step 205) until it
reaches its upper position, corresponding to the
initialisation of G2.

Description of Grafcet G3: This Grafcet is used to
advance the conveyor continuously in the absence of
parts (step 300). This movement is stopped when a
part arrives in the loading area (step 301), and then
resumes when the part is seized.

Description of Grafcet G4: Starting from the
initial situation, when the two parts are placed (X108
and X205 set to true), the platform performs a
clockwise rotation of 90°. The end of this rotation
brings G4 back to the initial step to wait for the
next rotation.

Tp_part.pConv./low

Tpiconv.p ) _part./low

4
1
[
1
1

Ip part/p conv Tp_conv./p_part

M
'

Tp_part./p_conv 'w
<

\

4

-

Tp_part.p_conv.lowNp_int./p_ext.

Tp_conv.p_part high/p_int./p_ext
<

Up_part./p_int./p_ext
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3.2. Behavioural Analysis of the Controller

The automaton of stable situations, ASS, corre-
sponding to the Grafcet of Fig. 4 has 840 states and
8134 transitions. The first evolutions of this auto-
maton are depicted in Fig. 5, and the formal definition
of ASS has been introduced in Section 2.

Note that the automaton ASS corresponds to
a super-set of the possible behaviour of Grafcet
during control execution because it is calculated
without taking into account the constraints related
to the reactions of the controlled plant. In fact, the
controlled plant induces a number of constraints
on the evolutions of the inputs and restricts, by con-
sequence, the behaviour of the controller when it is
executed to control the process in real time. These
constraints may be static or dynamic. Static con-
straints are related to the structure of the plant.
For example, the inputs corresponding to the two end-
of-course sensors of a valve cannot be “true” at the
same time. On the other hand, dynamic constraints
characterise the evolution scenarios of Grafcet
inputs, which depend on the dynamics of the plant
and its interactions with Grafcet. The ASS evolu-
tions not complying with these scenarios must,
therefore, be eliminated to obtain the correct beha-
viour of Grafcet.

Through the presentation of a number of trajec-
tories of the ASS of the parts-handling example,
the following sections illustrate the necessity of
taking the behaviour of the controlled plant into
account to be able to identify the correct behaviour
of Grafcet, and to correctly analyse deadlock situa-
tions as well as other desired specific safety and live-
ness properties.

D .

a P
Up_part./low @ <
) -“ .
Q- ’
B , -7 Thigh/low.(p_ext+p_int ~ “a
_part /hig h
'hi;

N S S
“a A N
Stepyo = {100,200,300,400}; Zy = {MOVE} Stepyia = {102,201,301,400}; Zy14s = {EM, DOWN} Stepyas = {103,201,300,400} ; Zy» = {MOVE, RIGHT, EM, DOWN}
Stepy1 = {101,200,300,400}; Zy1 = {MOVE, LEFT} Stepyis = {102,204,301,400}; Zy15 = {EM} Stepyas = {103,204,300,400} ; Zy23 = {MOVE, RIGHT, EM}

Step,» = {101,200,301,400}; Zy> = {LEFT}

Stepys = {101,201,301,400}; Zys = {DOWN, EM, LEFT}
Stepys = {101,202,301,400}; Zys = {EM, LEFT}
Stepyo = {102.200,300,400}; Zyo = {MOVE}

Stepyis = {102,203,301,400}; Z,5 = {EM, UP}
Stepys = {101,201,300,400}; Zys = {MOVE, DOWN, EM, LEFT} Step,s; = {104,203,300,400}; Z,s; = {MOVE, EM, UP}

Stepyas = {103,203,300,400}; Zy»s = {MOVE, RIGHT, EM, UP}
Stepyies = {101,200,300,401}; Zyye3 = {LEFT, MOVE, TURN ac}

Stepyaio = {101,200,301,401}; Zy219 = {LEFT, TURN ac} Stepyosi = {102,201,301,401}; Zyos1 = {DOWN, EM, TURN_ac}
Stepyas7 = {103,201,300,401}; Zyog7 = {RIGHT, EM, DOWN, MOVE, TURN _ac}

Fig. 5. First elements of the ASS of Grafcet.
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3.2.1. Example of Unrealistic Evolutions of ASS

The situation {102,200, 300,400}, in which the con-
troller waits for the first part to be seized, will be used
as an example to illustrate the impossibility of
occurrence of many of the evolutions of ASS during
control execution. Among the 12 possible ASS tran-
sitions originating from this situation (Fig. 6), only
two (represented with solid lines) correspond to a
possible behaviour of the controller in real execution.
The ten other transitions cannot occur in reality
because they correspond to unrealistic evolutions such
as the simultaneous setting of the two variables high
and low to 1, the activation of p_conv while the car-
riage is above the conveyor, or the occurrence of a
falling edge of p_ part whereas a rising edge is expec-
ted because step 300 waits for the arrival of a part.

3.2.2. Deadlocks

The control execution may lead to deadlocks that do
not correspond to blocking situations of ASS. For
example, the evolutions depicted in Fig. 7 illustrate
the possibility of occurrence of a deadlock in real-
execution although it is not identified as such in ASS.
At situation {107,201, 300, 400}, the occurrence of the
event Tlow before Tp_int results in activating the
situation {107,205, 300,400}, in which the carriage is
ordered to move right in view of depositing the part
on the inward position of the platform. Then, the

102, 204, 301, 400 oo
Q...
102,203, 205, 301, 400 Y

(3)

102, 203, 301, 400

102 203,205,301,400 Y (702,201, 301, 400

(1): Tp part.p_conv/p_int./p_ext.low.high
(2): Tp_part./high.p_ext.p_conv.low

(3): Tp_part.p_conv./high./p_int./p_ext.low
(4): Tp_part./high.p_int.p_conv.low

(7): Tp_part./p-conv
(8): Lp_part./p_conv

" 102,200, 300, 400
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successive firing of transitions (2), (3) and (4) leads
ASS to the situation {108,200,301,400}, which is
apparently non-blocking because it has three out-
put transitions. However, this situation represents a
deadlock in real execution because it does not perform
any Grafcet order, whereas its output transitions
are conditioned by the return of the carriage to the
loading position, or by the retrieval of the part.

3.2.3. Safety and Liveness Constraints

Different properties (or constraints) can be specified
to verify and validate the control specifications. In
the parts-handling example, two safety constraints
(cl and ¢2) and a liveness constraint (¢3) are to be
satisfied:

— cl: the rotation of the platform should be pro-
hibited during the positioning of a part on it.

— ¢2: to avoid the interactions between the parts on
the platform and the parts to deposit, the diagonal
movements toward the platform should be pro-
hibited beyond the intermediate position, p_inter,
when parts are held by the electromagnet.

— ¢3: all the pieces introduced to the conveyor must
be eventually retrieved.

In the following, we show that the validation
(respectively, invalidation) of a given constraint with
respect to the theoretical model of the controller given
by Grafcet does not imply that the constraint is system

2102, 203, 300, 400
o 102, 204, 300, 400

>(102, 203, 205, 300, 400

102, 201, 300, 400 102, 200, 301, 400 2103, 200, 300, 400

(5): Tp_part.p_conv./low
(6): Tp_conv.p_part./low

(9): Tp_conv./high.p_int.p_part.low

(10): Tp_conv./high.p_ext.p_part.low

(11): Tp_conv.p_part./p_int./p_ext.low.high
(12): Tp_conv.p_part./high./p_int./p_ext.low

Fig. 6. Output transitions of the situation {102,200, 300,400} of ASS.

DOWN, EM, MOVE

108, 201, 300, 400

RIGHT. MOVE, Tp_im./low

EM DOWN Tlow.p_int./p_part./high

107, 201, 300, 400
Tlow.p_ext./high
(2

Thigh./p_part

107, 205, 300, 400

RIGHT, UP, MOVE

(5) : Tp_conv.p_part./low

UP, MOVE, TURN ac

107, 200, 300, 400

RIGHT, MOVE

(6) : Tp_conv.p_part.low./p_ext./p_int

MOVE, TURN _ac

(12)
Thigh./p_part

100, 205, 300, 401
108, 200, 300, 401

MOVE

100, 200, 300, 401

(6)

108, 200, 301, 400

Tp_int./p_part Tp_part./p_conv

(7) : dp_part./p_conv

Fig. 7. A trajectory leading to a deadlock in control execution.
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valid (respectively, invalid). For example, the execu-
tion trajectories of ASS depicted in Fig. 8 highlight a
behavioural difference between the control model
(given by ASS) and its real execution for cl and c3.

Figure 8(a) depicts a trajectory of ASS which seems
to invalidate c¢l, because it leads to situation
{104,201,300,401} where the orders DOWN,
TURN _ac, EM, and MOVE are simultaneously
active. However, the logical condition associated with
the transition (2) can never be valid in real execution
since it implies that the electromagnet is at positions
high and low at the same time. Hence, this trajectory
cannot be executed by the control system, and, con-
sequently, it will not invalidate the property in real
execution. The second trajectory shown in Fig. 8(b)
seems to satisfy the constraint ¢3, because the piece
introduced to the conveyor (condition p_ part asso-
ciated with transition (1)) is retrieved later on
(lp_part associated with transition (3)). However,
this retrieval can occur in real execution only if the
orders UP and EM are simultaneously active, which is
not the case in situation {102,201, 301,400}. Hence,
the transition (3) cannot occur in real execution, and
the constraint ¢3 is system invalid although it is
satisfied with respect to ASS.

