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This review deals with beneficial bacteria, with a focus on lactobacilli, propionibacteria,
and bifidobacteria. As being recognized as beneficial bacteria, they are consumed
as probiotics in various food products. Some may also be used as starters in
food fermentation. In either case, these bacteria may be exposed to various
environmental stresses during industrial production steps, including drying and storage,
and during the digestion process. In accordance with their adaptation to harsh
environmental conditions, they possess adaptation mechanisms, which can be induced
by pretreatments. Adaptive mechanisms include accumulation of compatible solutes
and of energy storage compounds, which can be largely modulated by the culture
conditions. They also include the regulation of energy production pathways, as well
as the modulation of the cell envelop, i.e., membrane, cell wall, surface layers, and
exopolysaccharides. They finally lead to the overexpression of molecular chaperones
and of stress-responsive proteases. Triggering these adaptive mechanisms can improve
the resistance of beneficial bacteria toward technological and digestive stresses.
This opens new perspectives for the improvement of industrial processes efficiency
with regard to the survival of beneficial bacteria. However, this bibliographical survey
evidenced that adaptive responses are strain-dependent, so that growth and adaptation
should be optimized case-by-case.

Keywords: stress, probiotic, adaptation, drying, osmo regulation

INTRODUCTION

Bacteria may constitute useful fermentation starters, healing probiotics, or both for the so-called
“2-in-1” bacteria. These beneficial bacteria, within fermented foods as starter or within functional
foods supplements as probiotic are ingested in high amount and it is a means to modulate the
activity of the human gut microbiota (Collins and Gibson, 1999; Parvez et al., 2006; Moens et al.,
2017). The ingested bacteria are essential for normal development of the immune system (Marco
et al., 2017). Indeed, gut microbiota dysbiosis is increasingly correlated to various diseases, such
as inflammatory bowel diseases and obesity, which are on the rise and constitute a public health
problem linked to the Western diet (David et al., 2014; Plé et al., 2016). In order to decrease
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the consequences of such health problems, probiotics and
fermented foods could be part of the solution. Indeed,
the size of the probiotic market exceeded US$42 billion
in 2016 and is expected to exceed US$64 billion in 2022
(Marketsandmarkets.com, 2017). Probiotics are also increasingly
incorporated into non-fermented functional foods such as infant
formula, ice creams, and cereal bars (Homayouni et al., 2008;
Braegger et al., 2011; Bampi et al., 2016). These products
constitute a growing market as well. The starter culture market,
worth US$1.0 billion by 2018, is projected to grow at a CAGR of
5.6% (Marketsandmarkets.com, 2014).

Starters and probiotics are usually dried to produce
easy-to-use ingredients that are stable and flexible for different
applications like food, feed, and pharmaceutical products.
At the industrial scale, two types of drying processes are
implemented: freeze-drying and spray-drying. In addition,
drying is a way to keep bacteria alive on the long term at
ambient temperature and to facilitate their storage and transport.
At the industrial level, the use of frozen starter culture has
the disadvantage of high energy costs during transportation
and storage. Therefore, frozen starters go hand-in-hand with
high operating costs (Santivarangkna et al., 2007). During
powder production, storage, and digestion, bacteria of interest
may encounter multiple stresses, which may affect its survival
and its beneficial effects. Indeed, they must survive during
powder production and storage in a first time, and in a
second time, during fermentation (starter) and digestion
(probiotics) (Picot and Lacroix, 2004). A stress is defined as
“any change in the genome, proteome or environment that
imposes either reduced growth or survival potential. Such
changes lead to attempts by a cell to restore a pattern of
metabolism that either fits it for survival or faster growth”
(Booth, 2002). Different pretreatments can induce an enhanced
tolerance to various stresses, which may occur during bacterial
powders production and consumption. In this paper, we
reviewed stresses encountered during drying processes, storage,
and digestion. Then, we summarized the main molecular
adaptation mechanisms induced by different pretreatments
described in propionibacteria, lactobacilli, and bifidobacteria,
recognized as beneficial bacteria. We then describe the impact
of the adaptation mechanisms induced by pretreatments on
tolerance toward technological and digestive stresses. These
data should contribute to making an informed choice of
the best treatments for reinforcing bacteria during drying,
storage, and digestion.

BENEFICIAL EFFECTS OF
PROPIONIBACTERIA, BIFIDOBACTERIA
AND LACTOBACILLI

General Features of Propionibacteria,
Bifidobacteria, and Lactobacilli
This review is focused in propionibacteria, lactobacilli,
and bifidobacteria, which are generally recognized as safe
(GRAS) (Avalljaaskelainen and Palva, 2005; Picard et al., 2005;

Cousin et al., 2010). They constitute, to the best of our
knowledge, the main bacterial genera considered as starter
or/ and as probiotics.

Propionibacteria and bifidobacteria both belong to the
Actinobacteria class, which comprises non-sporulating
Gram-positive bacteria with a high G+C content (Cousin et al.,
2010). Propionibacteria are currently described as non-motile
pleomorphic rods. Their optimal growth temperature is 30◦C
with a pH of 7.0. They are anaerobic aerotolerant, and many of
them are catalase-positive. Propionibacteria can use a wide range
of carbon sources such as organic acids (lactate), carbohydrates
(lactose, glucose, galactose, and fructose), and alcohol (glycerol)
(Cousin et al., 2010). They are hetero-fermentative bacteria and
their favorite substrate is lactate. For a consumption of 3 moles
of lactate, propionibacteria produce 1 mole of acetate, 2 moles
of propionate, and 1 mole of carbon dioxide, according to the
Fitz equation (Gagnaire et al., 2015). Bifidobacteria require
cysteine in their growth medium, consume carbohydrates, and
produce lactate and acetate at molar ratio of 2:3, respectively,
thus decreasing the pH of the culture medium. Their optimal
growth temperature is 37◦C (Hsu et al., 2007). Bifidobacteria
are bifid or multiple-branched rods, and are strictly anaerobic
and catalase-negative. They are naturally present in the
gastrointestinal tract and vagina of animals (Schell et al., 2002;
Savijoki et al., 2005; De Dea Lindner et al., 2007).