3.3. Modelling of the Plant

The above discussion has shown that the distance
between the theoretical behaviour of the control
model (given by the automaton ASS calculated with-
out taking the reactions of the controlled plant into
account) and its real behaviour entails some direct
consequences on the properties of the control system.
For example, certain deadlocks identified in the ASS
are not reachable because the reactions of the plant
imply that the executions (evolutions) of the ASS

(a) A Trajectory invalidating c1

RIGHT, EM, MOVE

108, 201, 300, 400

107, 204, 300, 400

(2)
100, 200, 300, 401

MOVE, TURN _ac

O DOWN, EM, MOVE

101, 200, 301, 401

LEFT, TURN ac

(b) A Trajectory validating c3

MOVE

100, 200, 300, 400,

LEFT

Tp_part./p_conv

EM, TURN ac

101, 200, 301, 400 @
Tp_conv.p part./low
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leading to the corresponding situations will never
occur in reality. Hence, these “theoretical deadlocks”
cannot occur throughout the execution of the con-
troller. On the other hand, even though an ASS is
deadlock-free, the corresponding control execution
can lead to a deadlock if it brings the plant to a state
where the logical expression of the enabled transitions
can never become frue. In the same way, the safety
and liveness constraints that are proved to be satisfied
with respect to the theoretical model may be invali-
dated by the real execution of the controller and
vice versa.

This implies that some knowledge of plant beha-
viour is required to be able to identify the correct
behaviour of Grafcet and, consequently, to be able to
perform model analysis and control synthesis accu-
rately. Indeed, during the specification phase, the
control designer tends to implicitly integrate an image
of the plant within the developed Grafcet, in order
to express the existing causality relations between
Grafcet orders and the consequent plant reactions.
The underlying hypothesis is that all the reactions of
the plant and their interleaving are known precisely
and in advance, for each control action. Unfortu-
nately, this hypothesis is restrictive and unrealistic for
the case of complex systems involving partial Grafcets
and parallel evolutions related to the different ele-
ments of the plant. The theoretical behaviour of the
resulting model may, therefore, be different from its
behaviour when it is executed to control the plant.

It, therefore, becomes necessary to make the image
of the plant explicit, by connecting an appropriate
abstract model for each of its elements. However, the
precise description of the behaviour of the plant is not
trivial and the difficulty lies in the choice of the aspects
to be modelled and the degree of granularity of the
required model [26]. This requires the use of an ade-
quate methodology for the modelling of the plant

(2): Tp_int./p_ext./p_part.low.high
(4): Tp_conv.p_part./p_int./p_ext.low.high
(6): Tp_ext./p_int./low

104, 201, 300, 401

DOWN, EM, MOVE, TURN _ac

(1): Tp_int./p_ext./low
3): TpJ)arL/pfconv
(5): Tp_part./p_int./p_ext

103,204, 300, 401

RIGHT, EM, MOVE, TURN _ac

DOWN, EM, MOVE, RIGHT

/

DOWN, EM
)

Tp_part./low

Fig. 8. Illustrative executions of ASS.
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[6,32], but this issue goes beyond the scope of this
paper. Meanwhile, a modular approach is required to
extract a simple model for each of the elements of the
plant. Such a model can be derived using automata
that accept the control actions, and react by changing
the logical values of Grafcet inputs. To be consistent
with the synthesis framework proposed in Section 4,
the behaviour of the plant will be modelled by means
of the spontaneous event generators of the supervisory
control theory [24]. Generally speaking, since the
control objective does not necessarily concern all the
possible evolutions of the plant, a simplified plant
model can be used in view of the synthesis procedure.
In the following sections, both a detailed and a sim-
plified plant model will be given for the parts-handling
example.

3.3.1. Detailed Model of the Plant

In the first place, we consider a detailed model of the
plant, which takes all its evolutions into account. This
model is given by the five automata representing the
translation of the carriage (Fig. 9(a)), the displace-
ment of the electromagnet (Fig. 9(b)), the activation of
the electromagnet (Fig. 9(c)), the rotation of the
platform (Fig. 9(d)), and the displacement of the
conveyor (Fig. 9(e)). The initial state of the plant is
fixed as follows: the carriage is situated between the
intermediate position, p_inter, and the outward posi-
tion of the platform, p_ext, the electromagnet is in its
upper position, high, and the platform is in its initial
position, posy. A rising edge, T, and a falling edge, |,
correspond, respectively, to the activation and deact-
ivation of the corresponding variable. Capital letters
are used for Grafcet orders, and small letters for the
variables representing the plant reactions.

Starting from its initial position at state 0, the car-
riage (Fig. 9(a)) can move to the right (state 1) or to
the left (state 2). The activation of the order LEFT
entails the movement of the carriage to the left until
it reaches the intermediate position (activation of
state 4). By continuing the movement to the left, it
leaves the intermediate position (activation of state 8)
until reaching the position above the conveyor
(state 14). From each of these positions, it is possible
to stop the movement to the left, | LEFT, then receive
the order RIGHT to move right, all the way back.
The activation of the order RIGHT in the initial state
results in a symmetrical behaviour of the automaton,
starting from state 1.

The electromagnet (Fig. 9(b)) can receive the orders
UP or DOWN at its upper initial position (state 0).
The order UP activates state 1 in which only the
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deactivation of this order can be accepted. On the
other hand, the reception of the order DOWN at the
initial state activates state 2 and starts the descent of
the electromagnet to leave its upper position (activa-
tion of state 4), and then to reach its lower position
(activation of state 7) unless the descent is interrupted.
The interruption of the descent activates state 5 or 8
where it is possible to intercept the order UP so that
the carriage can move to its upper position, and
returns therefore to its initial state when the ascent is
terminated. Throughout all of these movements, the
electromagnet can be activated and deactivated at any
instant (Fig. 9(c)).

The platform (Fig. 9(d)) can turn clockwise or anti-
clockwise. In any of these directions, the platform
leaves its initial state (state 0) to reach the four suc-
cessive storage sections if the movement is not inter-
rupted. If the movement is interrupted, the rotation
may be ordered in the opposite direction.

Finally, the conveyor (Fig. 9(e)) can move both
forward (states 1, 2 and 4) and backward (states 5, 6
and 8). At the initial state, the order MOVE activates
state 1 to advance the conveyor until the arrival of a
part in the loading area, which activates state 2. At
this state, the movement of the conveyor can either be
stopped (activation of state 3), or continued until the
part leaves the loading position. In this case, step 4 is
activated and it becomes possible to deactivate the
order MOVE to bring the conveyor back to its initial
state. At state 3, the conveyor can again receive
the order MOVE to activate state 2, MOVE _back
to activate state 6, or |p_ part (corresponding to
retrieval of the part by the electromagnet) to return
to the initial state. Starting from the initial state, the
behaviour of the conveyor consequent to the MOVE _
back order is symmetrical to its behaviour induced
by the order MOVE.

The global detailed model of the plant, obtained by
composing the five automata has 105462 states and
509132 transitions.

3.3.2. Simplified Model of the Plant

The conveyor can move in two directions. However,
for our control purpose, only the forward movement
is required, and the evolutions related to the backward
movement in Fig. 9(e) will not be activated by the
specified controller. Figure 10(a), which only con-
siders the forward movement, can therefore be used
instead of Fig. 9(e). In the same way, even though the
platform can turn in two directions, the control
objective is only concerned with the clockwise rotation
in view of advancing the section to deposit the next part.
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(a) Carriage
translation

TLEFT @./ TRIGHT

(b) e{ectromagnet Electro-magnet (c)
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(d) Platform rotation

Poso
JTURN ac

Tcm

TTURN ac
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(e) Conveyor displacement

~ M
&) TMOVE back |||[IMOVE &)

Ip_part Ip_part

~Lp _part

TMOVE back TMOVE
IMOVE back” ~ IMOVE

TMOVE_back TMOVE

Fig. 9. Detailed model of the plant.
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Furthermore, the exact knowledge of the current
sector is not necessary. Hence, the model of the plat-
form given in Fig. 9(d) can be aggregated to obtain
the automaton of Fig. 10(b).

Now, the simplified global model of the plant can be
obtained by composing the two simplified automata
of Fig. 10 with the three automata of Fig. 9(a)—(c).
The resulting global automaton has 7560 states and
58836 transitions, which represents a significant
reduction relative to the global automaton of the
detailed model.

3.4. Modelling of the Constraints

The synthesis procedure presented in the subsequent
sections requires the use of an explicit model of the
desired constraints. Therefore, each of the constraints,
cl, ¢2 and ¢3, will be expressed here in terms of
a corresponding automaton.

The first constraint to satisfy is related to the pro-
hibition of the platform’s rotation during the deposit
of a part. This constraint is specified using the auto-
maton depicted in Fig. 11(a), which indicates that the
orders TURN _ac and DOWN cannot be performed
simultaneously. State 0 corresponds to the set of states
of the process in which all the orders are authorised.
The self-looping transition can be taken by all the

»Lp _part
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possible events of the system (given by the set X),
apart from the activation of the sensor p_ext, which
corresponds to the arrival of the carriage above the
platform, and results in the activation of state 1. Here,
the order TDOWN activates state 2, in which the
automaton cannot receive the event [TURN ¢ and
TTURN _ac. The deactivation of the order DOWN
brings the automaton back to state 1. In the same way,
a rotation order results in activating state 3 in which
the order TDOWN is prohibited. The initial state can
only be attained from state 1, when the carriage
reaches the intermediate position, p_ inter.

The constraint given by the second automaton of
Fig. 11(b) corresponds to the prohibition of diagonal
movements toward the platform, beyond the inter-
mediate position, p_int, when a part is held by the
electromagnet. Seizing a part, |p_ part, at the initial
state (state 0) leads to state 1, from which two evolu-
tions are possible:

— Activation of state 2 if the carriage reaches the
intermediate position, Tp_inter, before the electro-
magnet reaches its upper position. In this case, the
order to move right is prohibited until the electro-
magnet reaches its upper position (activation of
state 3).

— Activation of state 3 if the electromagnet reaches its
upper position, high, before the carriage reaches the

(b) Platform's
rotation

Fig. 10. Simplified models for the conveyor and the platform.

(a) Conveyor's . @
displacement MOVE
[ TMOVE  _ ~
@ U3 .
IMOVE p_part
TMOVE | [ {MOVE
ip_part
(a)
(2)YZ D =-{TTURN ac, TTURN ¢, {DOWN}
iDOWNTDOWN
=-{Tp_ext} Tp_ext

(1 YL Oz {TDOWN, TTURN ac,
TTURN ¢, Tp_inter}

Tp_inter

TTURN ac+ TTURN ¢ || JTURN ac+ {TURN ¢

(3 Yq_z-{TDOWN, L TURN ac, JTURN_c}

(b)

=-{Thigh, Tp_inter}

Tp_inter > -{TRIGHT, Thigh,

Tp_ext
>-{Tp_inter}

Fig. 11. Models of the safety constraints.
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=-{Tp_part} O

lp _part

@:) 5-{TMOVE, TMOVE back, Jp_part}

Fig. 12. Model of the liveness constraint.

intermediate position. At state 3, if the electro-
magnet leaves its upper position, |high, before the
arrival of the carriage above the platform, Tp_ext,
then state 2 is reactivated and the movement to the
right is again prohibited. On the other hand, if the
carriage arrives first, state 4 will be activated and,
then, the deposit of the part, |EM, brings the
automaton back to its initial state.

The third automaton (Fig. 12) represents the live-
ness constraint where the detection of a part on the
conveyor, [p_ part, activates the state 1, in which the
order MOVE or MOVE_BACK cannot be accepted.
These orders can only be received when the initial
state is reactivated again after the removal of the
part, |p_part.

It is desired to control the system so as to satisfy the
three constraints simultaneously. The overall con-
straint is therefore represented by a global automaton
whose underlying language is specified by the inter-
section of the languages corresponding to the auto-
mata of Figs 11 and 12. If ¥ is given by the set of
events of the complete model of the plant (Fig. 9), then
this global automaton has 38 states and 1159 transi-
tions. On the other hand, if one only takes into
account the events related to the simplified plant
(Fig. 10), the resulting global model of the constraints
will have 38 states and 1093 transitions.

4. From Grafcet Specification to
Supervisory Control Implementation

Control implementation can be synthesised in the
frame of the supervisory control theory by computing
the supremal controllable sublanguage of the plant
language that satisfies the required safety, liveness and
deadlock freeness constraints. Such an approach
is presented in [7], for example, where the control
tasks to be performed are formulated in terms of a set
of desired progress specifications. These progress
specifications together with the plant model and
the required safety constraints are used to derive a
supervisor that enforces the specifications while
offering a maximum behavioural flexibility. Subse-
quently, a controller is extracted from the maximally
permissive supervisor for the purpose of implementing
the control by selecting, whenever possible, only one

controllable event from among the ones allowed by
the supervisor. The advantage of such an approach
resides in the relative simplicity of the formal calcu-
lations involved because it uses the supervisory
control theory as a sole formal framework.

However, the description of each control task in
terms of automata-based separate progress specifica-
tion restricting the plant model is not a very common
practice in industry when specifying the control of the
operating cycles for individual machines. To develop
such controllers, industrial practice is primarily con-
cerned with control-based specifications rather than
plant-based specifications. These control specifica-
tions are commonly given by means of high-level
specification models, such as Grafcet, that provide a
straightforward means to describe the required con-
trol tasks and capture the concurrency (of actions and
transitions), synchronisation and the possibility of
using events, conditions and complex logic operators.
Progress-type automata specifications, on the other
hand, are inconvenient for capturing these aspects
because they are only concerned with the sequential
aspects related to individual task. Furthermore, a
systematic way of choosing the possible controllable
events from among the ones allowed by the maximally
permissive supervisor corresponding to a number of
progress specifications cannot be guaranteed to cor-
respond to the best choice available for each particular
case. For these reasons, it seems to be more interesting
to use Grafcet to specify the “unconstrained” control
specifications and to propose a synthesis procedure
that generates an execution model corresponding to
the minimally restrictive behaviour of Grafcet that
reinforces the specified constraints.

A control synthesis approach for Grafcet in the
frame of the supervisory control theory has been
proposed in [8]. Despite its successful application to
an industrial system (with 77 partial Grafcets, and 200
inputs and outputs), the application of this approach
is restricted to a sub-class of Grafcet implying a
number of structural restrictions, and limited to the
use of impulse-type orders and receptivities given in
terms of simple events. The underlying semantics is
based on the hypothesis that a Grafcet order and its
corresponding plant reaction are considered as an
atomic event, implying that the reaction can only be
intercepted by the event associated to the downstream
transition of the step associated with the order.
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This hypothesis is rather restrictive because the con-
troller in real systems usually performs a number of
parallel orders and an order may be maintained
through a number of consecutive Grafcet steps or
issued by a number of parallel steps. Furthermore, the
plant may induce complex interleaving causality
relationships between control actions and their con-
sequent reactions. The discussion in Section 3 shows
that these relationships can only be captured using an
explicit model of the plant.

A general synthesis framework will, therefore,
require the use of: (i) a behavioural model that con-
siders all Grafcet features without any particular
restrictions, (ii) an explicit model of the controlled
plant, and (ii1) a model expressing the constraints to be
satisfied by the synthesised control implementation.
Such a framework must use a dedicated intersection
algorithm, which takes into account the semantic
differences between these three models as well as the
behavioural difference between the control model
and resulting controller implementation. In [30], the
authors have provided a gradual and informal pre-
sentation of the concepts and issues that should be
considered to implement such an intersection proce-
dure. This previous paper has also highlighted the
necessity of combining an analysis and a synthesis
phase to provide user-guidance for analysis and
correction of design errors for sizeable real-world
applications. A direct dedicated intersection algo-
rithm between the three models taking into account
their semantic difference and the specificity of their
interaction is likely to provide the most efficient
solution for implementing such an analysis—synthesis
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framework in terms of algorithmic complexity.
However, the design of such an algorithm is not a
trivial task due to the semantic difference between the
Grafcet model (which is based on conditions, events,
logic operators, double time-scale interpretation,
synchronism, reactivity, possibility of simultaneous
transition firings [20]) and the formal aspects related
to the required models of the plant and the con-
straints. To conquer this algorithmic difficulty, this
paper proposes a multi-step synthesis framework that
builds on well-established works related to Grafcet
[23] and to the supervisory control theory. The aim of
this framework is to synthesise an optimal and
deadlock-free control implementation; optimality is to
be understood here in the sense that the resulting
control implementation represents the minimum
possible restriction of the behaviour of a given
Grafcet, and satisfies the required safety and liveness
properties. This synthesis framework (Fig. 13) is based
on the use of a supervisor and a controller; the
supervisor enforces the given safety and liveness spe-
cifications, whereas the controller directs the system
toward the desired goal, to accomplish a specific set of
tasks. The controller is given in terms of the auto-
maton of stable situations, ASS, corresponding to the
specified Grafcet [23]. For the parts-handling exam-
ple, the first elements of ASS are depicted in Fig. 5.
The supervisor is synthesised on the basis of a plant
model given by automata corresponding to sponta-
neous event generators [24]. The activation, 1Z, and
deactivation, |Z, of Grafcet orders correspond to
controllable events, Y., because it is possible to pre-
vent their occurrence by an appropriate conditioning

Grafcet
(control specifications)

Plant (modelled as a

LU, »| Safety and liveness

Situations of Grafcet

M spontaneous events generator) < specifications
cor?girtl}ins : Enabling / disabling of X, P :
. Synthesis of supremal controllable
Extraction [27] behaviour [28]
v
Controller Supervisor

S: Automaton generating the supremal
language of the supervised plant

%
=
ASS: Automaton of Stable 42“—

Intersection

SYNC : Automaton generating the
behaviour that is common to ASS and S

Reduction

OPT: Automaton corresponding to
the optimal control implementation

Fig. 13. Synthesis framework.
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of Grafcet orders. Uncontrollable events, X, are
initiated by the plant. These events, which cannot
be disabled by control action, are associated with the
rising edges, TE, and the falling edges, | E, of Grafcet
inputs. This interpretation can be considered as
an adaptation of Balemi’s scheme [2] to the case of
Grafcet.