Lactobacilli are Gram-positive, firmicute bacteria with a low
G+C content. Their natural habitat includes the digestive or
reproductive tract of animals, raw milk, decomposing plants,
and fermented products. They are anaerobic, non-sporuling, and
facultative heterofermentative. Lactobacilli require rich growth
media that contains carbohydrates, amino acids, peptides, fatty
acid esters, salts, nucleic acid derivatives, and vitamins (Chervaux
et al., 2000; Elli et al., 2000). Lactobacilli optimal growth
temperature is generally between 30 and 40◦C (Hammes and
Hertel, 2015). Like bifidobacteria, lactobacilli use carbohydrates
(as carbon and energy source) and produce lactic acid, therefore
inducing a significant decrease in the pH of the medium.
Among lactic acid bacteria, members of the genera Streptococcus,
Lactococcus, Leuconostoc, and Pediococcus are also widely used as
starters. The majority of available literature on probiotic effects
and/or studies deals with lactobacilli, the largest genus within
the group of lactic acid bacteria. In addition to lactobacilli, this
review also deals with propionibacteria and bifidobacteria, used
as probiotics and/or as starters.

Potential of Propionibacteria,
Bifidobacteria, and Lactobacilli as
Probiotics
Probiotics are defined as “live microorganisms that, when
administered in adequate amounts, confer a health benefit on
the host” (FAO/WHO, 2001). Potential probiotics can be isolated
from many sources (Mills et al., 2011). A minimum of 107

live probiotic bacterial cells per gram or milliliter of product at
the time of consumption is recommended by the International
Dairy Federation (IDF) (Huang et al., 2017). Since these bacteria
are included in probiotic preparations, the amount of live
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bacteria in these latter (tablets or capsules) has to be optimized
(Gagnaire et al., 2015; Huang et al., 2017), as does their viability
during digestion (Kailasapathy and Chin, 2000; Rabah et al.,
2018). Probiotic bacteria can enhance or preserve health, in
strain-dependent manner among probiotic species (Lebeer et al.,
2008; Le Maréchal et al., 2015; Plé et al., 2016).

As mentioned previously, the consumption of probiotics
modulates the gut microbiota, which is a pivotal effect. Indeed,
the presence of bifidobacteria in the intestine is very important,
especially during the first years of life (De Dea Lindner
et al., 2007), when they represent a majority of the intestinal
microbiota. This part decreases with time over a lifetime
(Sánchez et al., 2013).

The probiotic effects include also immunomodulation,
described in propionibacteria, bifidobacteria, and lactobacilli,
which prevent and help to treat various immunes diseases as
inflammatory bowel diseases or allergy (Picard et al., 2005;
Steed et al., 2010; DuPont et al., 2014; Rong et al., 2015; Saez-
Lara et al., 2015). Indeed, this early colonization of the gut by
bifidobacteria and propionibacteria seems to prevent necrotizing
enterocolitis (Colliou et al., 2017; Young et al., 2017). In addition,
the manipulation of the gut microbiota with probiotics has
been considered as a possible manner to prevent and treat
obesity and cancers (Saez-Lara et al., 2015; Dasari et al., 2017;
Rabah et al., 2017; Brusaferro et al., 2018). Propionibacterium
freudenreichii inhibits pathogens such as Salmonella Heidelberg
(Nair FIM 2018) and meticillin-resistant Staphylococcus aureus
(Sikorska and Smoragiewicz, 2013). Lactobacillus amylovorus
inhibits Escherichia coli adhesion to intestinal cells (Hynönen
et al., 2014) while Lactobacillus plantarum inhibits E. coli 0157:H7
adhesion to collagen (Yadav et al., 2013). Selected strains of
bifidobacteria were reported to inhibit growth and toxicity of
Clostridium difficile (Valdés-Varela et al., 2016), or to affect
the virulence of Listeria monocytogenes in vitro (Rios-Covian
et al., 2018). They may protect against gastrointestinal disorders
(Sanchez et al., 2007) and prevent diarrhea through their effects
on the immune system and/or through enhanced resistance
to colonization by pathogens, as C. difficile (Cantero et al.,
2018). Therefore, alleviation of lactose intolerance symptoms is
demonstrated by lactobacilli, which provide the missing enzyme
for lactose-intolerant people and, therefore, are complementary
to a host that is deficient in β-galactosidase (Levri et al., 2005;
Pakdaman et al., 2015). The preclinical studies are promising
and data highlight the strain-dependent aspect of these effects
among propionibacteria, bifidobacteria, and lactobacilli species.
However, more investigations are needed to assess the probiotic
effectiveness at clinical level and to determine the precise
molecular mechanisms involved (Khalesi et al., 2018).

The molecular mechanisms identified in probiotics effects
seem to be similar among propionibacteria, lactobacillia, and
bifidobacteria species. They include the production of secreted
metabolites as short fatty acids (Lan et al., 2008; LeBlanc
et al., 2017; Rabah et al., 2017), and the presence of key
surface components (Konstantinov et al., 2008; Foligné et al.,
2013; Sengupta et al., 2013; Taverniti et al., 2013; Le Maréchal
et al., 2015; Lightfoot et al., 2015; Sarkar and Mandal, 2016;
Louis and Flint, 2017; do Carmo et al., 2018). In the dairy

propionibacterium P. freudenreichii, the immunomodulatory
properties are linked to the ability of selected strains to
induce the release of the regulatory IL-10 by immune cells
(Foligne et al., 2010). This property is mediated by surface
proteins of the S-layer family (Le Maréchal et al., 2015; Deutsch
et al., 2017). Accordingly, propionibacteria belonging to the
human gut microbiota protect new-borns from necrotizing
enterocolitis via Th17 cell regulation (Colliou et al., 2017).
This property is also dependent on proteins of the surface
layer and induces the generation of bacteria-specific Th17 cells,
while maintaining IL-10+ regulatory T cells (Ge et al., 2019).
In Lactobacillus acidophilus, immunomodulatory properties are
dependent on the surface-layer protein SlpA, it occurs via
binding to DC-SIGN receptors on dendritic cells and inducing
a concentration-dependent production of IL-10 (Konstantinov
et al., 2008). This binding plays a pivotal role in L. acidophilus
ability to mitigate induced colitis (Lightfoot et al., 2015).
By contrast, in the probiotic Bifidobacterium bifidum, such a
protective ability, as well as the immunomodulatory properties,
are linked to the presence of cell surface polysaccharides.
These last also act via regulatory dendritic cells, but through
a partially Toll-like receptor 2-mediated mechanism, inducing
the generation of Foxp3+ regulatory T cells (Verma et al.,
2018). The strain-dependent nature of the probiotics beneficial
effects is closely correlated to the strain-dependent nature
of the ability of probiotics to express or produce these
probiotics effectors.