Based on the automata representing the plant as
well as automata specifying the required safety and
liveness constraints, the supervisor is obtained by
applying the synthesis algorithm proposed in [17],
which is given in the annex. The resulting supervisor
realisation is that of a discrete event system
S=(%,0,A,qo), where X is a set of events, Q is the set
of states, A:X x Q— Q is a partial function called
the transition function, and ¢y is the initial state. The
transition structure of S corresponds to the maximum
non-blocking allowable behaviour of the controlled
plant with respect to the given safety and liveness
specifications. This means that the part of Grafcet
that will be allowed to execute should be confined
within the language that can be generated by S.

For the given example, the automaton S, generated
on the basis of the simplified plant model (given in
Section 3.3.2), has 68840 states and 513696 transi-
tions. Some of these elements are depicted in Fig. 14.
This automaton gives the way in which the different
evolutions of the plant automata (Figs 9(a)—(c) and
10) are ordered to comply with the specified con-
straints. For example, the first constraint to satisfy is
related to the prohibition of the platform’s rotation
during the deposit of a part, implying that the order
DOWN should not be activated unless the order
TURN _ac is deactivated, and vice versa. Figure 14
shows that the states ¢3;54 and ¢319s, by virtue of their
input and output transitions, ensure the satisfaction of
this constraint. The liveness constraint, c¢3, which
requires the deactivation of the order MOVE as long
as the detected part is not retrieved from the conveyor,
Lp_ part, is also satisfied in the automaton S. Take the

, g

T sy 5 T

@ Uhigh @ low @ DOWN LEFT

SA \\‘ \‘ \\‘A ~
v
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situation ¢;93, which is reached from the initial situa-
tion further to the occurrence of the sequence of
events: activation of the order MOVE, arrival of
a part, and then the activation of the order LEFT
(either before or after) the deactivation of the order
MOVE. This state, ¢;93, does not admit the reactiva-
tion of the order MOVE,; i.e., it has no output transi-
tion labelled with TMOVE. This is also the case for
state ¢gg and all the other states in .S where the order
MOVE has been deactivated previously, and the part
is not yet retrieved. Therefore, ¢3 is satisfied with
respect to S.

The sequence of events that can be generated both
by the controller, ASS, and by the supervisor, S, are
extracted by a dedicated intersection algorithm pre-
sented in Section 4.1. This algorithm results in an
event-based automaton, SYNC, which is then treated
by a reduction algorithm to remove the deadlocks of
SYNC and to generate the control-execution model.
This reduction algorithm, given in Section 4.2, is used
to generate the automaton OPT representing the most
permissible subset of Grafcet behaviour that is dead-
lock-free, and satisfies the imposed constraints.

4.1. Intersection

The aim of this step is to generate the automaton
SYNC representing the behaviour common to the
automata S and ASS, by retaining the evolutions of
the control model, ASS, that are authorised by the
supervisor, S. The intersection principle is rather
specific due to the semantic differences between the
automata ASS and S. Each state in ASS is associated
with the orders of the corresponding situation of
Grafcet, and the transitions of ASS are given in terms
of logical expressions combining input variables and
their edges. On the other hand, S is an elementary
automaton whose transitions correspond to simple
events. The proposed intersection algorithm goes

Fig. 14. An extract of the supervisor automaton, S.
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through the events that can be accepted by ASS and S
to construct the automaton SYNC. A transition
labelled with a controllable event is included in
SYNC when S accepts this event, provided that the
event is not in contradiction with the current output
state of ASS. In this way, only the control evolutions
that are acceptable by the supervisor are retained in
SYNC. On the other hand, since uncontrollable
events cannot be inhibited, transitions labelled with
uncontrollable events are added to SYNC whenever S
can generate these events, irrespective of whether ASS
can accept them.

The transitions of the automaton SYNC corre-
spond to simple events. The orders to be simulta-
neously performed in a given Grafcet situation are
represented in SYNC by means of sequences of
interleaved transitions corresponding, each, to the
activation or the deactivation of one of these parallel
orders. The states relating these transitions are
grouped in a region which corresponds to the given
Grafcet situation (Fig. 15). The intra-region transi-
tions correspond to controllable events and the inter-
region transitions represent uncontrollable events.
The interleaving of parallel orders (inside a region) is
used here to provide an event-based semantics to
SYNC in view of simplifying the formal development
of the intersection procedure. The reduction step,
which is presented in Section 4.2, will be used to
reconstruct the execution model by aggregating each
region into a single state associated with the set of
orders to perform in parallel.

Formally, the automaton SYNC is defined by the
6-tuple (%, ST, TR, sy, r9, BLOC), where,

- YX=X.UX, X.=1ZU]Z and X, =TEU|E. In
the following, 1z corresponds to an element of 7Z,
lz to an element of | Z, e to an element of TE, and
le to an element of | E.

— ST is the set of states of SYNC, which are parti-
tioned into sub-sets that are called regions. A state
st € ST corresponds to a unique configuration of
the 3-tuple (¢, y, E), where ¢ is a state of S, y a state
of ASS, and E is the set of logic valuations (0 or 1)
of Grafcet inputs. All the states corresponding to
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a situation of Grafcet and to a unique valuation of
its inputs, belong to one region.

— TR :ST x ¥ — ST is a partial function representing
the transitions of SYNC. A transition is defined by
a 3-tuple (st, 0, st') € TR.

— sty € ST is the initial state, given by (qo, o, Eo),
where ¢ is the initial state of S, y, the initial state of
ASS, and E, corresponds to the set of initial
valuations of Grafcet inputs.

— roC ST is the initial region corresponding to the
initial situation, y,, of Grafcet and to the initial
valuation, E, of its input variables.

— BLOC C ST is the set of blocking states, i.e. the
states having no output transitions.

4.1.1. Intersection Algorithm

The automaton SYNC is generated by means of the
following iterative algorithm that terminates when no
new region can be created anymore:

Step 1: Develop the initial region ry from the

state st.
Step 2: For each developed region (by step 1 or
step 2-b):
2-a: create the first state of each of its output
regions,

2-b: develop these output regions.

This algorithm receives as an input the automaton
S=(%,0,A,qq), corresponding to the supervisor
generated by the synthesis step, the automaton
ASS=(FE,Z,Y,T,yp), equivalent to Grafcet, and the
initial structure of the automaton SYNC, given by
(2, {sto}, 0, stg, {sty}, D). In the following, the current
state of SYNC is characterised by the current state
of S, the current situation of ASS, as well as the
current valuation of the input variables.

The iterative procedure corresponding to step 1 is
given in Fig. 16. This procedure creates the states and
the transitions of the region ry. The created transitions
correspond to the controllable events, which are
enabled by the supervisor and non-contradictory with
the outputs associated with the situation of Grafcet.

region 3

QO region 2 X

Uncontrollable event k

Controllable event i .-“
d oo
Controllable event Controllable event i region i

ontrollable event j

Fig. 15. Semantic model of the automaton SYNC.
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1) V(q, yo, Eo)eto V(q, X, q') € A such that E=Tz A ze Zy)
1) ST=ST U {(d\ Yo, Eo) };
ii) TR=TR U { ((q, Yo, Eo), 2, (q", Yo, Eo) ) };
iii) ry=1o U { (q', Yo, Eo) };

2) Y(q, yo, Eo)ery V(q, %, q') € A such that E=lz A ze Zy)
1) ST=S8T U {(dq’ yo, Eo) };
ii)) TR=TR U { ( (9, Yo, Eo), Z, (4, Yo, E0) ) };
iii) ro=19 U { (q", Yo, Eo) };

Fig. 16. Development of the initial region ry.

1) V(q, ye, Eo)er, V(q, Z, q') € A such that =Tz A ze Zy)
-If((q' Yo Ec) € ST A (], Yo, Ec) € Te AT )
Then i) r,=r. U r, ;ii) eliminate(r,)
-If((q, vy, E) 2 ST ) Then i) ST=STu {(q, ¥ Eo) }; i) re=r. U {(q, ¥, Eo) };
-TR=TR U { ((, Yo, Eo), Z, (', ye, Ed) ) }5
2) Y(q, ye, Eerte, V(q, Z, q') € A such that (Z=lz A z¢ Zy):
-If((q', ye, Ec) € ST A(q, Yo, Ec) € Te AT, )
Then 1) r,=r. U r, ;1ii) eliminate(r,)
-If((q, ye, Ec) 2 ST ) Then i) ST=STuU {(q,¥. Ec) }; i) re=1r. U { (", ¥, Ec) };
-TR=TR U { ((q, Yo, Eo), Z, (', ye, Eo) ) }5

Fig. 17. Development of a region r..