Potential of Propionibacteria,
Bifidobacteria, and Lactobacilli as
Starters
Fermented foods have been produced and consumed worldwide
for centuries (Ebner et al., 2014; Marco et al., 2017). Fermented
products can be produced from dairy, meat, or plant matrices and
then used to produce a large diversity of fermented foods. As a
result, there is a multitude of food matrix-starter combinations.
Some fermentations can be spontaneous, but many products
require inoculation by starters (Rong et al., 2015; Walsh et al.,
2016; Marco et al., 2017). To produce fermented foods, a large
number of bacteria may be used. This number was shown
to be stable over time and between countries (Fortina et al.,
1998; De Dea Lindner et al., 2007), although the diversity of
fermented foods tends to decrease because of industrialization
(Marco et al., 2017).

Lactobacilli are extensively used as starters in the fermentation
of dairy products, e.g., L. acidophilus in cheese, Lactobacillus
delbrueckii in yogurt, and Lactobacillus kefiranofaciens in kefir.
L. acidophilus is also used in fermented plant products such
as kimchi (Meira et al., 2015; Marco et al., 2017; Wang et al.,
2018), that also provides other lactobacilli such as Lactobacillus
sakei (Kwon et al., 2018), L. plantarum (Lim et al., 2018), and
Lactobacillus fermentum (Yoo et al., 2017). Propionibacteria
are widely used as ripening starters in the manufacture of
Swiss-type cheeses (Thierry et al., 2011) and also contribute to
the fermentation of vegetable products (Yu et al., 2015). Although
not really considered as fermentation starters, bifidobacteria can
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be added before the fermentation process, with an impact on the
final organoleptic properties of the product (Kailasapathy, 2006).

During fermentation, bacteria modify the matrices and
contribute to the final flavor, texture, nutrition, and organoleptic
qualities (Marco et al., 2017). They offer an increased availability
of bioactive molecules, vitamins, and other constituents due
to the process of fermentation. Thus, fermentation leads to
increased digestibility of dairy products and plant matrices
(Marco et al., 2017; Moens et al., 2017). Fermented dairy products
have a low lactose content. Indeed, this carbohydrate is digested
by the starter (Guarner et al., 2005), like other oligosaccharides
(Sánchez et al., 2013; Moens et al., 2017). Furthermore, starters
improve food storage and preservation, and may thus make it
possible to decrease the use of additives (Mende et al., 2016).

Traditional fermented foods products can have a probiotic
effect per se (Levri et al., 2005). Combining selected strains
of probiotic bacteria with two-in-one abilities (both efficient
starters and probiotics) leads to new functional fermented foods
(Dimitrellou et al., 2016). Probiotics can be added to foods like
in the case of bifidobacteria in yogurt (Picot and Lacroix, 2004),
but these type of processes require adequate technologies to keep
bacteria alive (Racioppo et al., 2017). The use of probiotics in
food is growing, but mechanisms used by bacteria to exert health
benefits are not fully elucidated (Savijoki et al., 2005). The main
troubles targeted are antibiotic-associated diarrhea, traveler’s
diarrhea, pediatric diarrhea, inflammatory bowel disease, and
irritable bowel disease. Although there is a limited number
of clinical studies with fermented foods (Marco et al., 2017),
preclinical studies show promising positive effects (Chen et al.,
2014; Gao et al., 2015; Kato-Kataoka et al., 2016; Plé et al., 2016).
All the above-described probiotic effects should be considered
as potential effects. Indeed, the European Food Safety Authority
(EFSA) requires substantial clinical proof before allowing a
functional claim.

For all probiotics and starters, survival during industrial
production processes, storage step, and supply chain is a
prerequisite. For in situ probiotic efficacy, effects that rely
on the local production of beneficial metabolites such as
short-chain fatty acids or vitamins require live bacteria
capable of surviving digestive tract constraints. In contrast,
for effects that rely on cellular fractions such as cell wall
immunomodulating compounds, viability may be less crucial.
Anyway, the probiotic bacterium should adapt industrial
constraints to keep alive and then used.

STRESS ENCOUNTERED DURING
INDUSTRIAL PRODUCTION AND
DIGESTION PROCESSES

Industrial Drying Process and Storage
Freeze-Drying Process
Frozen starter culture is benchmark, as a high cooling rate
and very low temperature (−80◦C) permit to increase bacteria
viability. However, the use of frozen starter culture at the
industrial level has the disadvantage of requiring negative

temperatures during transportation and storage. Therefore,
frozen starters go hand-in-hand with high operating costs
(Santivarangkna et al., 2007). Freeze-drying is the most
conventional process, i.e., the most frequently used with regard
to its efficiency. The drying process of bacteria is conducted
by sublimation, with the advantage of providing high bacterial
viability (Santivarangkna et al., 2007). However, this process
is discontinuous and expensive. Moreover, the ice crystals
produced during freezing in the intracellular and extracellular
compartments may be responsible for cell damage: compromised
cellular integrity, broken DNA strands, altered transcription
and replication, and reduced membrane fluidity. Freeze-drying
favors also the appearance of holes in the cell membrane, which
may cause cell death if another stress occurs (Carvalho et al.,
2004; Giulio et al., 2005). During the freezing step, the cooling
rate is an important factor for maintaining bacterial viability.
In addition, bacteria suffer from osmotic stress (decrease in
surrounding water activity) during freeze-drying, that represents
a common constraint encountered during the drying of bacteria.
The composition of drying media is highly studied in the
aim of improving bacterial viability during the process. As an
example, skim milk can be used as a drying matrix since it
has the advantage of stabilizing the cell membrane constituents
and contains proteins that build a protective coating for the
bacteria (Carvalho et al., 2004). Protective agents can be added
to the drying matrix in order to improve bacterial viability
during storage. These molecules need to have an amino group,
a secondary alcohol group, or both (Carvalho et al., 2004).
Suitable protective agents should provide cryoprotection for the
bacteria during freezing, be easily dried, and improve drying
matrix stability and rehydration (Zhao and Zhang, 2005). Several
sugars are used to protect bacteria, e.g., glucose, fructose, lactose,
and trehalose. Sugar alcohols like sorbitol and inositol can also
be used. Monosodium glutamate can stabilize protein structure.
Antioxidants such as ascorbate can be also added in order to
protect membrane lipids against damage caused by the freeze-
drying process (Carvalho et al., 2004; Kurtmann et al., 2009). The
efficiency of these different agents to limit freeze-drying stresses
is bacteria dependent (Zhao and Zhang, 2005).

Spray-Drying Process
Spray-drying decreases the cost of water removal by a factor
of six, in comparison to freeze-drying (Paéz et al., 2012), while
producing powder with a yield four to seven times higher than
that of freeze-drying (Golowczyc et al., 2011; Huang et al., 2016a).
Spray-drying has the advantage of being a continuous process,
drying and encapsulating bacteria occurred in the same time
(Peighambardoust et al., 2011). This process constitutes thus an
emerging alternative to freeze-drying (Huang et al., 2016b).