The first iteration of the procedure creates the con-
trollable output transitions of st, as well as their
downstream states, which are added to the initial
region. Each of the following iterations continues the
development of the region rg, starting from one of
the states created by a previous iteration, until all the
states of the region are treated. An iteration consists of
testing the controllable output transitions of the cur-
rent state, ¢, of S. If such a possible transition of S
corresponds to the activation of a Grafcet order, 1z,
that is associated to the initial situation of Grafcet
(z€ Zyy), sub-step 1, creates a new state in S7 and
adds the transition leading to this state to TR. The
created state, (¢, yo, Eo), 1s distinguished from the
input state of the added transition by the first element
of the 3-tuple, ¢’, corresponding to the state of .S after
executing the transition. The state (¢, yo, Ep) is added
to ro if it was not already included in this region. A
similar treatment is applied in sub-step 2 for the
controllable events corresponding to the deactivation
of Grafcet orders, |z: if the corresponding order, z, is
not included in the set of orders associated to the
initial state of ASS, then a transition corresponding to
|z is created in ry to indicate that this order is inhibited
during the initial situation of the controller.

Step 2-b of the intersection algorithm aims at
developing a newly created region, r, starting from its
first state, generated by step 2-a. The corresponding
procedure (Fig. 17) is similar to the one used to
develop the initial region in step 1, i.e. the controllable
transitions of r. are created together with their output
states if these states were not already created by a
previous iteration of this step. However, the output
states of the created controllable transitions may
belong to an already existing region, r., that is dif-
ferent from r.. In this case, the two regions, r. and r,
are merged in r. because they correspond to the same
situation of Grafcet with a unique valuation of its
inputs, and the region r, is eliminated from the par-
tition of the subsets of ST by using the operator
eliminate(r,).

Step 2-a uses the procedure given in Fig. 18 to create
the inter-region transitions, which represent the
uncontrollable output events of a recently created
region, ry, i.e. the possible reactions of the plant. Each
iteration of this procedure is composed of two sub-
steps to create the uncontrollable transitions leaving
one of the states sz of the region r.. The first step deals
with the transitions representing the uncontrollable
events that are accepted in the current state, ¢, of the
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Vst=(q, y, E) € 1, Do:
1- YV (q, Te, q') € A such that (e E A e=0) Do:

-TR=TR U { (st, Te, st") };
- Ifst'¢ ST Then
1) ST =ST v {st'},
ii) create the partition r = {st'} < ST,
2-V (q, Le, q') € A such that (e E A e=1)) Do:

-TR=TR U { (st, le, st };
- Ifst'¢ ST Then
1) ST =ST v {st'},
ii) create the partition r = {st'} c ST,

-If 3 ((y, f(E), y) € T) such that f(E)=true ) Then st'=(q',y",E") A (y"=y') Else st'=(q,y".,E") A (y"=y);
where the valuation E' differs from E only w.r.t the value of e which becomes 1 instead of 0;

-If 3 ((y, f(E), y) €T) such that f(E)=true ) Then st'=(q,y",E") A (y"=y') Else st'=(q",y",E") A (y"=y);
where the valuation E' differs from E only w.r.t the value of e which becomes 0 instead of 1;

Fig. 18. Creation of a new region.

supervisor (i.e. a possible reaction of the plant) and
correspond to the rising edge of an input variable of
Grafcet Te. Each of these events is admitted in the
common behaviour, SYNC, if the current value of the
related variable e € E in the ASS is 0, i.e. if the rising
edge of this variable can effectively take place. The
corresponding transition created in SYNC leads to a
state st/, where the value of ¢ becomes 1. This state
corresponds to the state ¢’ of S following the occur-
rence of Te, and to the situation y of ASS. If the event
Te entails the validation of a logical expression,
f(E), associated with an output transition of the
current situation, y, of ASS, then y corresponds to
the downstream state of this transition. Otherwise,
y=y. If the state s¢’ does not already exist in ST, then
it will be created and included in a new region. The
second sub-step of this procedure is based on a similar
principle to deal with the uncontrollable transitions
corresponding to the falling edges |e of the input
variables of Grafcet. These transitions are added to
ST if the current value of the variable e is 1. In this
case, the value of this variable becomes 0.

4.1.2. Intersection Results for the Example

The automata S and ASS of the parts-handling
example will be used now to illustrate the application
of the intersection algorithm (see Fig. 19). The set
of Grafcet inputs is given by E={p_part, high, low,
p_conv, p_inter,p_ext,p_int,cy4}. Step 1 of the inter-
section algorithm is related to the development of the
initial region, ry, starting from the initial state
(90, y0, Ep), where Ey=1{0,1,0,0,0,0,0,1} and
Z,,={MOVE}. This value of Z,, implies that
TMOVE is the only controllable event occurring in

the current situation, yq, of ASS. Since this event is
enabled by the current state, go, of the supervisor, r
will include one transition corresponding to the
occurrence of TMOVE and leading to a newly created
state, (gs, vo, Eo). Next, step 2-a is applied to create the
inter-region uncontrollable output transitions of
states (¢o, yo, Eo) and (gs, yo, Eo). All the output transi-
tions of ¢o correspond to controllable events, and
hence there is no uncontrollable output transition
originating from state (g, yo, Eo). On the other hand,
one of the eight output transitions of ¢s is associated
with an uncontrollable event, Tp_ part. Since the value
of the variable p_part is 0 at y,, the rising edge,
1p_ part, can occur at (gs, vo, Ep). This event validates
the logical expression of the transition relating yq to y»
in ASS and sets the value of p_part to 1. Hence,
the initial state of the newly created region, ry, is
given by (q27,y2, E;) with Z,,={LEFT} and
E;={1,1,0,0,0,0,0,1}. Since the events |[MOVE
and TLEFT are enabled by the current state, ¢»7, of S,
and since MOVE¢ Z,, while LEFT € Z,,, step 2-b of
the intersection algorithm will generate the interleav-
ing sequence of controllable transitions (| MOVE
then TLEFT, or TLEFT then |MOVE) as well as the
destination states — (gss, 2, E1), (q70, 2, E1) and
(9193, 2, E1) — which are included in r;. Step 2-a is
applied next to determine the uncontrollable output
transitions of each of the states of r;. These transi-
tions, representing the enabled transitions of the
corresponding states of S, are identified in Fig. 19 by
2: lp_part), (3: |p_part), (4. |p_inter) and
(5: Tp_inter). Transition 2 (respectively, 3) entails the
activation of state ¢g; (respectively, ¢i95) in S, of
situation y; in ASS, and the preset of the value of
p_part € E to 0. Since the transitions 2 and 3 lead to
two states in SYNC corresponding to the same
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Extract of ASS

Z,={MOVE}, Z,={MOVE, LEFT}, Z,={LEFT},

7 \ i : ™ Zyo={MOVE}. Zy1,~{EM, DOWN}. Zyio={LEFT, TURN ac},
/ \ \I Mg Z,p5={EM, DOWN, TURN ac},
/ \ TN ] \. Zys={RIGHT, EM, DOWN, TURN _ac}
] % \
/ \ i Y N \-\4

7 | spl) )~ Extract of S

E = {p_part, high, low, p_conv, p_inter, p_ext, p_int, ¢y}

e First regions of SYNC

Ty

- Ip_inter
e
I

E, = {0,1,0,0,0,0,0,1}, E; = {1,1,0,0,0,0,0,1}, E; = {0,1,0,0,0,0,0,1}, E5 = {1,1,0,0,1,0,0,1},
E, = {1,1,0,0,0,0,0,1}, Es = {0,1,0,0,1,0,0,1}, E¢ = {0,1,0,0,1,0,0,1}, E; = {1,1,0,1,0,0,0,1},
Eg = {0,1,0,0,0,0,0,1}, E,y = {0,1,0,1,0,0,0,1}, Es9p= {1,1,0,0,0,0,1,0}, E»9s={1,1,0,1,0,0,0,0},
E;6={1,1,0,1,0,0,0,1}, E;,,={0,1,0,1,0,0,0,0}

situation, y;, of ASS with the same valuation for the The

Fig. 19. Illustration of the intersection algorithm.

resulting automaton, SYNC, has

9016

input vector, E,, the two output states will be grouped
into one region, r,. These states are related by the
controllable transition, TLEFT, because this event is
enabled in ¢g; and LEFTcZ,; (step 2-b). The
occurrence of Tp inter in ry corresponds to an
evolution of the automaton S and of the input vector,
but does not entail an evolution of the ASS situation.
The corresponding transitions, 4 and 5, lead, respec-
tively, to states (qig7, ¥2, £3) and (446, Vo, E3), Which
are grouped in the region r3 because they correspond
to the same situation of ASS and the same valuation
of E. The other elements of the automaton SYNC are
constructed in the same way.

transitions and 3812 states that are grouped in 524
regions. The first elements of this automaton are
depicted in Fig. 19. Some regions, such as r¢ and rg,
only include a single state because they correspond
to a situation where no new order should be acti-
vated or deactivated. For the regions comprising
two states, such as r, and r;, only one order is
activated or deactivated. The regions with many
states, such as rygs, correspond to situations where
many orders are to be activated and/or deactivated.
Note that the state (gz791, )9, E1g9) of region ryg
represents a deadlock situation, because it has no
output transitions.
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After deposing a type-2 part on the inward position
of the platform, the carriage must return to the
loading area to wait for a new part of type 1. The
region rpgs illustrates the incidence of the intersection
procedure when the carriage reaches the loading zone,
Tp_conv. This region corresponds to Grafcet situation
V281, Whose orders, Z>g; = {EM, DOWN, TURN ac},
imply the descent of the electromagnet to pick up a
new part of type 1 while the platform is positioned to
receive the next part. To satisfy the constraint cl, the
order DOWN should be prohibited in this case, and
consequently, the region does not include any con-
trollable transition related to the activation of the
descent, TDOWN.

4.2. Reduction

The reduction step, which involves two phases
(Treatment of the blocking states and Aggregation), is
used to generate the maximum, reactive and non-
blocking execution controller. The role of the first
phase is to reduce SYNC by removing its deadlock
states as well as the evolutions leading to these dead-
locks in real execution. This phase also removes the
transitions of SYNC representing the occurrence of
uncontrollable events at the non-terminating states
of all the regions. In fact, since the interleaving orders
of a region are to be performed simultaneously in real
execution, the execution of an interleaving sequence of
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orders can be regarded as occurring at the same time
instant, and hence the plant reaction can only occur
after the execution of all the transitions of the inter-
leaving sequence. Therefore, only the uncontrollable
transitions leaving the terminal states of a region need
to be maintained. The second phase is applied next to
aggregate each region into a single state, in view of
obtaining the automaton OPT, representing the
execution control model. Each situation of OPT is
associated with the orders to be activated and deac-
tivated when the situation is active. The states of OPT
are connected by uncontrollable transitions relating
the corresponding regions of SYNC. Hence, starting
from a situation, the occurrence of a plant event drives
the automaton immediately to a unique situation, and
results in an instantaneous activation and deactiva-
tion of the orders associated to the situation. The
resulting automaton, OPT, gives the largest admis-
sible non-blocking behaviour of the controller with
respect to the specified constraints.

4.2.1. Treatment of the Blocking States

The first phase consists in removing the blocking
states (states with no output transitions) from SYNC
and trimming their upstream transitions. It is also
used to guarantee the non-reachability of the trimmed
uncontrollable transitions in real execution. The
corresponding algorithm is given in Fig. 20.

1)V ste ST, If (A (st, o, st') € TR) Then BLOC = BLOC U {st}

2) V ste BLOC Do:
2.1)V t=(st, G, st) e TR Do:
a) TR =TR - {t}
b) Ifc € £, Then:
- clean(st")

- If (V state' € regg: ,Zf (state, T, state') € TR such that te X, ) Then remove(regy)
c)Ifc =Tz e TZ Then V state € regy Do:

- If 3 (state, o, state') € TR Then:
- TR=TR-{ (state, o, state') }

-If (A (st", 1, state') € TR) Then trim(state')
- If(,Z(state, T, state") € TR) Then BLOC =BLOC v ({state}

d)Ifc e {Z Then:

- V (state, T, state') such that state' € reg,: TR = TR-{ (state, 1, state') }; clean(state)

- remove(regy)

2.2) ST =ST - {st} , BLOC = BLOC - {st}

3) V (st, 0, st") € TR such thatoc € Z,

If (3 (st, o, st') € TR such that 6eX.) Then:

-TR=TR- { (st, o, st") };

- If (V state € regy : A (state', T, state) € TR such that te Z,) Then remove(reggs)
Else If (A (state", T, st") € TR ) Then trim(st")

Fig. 20. Deadlock-treatment algorithm.
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The first step of the algorithm starts by adding the
states of ST with no output transitions to the list of
blocking states of SYNC, BLOC. In step 2.1, the
input transitions of each blocking state, st € BLOC,
are removed to render these states unreachable. The
inconsistencies, deadlocks and unreachable states
produced by these removals are next examined and the
corresponding treatment depends on the type of event
related to the suppressed transition: uncontrollable
event (o € 3,), activation of a Grafcet order (o € 12)
or inhibition of an order (o € | Z).

If the removed transition corresponds to an
uncontrollable event, o € ., then step 2.1b is used to
render the input state of the transition unreachable
because such a transition represents a reaction of
the plant that cannot be prohibited by the controller.
The procedure clean(state), which is described below,
achieves this treatment and takes into consideration
the deadlocks that may, in turn, be introduced by the
removal of the transition. If, following the suppres-
sion of the transition, the region including the block-
ing state st becomes unreachable, i.e. if none of its
states has uncontrollable input transitions anymore,
then the procedure remove(r) is used to remove this
region. The operator regy returns the region that
includes the state sz.

If the removed transition represents the activation
of an order z, i.e. 0 =1z € 1Z, then step 2.1c is used to
ensure the prohibition of this order in the current
situation of the controller. Consequently, all the
transitions corresponding to the activation of this
order should be removed from the region. If the
removal of one of these transitions renders its out-
put state unreachable, the procedure trim(state) is
invoked to eliminate this state and to treat its output
transitions. On the other hand, if an input state of a
removed transition has no other output transitions,
this state is added to the list BLOC.

If the removed transition corresponds to the
deactivation of an order, o€ |Z, then this implies
that this order should not be deactivated as specified
in the corresponding Grafcet situation. On the
other hand, the synthesis procedure cannot impose
performing such an order because this will be in
contradiction with the Grafcet specifications. To
alleviate this contradiction, and since all the inter-
leaving sequence of events in a region are replaced
with the parallel orders of the corresponding situa-
tion in the execution model, step 2.1d proceeds
by removing the whole region under study. Before
removing the region, the set of input transitions
originating from other regions are eliminated, and
the procedure clean(state) is invoked to treat the
input states of these transitions so as to guarantee
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the non-reachability of the removed region in real
execution.

After these different treatments, step 2.2 removes
the blocking state st from the list ST and from the list
of blocking states BLOC. Then, step 3 is used to
remove the uncontrollable transitions leaving the
non-terminating states of a region. These transitions,
a €Y, are removed if their input states have other
output controllable transitions. The output regions
and states that have become unreachable after these
suppressions, are then removed by calling the pro-
cedures remove(r) and trim(state), respectively.

The deadlock-treatment algorithm also uses the
three auxiliary procedures: remove(r), trim(state),
and clean(state), which are given in Fig. 21.

The procedure remove(r) (Fig. 21(a)) is used to
remove a region, r, having become unattainable from
the automaton SYNC. First, all the states of this
region are removed from the lists ST and BLOC.
Then, the output transitions of these states are
removed. If the removal of an uncontrollable transi-
tion renders its output region (or state) unreachable,
this output region (or state) is also removed. After-
wards, the region r is eliminated from the partition of
the sub-sets of ST by using the operator eliminate(r).

The procedure trim(state), given in Fig. 21(b),
removes a state that has either become unreachable, or
should be rendered unreachable. It proceeds by
removing this state from the lists ST and BLOC, and
then removing its output transitions. If the output
regions and states of these transitions become
unreachable, then they are also removed.

The procedure clean(state) (Fig. 21(c)) is used to
treat the input state of an uncontrollable transition to
be removed. In the first place, the state and its output
transitions are removed by calling the procedure
trim(state). Then, the input transitions of this state
are removed. If one of these transitions is uncontrol-
lable, the procedure is applied recursively to its input
state. In this way, all the sequences of uncontrolled
transitions leading to the removed state will be
eliminated to guarantee the non-reachability of the
removed state in real execution. Finally, the states
having become blocked by the suppression of these
transitions are added to the list BLOC so that it can
be treated in the next iteration of the deadlock treat-
ment algorithm (Fig. 20).

The application of the intersection algorithm to
the automaton SYNC of Fig. 19 results in a reduced
automaton whose first evolutions are depicted in
Fig. 22. This figure shows that the blocking region,
10, of Fig. 19 has been removed together with its input
regions rg, g, s and r». Note also that the region r, has
been removed by the deadlock-treatment algorithm
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a) remove(r)
V ster Do:
- ST =ST - {st}
- BLOC =BLOC - {st}
-Vt=(st, 0, st) e TR: Do
- TR =TR- {t},
-Ifoe X, Then
- If (V state € reg: Z (state’, T, state) € TR such that te X,) Then remove(regy)
- Else If (A (state", T, st') e TR) Then trim(st")
eliminate(r)
b) trim(state)
- ST = ST - {state}
-BLOC =BLOC - {state}
- V t = (state, o, state') € TR Do:
-TR=TR - {t},
-Ifo e I, A (V st e regyue: 4 (st', T, st)e TR such that te £, ) Then remove(regyue)
- If ( # (state", 1, state') € TR ) Then trim(state')
¢) clean(state)
- trim(state)
- V t=(state", o, state)e TR Do:
-TR=TR - {t}
-Ifo € X, Then clean(state") Else IfA (state", 7, st) € TR Then BLOC = BLOC U {state"}
Fig. 21. Auxiliary procedures.
@ Up_inter ,——"
IMOVE
Fig. 22. Automaton SYNC generated by the deadlock-treatment algorithm.
and that the regions r3 and r4 only include a single — ACT. is the set of orders to activate in state c,
state after the reduction. — NAC, is the set of orders to deactivate in state c,

— Z.1s the set of Grafcet outputs corresponding to

4.2.2. Aggregation
The previous phase results in a reduced automaton automaton SYNC;
having the same structure as that of SYNC, but
without deadlocks or unreachable situations. The
aggregation phase consists of generating the auto-
maton OPT, whose states correspond to the regions of
the reduced SYNC. The automaton OPT is given by
the 4-tuplet (X, ET, ¢, statey), where,

automaton SYNC;

the transitions of OPT.
— Sstateg 1s the initial state.
— X, 1s the set of uncontrollable events;

state ¢, i.e. Z.=Z,, where y. is the Grafcet
situation corresponding to region r. of the