Spray-drying can be divided into two steps: an initial constant
rate evaporation stage, which is at the wet-bulb temperature,
and the falling rate evaporation stage, which leads to product
temperature increases toward the outlet air temperature at the
end of drying (Huang et al., 2017). The time–temperature
combination is an important factor that determines the extent
of cell death, in particular depending on the outlet temperature
value (Santivarangkna et al., 2007). The spray-drying process
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usually leads to high temperatures over a short time. Heat stress
is a commonly encountered stress, affecting bacterial viability
during spray-drying. Cell death is due to the destruction of
more than one critical component (Peighambardoust et al.,
2011), including major damage to membrane lipids and/or
aggregation of membrane protein (Mills et al., 2011). Indeed,
the membrane bilayer structure is thermodynamically unstable
(Peighambardoust et al., 2011) so that damage caused to the
membrane is the first cause of viability losses (Simpson et al.,
2005). Other damage may occur inside the cell during drying.
It affects DNA (Simpson et al., 2005), intracellular proteins, and
ribosomes (Mills et al., 2011). RNAs may also be impaired as a
result of the escape of Mg2+ (Huang et al., 2017). Indeed, the use
of lower temperatures during spray-drying is possible to enhance
viability, but the high water activity (aw) obtained in the powder
limits its stability during storage. Moreover, bacteria suffer from
oxidative and osmotic stresses that are coupled to heat stress
during spray-drying (Huang et al., 2017), first, from the drying
air and, second, because of the concomitant increase in osmotic
pressure with the loss of water (Desmond et al., 2001).

Survival rate during spray-drying is species and strain-
dependent, which is related to species- and strain-dependent heat
tolerance ability (Peighambardoust et al., 2011). P. freudenreichii
has a better chance to survive than Lactobacillus casei (Huang
et al., 2016a), and thermotolerant S. thermophilus survives better
than lactobacilli (L. delbrueckii ssp bulgaricus and L. acidophilus)
(Huang et al., 2017). One of the most important factors for
spray-drying survival is the intrinsic resistance to heat that is
species- and strain-dependent and determine the survival of the
bacteria during the process. The difference in heat resistance is
more important when the heat challenge increases (Paéz et al.,
2012). The thermic intrinsic sensitivity of a strain is essential to
determine survival (Simpson et al., 2005) and can be optimized
to enhance viability (Santivarangkna et al., 2007). In contrast, the
oxygen tolerance of bifidobacteria is not correlated with a good
viability during drying (Simpson et al., 2005).

Statistical models were developed to predict survival during
spray-drying based on the hypothesis that bacterial death
during spray-drying followed a probability distribution (Perdana
et al., 2014). However, this prediction was not very precise
because bacteria can be pre-adapted to technological stress,
and because the drying medium may play a protective role.
Viability can be improved by adding either trehalose, which
stabilizes membranes and proteins and decreases membrane
phase transition temperatures, or gelatin, gum Arabic, or fruit
juice (Huang et al., 2017). It is thus possible to modulate
the drying media composition to enhance bacterial survival
(Sollohub and Cal, 2010). However, adding protective agents to
the drying medium will not necessarily lead to optimal bacteria
survival during storage (Santivarangkna et al., 2007).

Storage
During storage, bacterial viability generally remains higher
for freeze-dried powders compared to spray-dried powders
(Santivarangkna et al., 2007), which may be due to heat stress
(Huang et al., 2017). Viability indeed decreases during storage,
particularly at ambient temperature (Simpson et al., 2005).

During storage, the water activity of the dry product, the glass
transition temperature, the environmental relative humidity,
temperature, and light are important factors for maintaining
cell viability (Santivarangkna et al., 2007; Huang et al., 2017).
For freeze-dried powders, stability is greater at low temperatures
and in oxygen-free environments (Santivarangkna et al., 2007).
Viability is inversely correlated to temperature (Paéz et al., 2012),
but industry generally looks for stable dry cultures at ambient
temperature for marketing purposes. The presence of oxygen
decreases viability because of lipid oxidation. Some authors
therefore attempted to add antioxidants to decrease the impact of
oxidative stress, but the results were not convincing for long-term
storage (Santivarangkna et al., 2007).

Digestion
Some probiotic effects require live bacteria in sufficient amounts
in the large intestine. Probiotic bacteria have to pass the stomach,
which seems to be the most difficult part of the gastrointestinal
tract to cross during digestion. Bacteria have to survive the
acid conditions and the presence of bile salts (Mainville et al.,
2005). The harsh conditions of the gastrointestinal tract also
include variations in the redox potential, and the presence of
hydrolytic enzymes such as lysozyme, of various proteases and
lytic compounds found in pancreatin, and of bile salts. Acid
stress is a major limit to fermentation by beneficial bacteria.
A decrease in the pH is generally the reason why fermentation
stops. Probiotics such as bifidobacteria are also added to acidic
yogurt-type products and then stored at 4◦C before consumption.
Finally, all the beneficial bacteria face severe acid stress during
the first step of digestion (i.e., stomach), which limits the in situ
activity. Viability in the intestinal compartment is specie and
strain-dependent (Picot and Lacroix, 2004; Alcantara and Zuniga,
2012). For example, L. casei and other lactobacilli have low pH
tolerance (Broadbent et al., 2010), although it is still higher
than that of some bifidobacteria (except for Bifidobacterium
infantis). The capacity to resist bile salts is strain-dependent, and
probiotic strains can thus be selected for their tolerance to bile
salts. Bile salts act as detergents (Alcantara and Zuniga, 2012;
Papadimitriou et al., 2016) and cause cell damage and cytotoxicity
(Arnold et al., 2018). Molecular mechanisms leading to bile
adaptation were evidenced in dairy propionibacteria (Leverrier
AEM2003, arch 2004), in lactobacilli (Ruiz FIM 2013, Goh
MolCelFact 2014, Vinusha 2018), and in probiotic bifidobacteria
(Ruiz FIM 2013, Sanchez AEM 2007).

Lactobacilli and bifidobacteria have bile salts hydrolase (bsh)
genes, which can have a positive or negative impact on bile
salts tolerance, so the selection requires a careful examination
of microbial physiology (Arnold et al., 2018). Since osmolarity is
constantly changing in the gastrointestinal tract, bacteria survival
may be affected byf osmotic stress (De Dea Lindner et al., 2007).

MECHANISMS OF STRESS ADAPTATION
TRIGGERED BY PRETREATEMENTS

Beneficial bacteria used as technological starters will have
to face technological stresses such as heat, cold, oxidative,
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and osmotic stresses. Probiotic bacteria should also survive
digestive stress, in addition to the above-mentioned stresses.
Digestive stresses include acid, bile salts, and osmotic constraints.
The main adaptive mechanisms triggered by bacteria to deal
with such damage are DNA repair, metabolic pathways of
lipid modification, chaperones and proteases, accumulation
of compatible solutes, and reactive oxygen specices (ROS)
detoxification (Desmond et al., 2001; Sheehan et al., 2006; Li et al.,
2009). The medium culture choice is crucial since its composition
may induce different adaptation mechanisms, as detailed below.
General adaptive mechanisms induced by different pretreatments
of propionibacteria, bifidobacteria, and lactobacilli are presented
in Figure 1. Adaptive mechanisms are induced by specific
pretreatments reported in Table 1.

Accumulation of Compatible Solute and
Energy Storage
A compatible solute is a small organic molecule that is polar,
highly soluble in water, and that has a neutral isoelectric point.
It behaves like an osmolyte, allowing a live cell to adapt
to an osmotic stress (Csonka, 1989). During osmotic stress,
bacteria accumulate compatible solutes (Csonka, 1989), either
transported from the external medium, or synthesized de novo,
to restore turgescent pressure and enable cell growth and division

(Csonka and Hanson, 1991). Compatible solutes are unable to
rapidly cross bacterial membranes without the involvement of
a transport system and, for the most part, do not carry an
electrical charge at a neutral pH. Uncharged molecules can be
accumulated at a high concentration without disturbing the
metabolism (Csonka, 1989). There are a limited number of
molecules considered to be compatible solutes, and they can
be divided into two categories: the first one corresponds to
sugars and polyols and the second is composed of alpha and
beta amino acids and their derivatives (Roesser and Müller,
2001). Compatible solutes preserve the conformation of proteins
submitted to osmotic constraint. Generally, compatible solutes
are excluded from the immediate vicinity of the proteins by
an unfavorable interaction between the protein surface and the
compatible solutes. This mechanism is known as “preferential
excluding” (Roesser and Müller, 2001).

Accumulation of Sugar and Polyol
Accumulation of trehalose
The versatile role of trehalose accumulation in stresses adaptation
is schematized in Figure 2. Indeed, trehalose is a stable molecule
(Giulio et al., 2005) which prevents protein aggregation, facilitates
refolding, and protects cells and cellular proteins from damages
caused by oxygen (Cardoso et al., 2004). It is also suggested

FIGURE 1 | Key actors of adaptive mechanisms in bacteria during osmotic, acid, oxidative, heat, cold, and bile salts adaptation. General adaptive bacterial
mechanisms during osmotic, acid, oxidative, heat, cold, and bile salts treatment are represented. Peptidoglycan is represented in blue. Membrane lipids under
normal growth are represented in gray. Amounts of saturated (blue), unsaturated (red), and cyclic (yellow) fatty acids are modulated by treatments. S-layer proteins,
which may be involved in adaptation, are represented in yellow and red outside the peptidoglycan. Liptechoic acids, whose length is modulated, are presented in
green. Inducible transmembrane ATPase and osmoprotectant uptake systems are represented in pink and blue, respectively. In the cytoplasm, general stress
proteins are represented by different colors. Colored circles represent different osmoprotectant and energy storage compounds. Crosses on circles mean the
conversion of the molecule. The chromosome is represented in black. The numbers indicate corresponding references in the tables.
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TABLE 1 | Adaptive mechanisms induced by stressing conditions or by modifications of the growth medium in bifidobacteria, propionibacteria, and lactobacilli.

Adaptive mechanism Stress Bacteria References Corresponding
number in the

figures

ABC transporter Heat L.a rhamnosus Prasad et al., 2003 1∗

Arginine accumulation Addition of arginine P.b acidopropionici Guan et al., 2013 2

Glutamate accumulation Addition of glutamate L. sakei Ferreira et al., 2005 3

Glutamate accumulation Osmotic L. plantarum Glaasker et al., 1996; Kets
et al., 1996

4, 5

Glycine betaine accumulation Osmotic P. freudenreichii Huang et al., 2016b 6

Glycine betaine accumulation Osmotic L.c lactis Romeo et al., 2003 7

Glycine betaine accumulation Osmotic L. plantarum Glaasker et al., 1996 5

Glycogen accumulation Addition of carbon
(raffinose and trehalose)

L. acidophilus Goh and Klaenhammer,
2014

8

Glycogen accumulation Cold P. freudenreichii Dalmasso et al., 2012b 7

Glycogen accumulation Osmotic P. freudenreichii Huang et al., 2016b 6

PolyP accumulation Addition of
polyphosphate

Lactobacillus Alcantara et al., 2014 8

PolyP accumulation Cold P. freudenreichii Dalmasso et al., 2012a 9

PolyP accumulation Osmotic P. freudenreichii Huang et al., 2016b 6

Trehalose accumulation Acid P. freudenreichii Cardoso et al., 2007 10

Trehalose accumulation Cold P. freudenreichii Dalmasso et al., 2012a,b 9, 7

Trehalose accumulation Osmotic P. freudenreichii Cardoso et al., 2004;
Huang et al., 2016b

11,6

Trehalose accumulation Oxydative P. freudenreichii Cardoso et al., 2007 10

F0F1-ATPase upregulated Acid B.d longum Sanchez et al., 2007 12

F0F1-ATPase upregulated Acid L. rhamnosus Corcoran et al., 2005 13

F0F1-ATPase upregulated Acid P. acidopropionici Guan et al., 2013 2

F0F1-ATPase upregulated Addition of glucose L. rhamnosus Corcoran et al., 2005 13

F0F1-ATPase upregulated Bile salt B. animalis Sanchez et al., 2006 14

F0F1-ATPase upregulated Increase of NAD/NADH P. acidopropionici Guan et al., 2013 2

L-lactate deshydrogenase downregulated Acid L. rhamnosus Koponen et al., 2012 15

Arginine conversion Acid L. reuteri Rollan et al., 2003; Teixeira
et al., 2014

16, 17

Arginine conversion Acid P. acidopropionici Guan et al., 2013 2

Arginine conversion Heat L. fermentum Vrancken et al., 2009 18

Arginine conversion Osmotic L. fermentum Vrancken et al., 2009 18

Aspartate conversion Acid P. acidopropionici Guan et al., 2013 2

Glutamate conversion Acid L. reuteri Teixeira et al., 2014 17

Glutamate conversion Acid P. acidopropionici Guan et al., 2013 2

Glutamine conversion Acid L. reuteri Koponen et al., 2012 15

Decrease in unsaturated/saturated fatty acid ratio Acid L. casei Broadbent et al., 2010 19