— Sit, is the set of Grafcet steps corresponding to
state c, i.e. Sitc = Step,, , where y is the Grafcet

situation corresponding to region r. of the

— ¢:X,x ET— ET is a partial function representing

— ET is the set of states corresponding, each, to The aggregation procedure is given in Fig. 23. Each
a region of SYNC. The 4-tuple (ACT.,NAC,, region, r., is aggregated to a state, ¢, representing the
Z., Sit,) is associated to each state ¢ € ET, where, corresponding situation of the controller. The states
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-ET=0, 6 =0, state; = 0;
-Vr,c ST Do:

1) ET=ET U {c};

ii) Sit, = Stepy.;

i) Ze = Zy;

iv) V state € r., V (state, Tz, state Ye TR: ACT.=ACT,. U z;
v) V state € 1., V (state, Iz, state ") € TR : NAC, = NAC, U z;
-Vr, 1o C ST? , If 3 (state, o, state ') € TR such that (state € r. A state ' € ro) Then ¢=0 U { (c, 0, ) }

Fig. 23. Generation of the automaton OPT.

of OPT are related by uncontrollable transitions
relating the regions of SYNC. Hence, starting from a
given state, the occurrence of an event of the plant
implies an evolution of the automaton to a unique
state, and results in an instantaneous activation and/
or deactivation of the orders associated to this state.
The automaton OPT therefore represents the deter-
ministic and reactive behaviour corresponding to the
largest admissible behaviour of the controller, with
respect to the specified constraints.

The resulting supervisory controller OPT can
be implemented as an underlying optimal execution
motor for the specified Grafcet, subject to the super-
visory specifications.

During control execution, the orders to output to
the plant, in a given state of OPT, are determined by
the sets ACT and NAC, together with the orders
performed in the previous state. Indeed, and by con-
struction, the sets ACT and NAC of the automaton
OPT are associated, respectively, with the orders to
activate and deactivate relatively to the previous
orders of the controller. Consequently, the orders to
perform by OPT are given by the set ORD which is
updated during execution. This set is initialised to
ACT,. When an event occurs in the plant, the
automaton OPT advances to a new state, ¢, where
ORD is calculated by the expression: ORD=
(ORDUACT,) — NAC.. In the same way, the orders
that are prohibited by the synthesis procedure are
those associated with the current situation of Grafcet
but which are not performed in real execution. These
orders, which are also calculated dynamically, are
given by the set PROH =Z.— ORD. The sets, ORD
and PROH, are also used to allow the designer to
distinguish those outputs which are maintained or
restricted by the synthesis process.

4.2.3. Results

For the parts-handling example, the automaton OPT,
has 2287 states and 6311 transitions. Some illustrative

elements of this automaton are depicted in Fig. 24,
where the first evolutions (states: 0, 1, 3 and 4) cor-
respond to the four regions of the reduced SYNC
automaton given in Fig. 22. The sets (ACT,, NAC,,
Z., Sit.) are associated with each state of OPT. The
two states of the region ry, corresponding to the initial
situation of Grafcet, are aggregated into a unique
state, state,, with ACT,={MOVE}, NAC,=0,
Zy={MOVE} and Sit,={100,200,300,400}. In
execution, the set of orders to perform in state, is
given by ORD=ACT,={MOVE}, and PROH=
Zy— ORD = (}; i.e. no order is prohibited in this state.
In the same way, the four states of r; are aggregated
into state; whose associated sets are: ACT,=
{LEFT}, NAC, ={MOVE}, Z, = {LEFT}, and Sit; =
{101,200,301,400}. The orders to perform in this
state are given by ORD =(ORDUACT,;) — NAC, =
{LEFT}, and no order is prohibited in this state
because PROH=Z, -~ ORD=@. For the other
states, the sets ORD and PROH are calculated in
the same way.

Figure 24 also illustrates two corrections induced by
the synthesis procedure. The first restriction imposed
by the synthesis procedure is related to the constraint
cl, which implies that the rotation of the platform
should be prohibited during the positioning of a
part on it (see the discussion related to region 295
of Fig. 19 in Section 4.1.2). Consider the situation
{101,200,301,401} of Grafcet (corresponds to state
290 of OPT) in which the orders LEFT and TURN _ac
are activated by virtue of the set ORD. As soon as the
carriage attains the loading position above the con-
veyor, Tp_conv, Grafcet’ssituation {102, 201, 301,401}
is activated (stateygs), and the corresponding orders
are given by the set, Z>95s = {EM, DOWN, TURN ac}.
However, the satisfaction of ¢1 implies that the orders
TURN _ac and DOWN should not be activated
simultaneously. The resulting correction induced by
the synthesis procedure consists therefore of prohi-
biting the order DOWN in OPT during the rotation of
the platform. Consequently, the orders to perform
and to prohibit in state 295 are given, respectively, by
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({MOVE}, @, {MOVE} ({LEFT}, (MOVE}, {LEFT}, (@, @, {LEFT}, (@, 9, (LEFT},
{100, 200, 300, 400}) {101,200, 301, 400}) {101,200, 301,400}) {101,200, 301, 400})
O N L
p_part \J p_inter U Up_inter

(2,2, {RIGHT, UP, EM, MOVE},
{103,203, 300, 400})

(D, {UP}, {RIGHT, EM, MOVE }
{103,204, 300, 400})

Lp_conv

(@, {UP}, {RIGHT, EM,
MOVE}, {103,204, 300, 400})

({RIGHT}, {UP}, {RIGHT, EM, @
MOVE}, {103, 204, 300, 400})

(2, D, {EM, DOWN}, ({DOWN}, {TURN ac}, {EM,

{102,201,301,400)  DOWN}, {102,201, 301, 400}) ({EM, {LEFT}, (EM, DOWN,
-——— TURN ac}, {102,201, 301,401})
Lhigh
e - Teus
P
Lp_part
< _@
S
P S - -~ 7\
({RIGHT, MOVE}, @, {RIGHT, EM, DOWN, 4

MOVE, TURN _ac,}, {103,201, 300, 401})

Tp_conv
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({UP}, {DOWN}, {UP, EM},
{102,203, 301, 400})

The 4-tuple (ACT., NAC,, Z, Sit.)
is associated with each state

{RIGHT, UP, EM, MOVE},
1103, 203, 300, 400})

Tp_inter

@, {RIGHT}, {RIGHT, UP, EM,
MOVE}, {103, 203, 300, 400})

(@, {UP}, {MOVE, TURN ac}, "~
{100, 200,300, 401}) Y

e ()
p_pat > Thigh N/ ({TURN _ac}, @, {UP, MOVE,
» » TURN_ac}, {100, 205, 300,401})

({LEFT}, {MOVE}, {LEFT,
TURN_ac}, {101,200, 301,401})

(D, {TURN ac}, {LEFT},
{101,200, 301, 400})

Fig. 24. Tllustration of the restrictions induced by the synthesis procedure in execution.

101, 200, 301, 400

100, 200, 300, 400

MOVE LEFT

(1): Tp_part./p_conv (2): Tp_conv.p_part./low

101, 202, 301, 400

DOWN, EM

(3): Tlow.p_part./p_int./p_ext./high

Q)
103, 203, 300, 400

RIGHT, UP, EM, MOVE
(4): {p_part./high

Fig. 25. Illustrative execution of ASS.

the sets: ORD={EM,TURN_ac} and PROH=
{DOWN}. This correction can also be observed in
state 317 of Fig. 24, where the order DOWN is
included in the set PROH.

A second correction is highlighted through Fig. 25,
which shows a trajectory of the automaton of stable
situations, ASS, that cannot be used to determine
whether ¢2 is valid or not. In fact, in situation
{102,203,301,400}, the retrieval of a part from the
loading area results in activating the situation
{103,203,300,1400}. In this situation, the orders
RIGHT, UP, EM and MOVE are simultaneously
active, and this contradicts the safety constraint ¢2 if
the carriage reaches the intermediate position, p_inter,
before the upper position, high. However, if the
carriage reaches the high position first, the ascent will
be stopped beyond the intermediate position, p_inter,
and the trajectory satisfies ¢2. Therefore, in view of the
specified Grafcet, the automaton ASS cannot be used
to conclude about the validity or invalidity of the

property. The synthesis procedure solves this conflict
by generating the necessary prohibitions to restrict the
control executions to the runs that satisfy the con-
straint. In the resulting automaton, OPT (Fig. 24), the
retrieval of a part of type 1 from the loading position
activates the state 14, representing the situation
{103, 203,300,400} of Grafcet which outputs the
orders RIGHT, UP, EM and MOVE in view of
placing the part on the outward position of the plat-
form, p_ext. However, to satisfy the constraint ¢2
during this situation, the order RIGHT should be
prohibited if the carriage attains the intermediate
position, Tp_inter before the upper position, Thigh.
Hence, situation {103,203, 300, 400} of Grafcet is split
among the states 14, 23, 29, 22, 40 and 46 in the
automaton OPT, with the order RIGHT being pro-
hibited in states 29 and 46. Therefore, during the
execution of these states, the set ORD is given by
{UP,EM, MOVE} and PROH ={RIGHT}. On the
other hand, if the high position, Thigh, is attained
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before the intermediate position, Tp_inter, no cor-
rection would be necessary and the orders associated
with the related steps (28, 45 and 48) will be consistent
with the orders of the corresponding situation
({103,204,300,400}) of Grafcet, ie. ORD=
{RIGHT, EM, MOVE} and PROH = .