Decrease in unsaturated/saturated fatty acid ratio Acid L. delbrueckii Streit et al., 2008 20

Decrease in unsaturated/saturated fatty acid ratio Osmotic L. casei Machado et al., 2004 21

Increase in unsaturated/saturated fatty acid ratio Bile salts L. reuteri Taranto et al., 2003 22

Increase in unsaturated/saturated fatty acid ratio Cold L. acidophilus Wang et al., 2005 23

Increase in unsaturated/saturated fatty acid ratio Heat L. helveticus Lanciotti et al., 2001 24

Increase in unsaturated/saturated fatty acid ratio Oxidatif L. helveticus Lanciotti et al., 2001 24

Decrease in the number of cycloporpane fatty acids Acid L. delbrueckii Streit et al., 2008 20

Decrease in the number of cycloporpane fatty acids Acid L. bulgaricus Li et al., 2009 23

Increase in the number of cycloporpane fatty acids Acid L. casei Broadbent et al., 2010 19

Increase in the number of cycloporpane fatty acid Acid L. acidophilus Wang et al., 2005 23

Increase in the number of cycloporpane fatty acid Heat L. bulgaricus Li et al., 2009 25

Increase in S-layer production Acid L. acidophilus Khaleghi and Kasra, 2012 26

(Continued)
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TABLE 1 | Continued

Adaptive mechanism Stress Bacteria References Corresponding
number in the

figures

Increase in S-layer production Bile salts L. acidophilus Khaleghi et al., 2010;
Grosu-Tudor et al., 2016

27, 28

Increase in S-layer production Heat L. acidophilus Khaleghi and Kasra, 2012;
Grosu-Tudor et al., 2016

27, 26

Increase in S-layer production Osmotic L. acidophilus Palomino et al., 2013,
2016; Grosu-Tudor et al.,
2016

27, 29, 31

Thinning of the cell wall Osmotic L. casei Piuri et al., 2005 30

Increase in the surface hydrophobicity Osmotic L. casei Machado et al., 2004 21

Reduction of lipotecoïc acid Osmotic L. casei Palomino et al., 2013 29

Increase in the negative charge of the cell wall Osmotic L. casei Palomino et al., 2013 29

Reduction of the lipotecoïc chain Osmotic L. casei Palomino et al., 2013 29

Increase in SlpA/SlpX ratio Osmotic L. acidophilus Palomino et al., 2016 31

Increase in the density and the thickness of the cell wall Addition of
transglutaminase

L. lactis Li et al., 2015 32

ClpB overproduction Acid L. plantarum Bove et al., 2013 33

ClpB overproduction Bile salt P. freudenreichii Leverrier et al., 2004 34

ClpB overporudction Heat B. breve De Dea Lindner et al., 2007 35

ClpB overproduction Heat P. freudenreichii Leverrier et al., 2004 34

ClpB overporudction Osmotic B. breve De Dea Lindner et al., 2007 35

ClpB overproduction Osmotic P. freudenreichii Leverrier et al., 2004;
Huang et al., 2016b

6, 34

ClpC overproduction Acid P. freudenreichii Leverrier et al., 2004 34

ClpE overproduction Acid L. plantarum Bove et al., 2013 33

ClpP overproduction Acid L. plantarum Bove et al., 2013 33

CspA overproduction Cold P. freudenreichii Dalmasso et al., 2012a 9

CspB overproduction Cold P. freudenreichii Dalmasso et al., 2012a 9

CspC overproduction Cold L. plantarum Derzelle et al., 2000 36

CspL overproduction Cold L. plantarum Derzelle et al., 2000 36

CspP overproduction Cold L. plantarum Derzelle et al., 2000 36

DnaJ1 overproduction acid B. longum Jin et al., 2015 37

DnaJ1 overproduction Heat B. breve De Dea Lindner et al., 2007 35

DnaJ1 overproduction Osmotic B. breve De Dea Lindner et al., 2007 35

DnaK overproduction Acid L. delbrueckii Lim et al., 2001; Gouesbet
et al., 2002

38, 39

DnaK overproduction Bile salt P. freudenreichii Leverrier et al., 2004 34

DnaK overproduction Bile salt P. freudenreichii Savijoki et al., 2005 40

Dnak overproduction Heat B. breve De Dea Lindner et al., 2007 35

DnaK overproduction Heat P. freudenreichii Savijoki et al., 2005 40

DnaK overproduction Heat L. rhamnosus Prasad et al., 2003 41

Dnak overproduction Osmotic B. breve De Dea Lindner et al., 2007 35

DnaK overproduction Osmotic P. freudenreichii Leverrier et al., 2004 34

DnaK overproduction Heat P. freudenreichii Leverrier et al., 2004 34

GroEL overproduction Acid L. delbrueckii Lim et al., 2001; Gouesbet
et al., 2002

38, 39

GroEL overproduction Acid P. freudenreichii Jan et al., 2001; Leverrier
et al., 2004

42, 34

GroEL overproduction Bile salt P. freudenreichii Savijoki et al., 2005 40

GroEL overproduction Heat B.breve Ventura et al., 2004 43

GroEL overproduction Heat L. rhamnosus Prasad et al., 2003 41

GroEL overproduction Heat P. freudenreichii Savijoki et al., 2005 40

GroES overproduction Acid L. delbrueckii Lim et al., 2001; Silva et al.,
2005

39, 44

(Continued)
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TABLE 1 | Continued

Adaptive mechanism Stress Bacteria References Corresponding
number in the

figures

GroES overproduction Acid P. freudenreichii Jan et al., 2001 42

GroES overproduction Heat B. breve Ventura et al., 2004 43

GroESL overproduction Heat L. johnsonii Walker et al., 1999 45

grpE overproduction Heat B. breve De Dea Lindner et al., 2007 35

grpE overproduction Osmotic B. breve De Dea Lindner et al., 2007 35

HtrA overproduction Bile salt P. freudenreichii Savijoki et al., 2005 40

HtrA overproduction Heat P. freudenreichii Savijoki et al., 2005 40

SodA overproduction Bile salt P. freudenreichii Leverrier et al., 2004 34

SodA overproduction Heat P. freudenreichii Leverrier et al., 2004 34

SodA overproduction Osmotic P. freudenreichii Leverrier et al., 2004 34

+ indicates an improvement of survival. − indicates a decrease of survival. 0 indicates no effect on survival. ∗ indicates a cited reference. a Lactobacillus. b

Propionibacterium. c Lactococcus. d Bifidobacterium.

FIGURE 2 | Different treatments modulate the key actors of adaptive mechanisms. Colored areas represent the different treatments studied. In yellow: oxidative; in
red: heat; in green: acid; in brown: bile salts; in blue: cold; and in purple: osmotic treatment. The key actors of adaptive mechanisms indicated inside a bubble are
modulated by the corresponding treatment. The numbers indicate corresponding references in the tables.

that trehalose plays a role in the stabilization of cell membranes
(Cardoso et al., 2007). Trehalose can act as an intracellular
carbon stock and is consumed after exhaustion of the external
carbon source (Cardoso et al., 2004). High sugar concentration in
the culture medium promotes trehalose accumulation. Osmotic
stress triggers accumulation of trehalose in P. freudenreichii
and L. casei (Cardoso et al., 2004; Huang et al., 2016b). The
accumulation of compatible solutes is facilitated in a rich medium
as opposed to a chemically defined mediaTrehalose accumulation
by P. freudenreichii may also be induced by other stresses

such as cold (Dalmasso et al., 2012b), oxidative, and acid
stresses (Cardoso et al., 2004, 2007). Moreover, trehalose can
decrease the loss of viability during storage after freeze-drying
(Giulio et al., 2005).

Accumulation of glycerol
Huang et al. (2016b) observed that Glycerol 3–phosphate
dehydrogenase was overexpressed by P. freudenreichii in
hyperconcentrated sweet whey medium. During osmotic
stress, glycerol modification on oligosaccharides is increased.
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This phenomenon induces a possible increase of hydroxyl groups
available number in saccharide molecules and replaces water
molecules for cellular interaction, during osmotic stress, for
example (Prasad et al., 2003).

Accumulation of Amino Acids
In osmotic adaptation, lactobacilli regulate the intracellular
concentration of amino acids like proline and glutamate
(Papadimitriou et al., 2016). Glutamate is a key metabolite which
plays a role in various cell stress responses (Feehily and Karatzas,
2013). This amino acid is crucial for the primary response to
hyper-osmotic shock (Glaasker et al., 1996). The first response to
a high osmolarity is the accumulation of K+ and its counterion,
glutamate. Glutamate has a minor influence on the acid tolerance
capacity of Propionibacterium acidipropionici (Guan et al., 2013).
The addition of glutamate in the growth medium enhanced
glutamate accumulation by L. sakei, even in the absence of
stressing conditions (Ferreira et al., 2005).

An increase in lysine production during stress has been
observed in lactobacilli (Papadimitriou et al., 2016). In
Propionibacterium acidopropionicii, a similar phenomenon
was observed for other amino acids such as arginine and
aspartate, which were accumulated during acid adaptation
(Guan et al., 2013). GABA (decarboxylation of glutamate to
γ-aminobutyrate) is involved in acid tolerance (Bron et al., 2006;
Guan et al., 2013). The lysine degradation pathway is activated
under acidic conditions in L. plantarum (Heunis et al., 2014).

Glycine betaine is known to protect different bacterial species
against high osmolarity and is considered to be the most
effective osmoprotectant (Roesser and Müller, 2001). During
osmotic stress, P. freudenreichii accumulation of glycine betaine
occurs via the OpuABC (or Bus ABC) transporter, which is
osmotically induced (Figure 1) (Huang et al., 2016b). The glycine
betaine transporter OpuABC of Lactococcus lactis was also well
described by Romeo et al. (2003), as well the QacT transporter in
L. plantarum by Glaasker et al. (1998).

Accumulation of Energy Storage Compounds
Accumulation of phosphates
Polyphosphates are not only used for energy storage but they
are also accumulated by P. freudenreichii during cold (Dalmasso
et al., 2012a) and osmotic stresses (Huang et al., 2016b). For
lactobacilli, the accumulation of polyphosphates is dependent on
high phosphate concentration in the growth medium (Alcantara
et al., 2014). Polyphosphates act as chaperones in other
bacteria and interact with misfolded proteins in oxidative stress
conditions (Gray and Jakob, 2015). Polyphosphate accumulation
is recognized as a key factor of stress tolerance in L. casei (Huang
et al., 2018).

The polyphosphate kinase, responsible for polyphosphate
(Ppk) synthesis, catalyzes the ATP-dependent formation of a
phosphoanhydride bond between a polyphosphate chain and
orthophosphate. Some lactobacilli have more than one ppk gene
involved in polyphosphate synthesis. The number of ppk genes
was shown to be correlated with the accumulation of elevated
phosphate concentrations (Alcantara et al., 2014).

Accumulation of glycogen
Low temperatures induce glycogen accumulation in
P. freudenreichii (Dalmasso et al., 2012b). This bacterium
also accumulates glycogen in hyper-concentrated sweet whey
medium, which has a high osmotic pressure and provides an
abundance of carbon substrate (Huang et al., 2016b). Glycogen
accumulation depends on the type of sugar substrate present
in the culture medium. Raffinose and trehalose activate the
accumulation of glycogen, whereas glucose represses it in
lactobacilli (Goh and Klaenhammer, 2014).

Regulation of Energy Production
Intracellular pH (pHi) homeostasis is a prerequisite to normal
growth or to survival during stress (Guan et al., 2013). Bacteria
triggered different mechanisms to regulate their pHi, such as
the upregulation of ATPase activity and the conversion of
different substrates.

Regulation of ATPase Activity
Lactobacilli acid tolerance is attributed to the presence of a
constant gradient between extracellular and pHi. The ATPase
protein is a known mechanism used for protection against acid
stress (Figure 1). This protein generates a proton driving force
via proton expulsion (Corcoran et al., 2005; Guan et al., 2013).
The mechanism is similar for bifidobacteria during acid (Sanchez
et al., 2007) and bile salts stresses (Sanchez et al., 2006). The
regulation of ATPase activity occurs at the transcriptional level
(Broadbent et al., 2010). There is a correlation between APTase
activity and acid tolerance (Guan et al., 2013): the higher the
ATPase activity is, the higher the acid tolerance will be. However,
some lactobacilli species (like L. casei) do not use ATPase as
a tolerance response to acid stress, instead, they keep the pHi
low and reduce the energy demand for proton translocation, in
addition to preventing intracellular accumulation of organic acid
(Broadbent et al., 2010).