In the same way, the specified constraints are
respected throughout all the evolutions and the states
of OPT.

The two cases above illustrate the corrections
induced by the occurrence order of uncontrollable
plant events. Although the intuitive explanation of
the corrections seems to be rather simple, a straight-
forward application of common sense analysis
methods cannot be easily used to highlight and correct
the corresponding errors. In the first case, due to plant
reactions, only one among the 16 situations of Grafcet
which activates the actions DOWN and TURN ac
can occur in real execution, requiring the interdiction
of the simultaneous execution of these two actions and
the rescheduling of their execution. This observation
cannot be captured by intuitive analysis of the Grafcet
model. Such an analysis is far more complicated in
the second case which requires the identification of
all the situations in which the orders RIGHT and UP
are performed simultaneously. In fact, common sense
analysis in this case requires the formulation of some
hypothesis about the occurrence order of the plant
events high and p_inter because p_inter is not involved
in any of the receptivities of the original Grafcet.
Finally, intuitive analysis cannot guarantee the
optimality of the corrections for complex examples,
whereas the approach presented above provides an
optimal rescheduling and correction of Grafcet
actions to satisfy the imposed constraints which can
be applied in a gradual manner.

4.2.4. Implementation and Complexity Issues

Formal synthesis approaches are not common prac-
tice to industrial users because they are difficult to
understand. To alleviate this problem, the synthesis
approach presented in this paper is based on the use of

V. Carré-Ménétrier and J. Zaytoon

Grafcet, which is widely used in industry for the spe-
cification of logic controllers. Furthermore, the cor-
rections induced by the proposed synthesis framework
can be traced back to the Grafcet specification model
in real execution so as to highlight and explain the
corrections and the prohibitions induced by the
synthesis framework. This use of Grafcet both for
control specification and for highlighting the synthesis
results aims at reinforcing the confidence of industrial
users in formal synthesis approaches.

An implementation architecture and a feasibility
prototype, built using C++, have been developed [35]
to execute OPT and update the state of Grafcet cor-
respondingly so as to visualise the execution of the
control model and to highlight the prohibitions
induced by the synthesis framework. This imple-
mentation (Fig. 26) is based on the use of a state/
transition/action table, an input/output driver, a
sequencer, and a module for update and animation of
Grafcet. Each entry of the table corresponds to a state
of the correct controller, OPT. It includes the fol-
lowing elements related to the state: the state index, a
list of active Grafcet steps, the actions to perform and
to prohibit; and the output transitions given in terms
of the firing event, the associated logical expression,
and the destination state. The input/output driver
transmits the actions of the current situation to the
plant and receives the plant inputs. An interrupt-
driven architecture is used to guarantee reactivity;
when a plant-originated event occurs, the sequencer
goes through the events corresponding to the current
state of the table to determine the interrupt source.
The next state associated with this event becomes the
new current state, and the actions to be performed
are sent to the input/output driver. The update
module provides a synthetic image of control execu-
tion, and allows the designer to easily recognise the
control tasks to be maintained, restricted or inhibited
by the synthesis approach.

This approach has been applied to a drilling
machine [30], a robotic transfer system [22] as well as a
number of educational test-beds and prototypes for
which the size of the synthesised automaton, OPT,
did not exceed 10000 states and 20000 transitions.

information about current state

animated Grafcet

State/transition/action

Update of

and visualisation

table consultation

information about consultation
current state

interrupt

updating

| -
Grafcet Visualisation,

of corrections

correction

Sequencer

Input/output outputs =| Plant in
. < !
activation and deactivation of outputs driver - events execution

Fig. 26. Architecture of control implementation.
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However, more complex systems require a very large
memory, and, therefore, an alternative online syn-
thesis approach has been proposed [22] to reduce the
size of such an exhaustive model. The online synthesis
proceeds by successive calculations of a partial control
implementation model for a temporal window involv-
ing a number of anticipated future evolutions. This
approach is based on the use of a partial intersection
to generate the behaviour that is common to ASS and
S for a number, N, of future evolutions. The blocking
situations and evolutions of this behaviour are next
removed by applying the reduction step which results
in a partial automaton representing the anticipated
control implementation model. As soon as an event
occurs in the plant, partial intersection and reduction
are executed again for one more step to update the
partial control automaton.

The size of the automaton OPT is very small in
this case compared to an exhaustive control imple-
mentation model. In fact, the worst-case-size of the
automaton generated by the offline synthesis
approach is proportional to |ASS| x [S| x 2%/, where
|ASS| and |S| represent the number of states of
the automaton ASS and S, respectively, whereas
the worst-case-size of the automaton generated in the
online case is proportional to (|X,|/2)". Hence, for
complex systems involving a large number of states
and of inputs and outputs, the economy in the size of
memory is significant. However, the partial intersec-
tion of the online synthesis approach only considers
a limited temporal evolution window for the system.
As a consequence the blocking situations which may
arise beyond the current window cannot be avoided
when the next partial intersections are calculated. If
the size N of the window is increased, these blocking
situations may be avoided, or at least be detected early
enough to anticipate the required corrective actions.
The choice of N should, therefore, be a compromise
between the risk of deadlock and the size of the
memory required to implement the partial optimal
control automaton. Our current work, therefore, aims
at implementing heuristics to choose the pertinent
value for the number of required evolutions in the
online case in such a way as to avoid deadlocks and to
guarantee a maximum “acceptable” size of the partial
state/transitions/actions table.

5. Conclusion

This paper has discussed the behavioural issues rela-
ted to Grafcet, to emphasise the necessity of modelling
the control plant in view of identifying the correct
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behaviour of Grafcet. Formal algorithms are also
proposed for the synthesis of a correct controller
implementation starting from high-level specifications
given in Grafcet. The resulting controller represents
the execution motor for Grafcet specifications, subject
to a number of safety and liveness constraints. The
proposed synthesis algorithm is based on the use of
the supervisory control theory and automata to model
the plant, whereas the behaviour of Grafcet is given in
terms of the automaton of its reachable situations.

Current research is directed at enhancing the
practicability of the proposed formal framework by
proposing a dedicated assistance methodology for the
modelling of the plant, and improving the perfor-
mance of the developed software prototype. Another
study is currently being undertaken to identify the
complementary aspects between the fully automatic
control synthesis framework proposed in this paper,
and the semi-automatic Grafcet validation framework
developed by the authors [28] in terms of the algor-
ithmic complexity, and the type of properties and
constraints to be considered. The aim of this study is
to develop an assistance tool providing the control
designer with pertinent information about the way of
combining the validation and the synthesis framework
on the basis of the structure of the models used for
a given control system as well as the type of specified
properties and constraints.
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ANNEX: Supervisory Synthesis
Algorithm of Kumar

Among the different algorithms proposed for the
synthesis procedure, the algorithm of Kumar [28] has
been used to generate the supervisor. This algorithm,
which is given in Fig. A, receives as inputs the auto-
maton G= (X, P, 4, po) representing the global model
of the plant, the automaton T= (X, X, &, x,) repre-
senting the global model of the constraints, and the
initial structure of the resulting supervisor automaton,
given by (2, {go}, A, qo). A state g of S is characterised
by the couple (state of G, state of T'); hence,
4o = (po, Xo)-

The algorithm is based on four steps. The first
step gives the synchronous product of the automaton
of the process and the automaton representing the
constraints. The second step aims at identifying
the forbidden states of the synchronous product.
A forbidden state is a state for which there exists
a non-controllable event, o, accepted in the corre-
sponding state of the plant, ¢, and unauthorised in
the corresponding state of the constraints, x.
Following the definition of the controllability, if
the synchronous product does not include a for-
bidden state then it is controllable and can, thereby,
be used as a supervisor. The third step is therefore
used to identify the weakly forbidden states, i.e.
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1- V(p, x)eQ: If 3 (p, 0, p)edand 3 (x, 6, x)e§ ThenA=A U { ((p,x), 0, (P, X)) };
2-Yq=(p, x) € Q: qis forbidden if (3 (p, 0, p')e 0 / 6€X,, /\z(x, 0,xe&)
3-1If (,Z q' € Q) such that q' is forbidden,

Then End
Else Vqe Q: q is weakly forbidden if (q is not forbidden and Ise £* / (Voes, ce X)) A (q° = A(q,s) is forbidden) ),

4- Vqe Q such that q is forbidden or weakly forbidden Do:
- V(Cl'a o, q)e As A=A- { (q's G, q') }
- V(q’ G, q')e As A=A- { (q: G, q') }
-Q=Q-{q}
Vq’eQ such that/Zf (seX*/ q=A(qe, 8)): Q=Q—{q'}

Fig. A. Supervisory synthesis algorithm according to [31].

the states from which there exists a sequence of non- forbidden states as well as their input and output
controllable events leading to a forbidden state; ¥* transitions. Then the states, which are unreachable
denotes the set of all finite strings of elements of the set ~ from the initial state, are trimmed from the synchro-
3. The last step removes the forbidden and weakly = nous product.