Regulation of Substrate Conversion
During an acid stress, lactobacilli decrease the production of
lactate (Papadimitriou et al., 2016). In cold stress conditions,
propionibacteria decrease the production of propionate and
acetate from lactate substrate via a redirection of pyruvate
from the Wood-Werkman pathway to other metabolic pathways
(Dalmasso et al., 2012a). To limit the decrease of the pHi,
P. acidopropionici and lactobacilli increase the activity of the
arginine deaminase (ADI) system by a factor of three to five. This
system allows the degradation of arginine, producing ATP, NH4

+,
and CO2 (Rollan et al., 2003; Guan et al., 2013; Teixeira et al.,
2014). The production of NH4

+ and CO2 allows pH homeostasis
(Guan et al., 2013), and the ATP produced leads to an exclusion
of protons by the APTase. Guan et al. (2013) showed that the
conversion of aspartic acid into alanine makes it possible for
the latter to contribute to the ADI system. In addition, ADI
induction can also occur during osmotic and heat stress in
L. fermentum (Vrancken et al., 2009). During acid treatment,
Lactobacillus reuteri overexpresses glutamine deaminase and
glutamate decarboxylase (Su et al., 2011; Teixeira et al., 2014)
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(Figure 1). These enzymes also generate NH4
+ and CO2 and are

involved in pHi homeostasis.
At a low pH, enzymes involved in catabolism and energy

production are overproduced (Sanchez et al., 2007). This includes
enzymes involved in the consumption of complex carbohydrates
that contribute to the bifid shunt (Sanchez et al., 2007). Carbon
utilization is more efficient and produces more ATP, which
could contribute to the proton exclusion via ATPase (Sanchez
et al., 2007). The addition of glucose in the growth medium can
improve acid tolerance by providing the ATP pool required for
proton extrusion by ATPase (Corcoran et al., 2005). NAD is used
in glycolysis so that the NAD/NADH ratio has to be optimized
for high ATP production (Guan et al., 2013).

Impact on the Bacterial Envelope
Lactobacilli, propionibacteria, and bifidobacteria encountered
membranes damages to during various stresses (Papadimitriou
et al., 2016). Indeed, the cytoplasmic membrane acts as a
barrier for most solutes. The cell membrane also plays a role
in other stresses like acid, cold, heat, and bile salts (Table 1).
The cell envelope plays also a key role in the regulation of
osmotic stress; and maintains cell shape and counteracts the high
intracellular osmotic pressure (Papadimitriou et al., 2016). To
restore membrane and cell wall integrity, different adaptation
mechanisms are adopted by bacteria.

Regulation of Membrane Fluidity
The membrane has such an important role that the relationship
between membrane fluidity and stress tolerance has been used to
predict the outcome of cell tolerance to stress (Muller et al., 2011).
Indeed, stability and permeability of membranes are both key
parameters of adaptation and tolerance toward various stresses
(Machado et al., 2004). Modulation of membranes composition
as adaptation mechanism, which can occur under stressing
conditions, tends to counteract variations of fluidity in order to
maintain the structure of the bilayer (Figure 1).

Changes in membrane lipids composition are strain-
dependent. As presented in Figure 2, the cyclic/saturated
fatty acid ratio can be increased or decreased during osmotic
stress. During osmotic adaptation, an increase in the amount
of cyclopropane fatty acids is observed in L. lactis, while the
unsaturated/saturated ratio in membrane fatty acids remains
unchanged (Guillot et al., 2000). However, for other bacteria,
a decrease in the unsaturated/saturated lipid ratio in the
membrane composition can be observed during osmotic
adaptation (Machado et al., 2004). L. casei can do both
during acid stress, increasing the number of cyclopropane
fatty acids and decreasing the unsaturated/saturated ratio. In
acidic conditions, bacteria have to counteract proton influx
by increasing the rigidity and compactness of the cytoplasmic
membrane (Broadbent et al., 2010). The unsaturated/saturated
ratio and the cyclic/saturated ratio decrease in L. delbreuckii
subsp. bulgaricus in membrane under acidic conditions, thus
leading to a decrease in membrane fluidity (Streit et al., 2008).
During heat stress, L. helveticus decreases its membrane fluidity
by increasing the number of unsaturated fatty acids (Lanciotti
et al., 2001). P. freudenreichii, which contains a majority of

odd-numbered membrane unsaturated fatty acids, changes
its fatty acid composition under cold stress conditions were
observed. It reduces the amount of iso-fatty acids in favor of
anteiso-fatty acids (Dalmasso et al., 2012a). As an example, in
propionibacteria, branched-chain fatty acids are synthesized
due to the activity of branched alpha-keto acid dehydrogenase
under cold stress during cheese storage (Dalmasso et al., 2012a).
P. freudenreichii uses different enzymes to synthesize branched-
chain fatty acids, which result from the catabolism of branched
amino acids (Gagnaire et al., 2015), maintaining the fluidity of
the membrane in order to counteract the cold stress.

The role of cyclic fatty acids (poorly understood) includes
the modulation of the fluidity in order to increase the tolerance
to different stresses (Machado et al., 2004). Cyclic fatty acid
concentration increases during the stationary phase (Muller et al.,
2011). The number of double bonds in unsaturated fatty acids
is important: linoleic and linolenic acids have two and three
double bonds, respectively, causing more steric hindrances than
oleic acid (one double bond). Several double bonds could result
in the loss of membrane integrity and cell death (Muller et al.,
2011). Indeed, Lactobacillus johnsonii NCC533 supplemented
with unsaturated fatty acid shows a higher sensitivity to heat
and acid stress.

Fatty acid biosynthesis, or neosynthesis, requires a great
deal of energy, but bacteria have the possibility of modifying
existing fatty acids. For example L. casei ATCC 334 possesses
an enzyme that can add a methylene residue across the
cis double bond of C16:1n(9), C18:1n(9), or C18:1n(11)
unsaturated fatty acids to form a cyclopropane derivative, thus
allowing bacterial adaptation with a minimal energy requirement
(Broadbent et al., 2010).

Modulation of the membrane bilayer fatty acid composition
seems to be stress-dependent as well as strain-dependent
(Figure 2). Different bacteria reach the same goal, environmental
adaptation, in different ways.

Regulation of the Cell Wall
Peptidoglycan is a key element for the stability of bacteria. It is
composed of glycan chains of repeating N-acetyl-glucosamine
and N-acetyl-muramic acid residues, and cross-linked by peptide
side chains (Piuri et al., 2005). During osmotic treatment, bacteria
are affected by an enlargement of the cell (Piuri et al., 2005).
During enlargement, the cell wall loses a layer. Two layers can
be observed in high salt conditions, whereas three layers are
observed under normal conditions. The cell wall is thus thinned
(Figure 1). Under salt stress adaptation, the structure is irregular
and seems to be detached from the cytoplasmic membrane. This
phenomenon can be attributed to plasmolysis. The presence
of protein and teichoic acid in controlled conditions may be
responsible for the presence of a third layer (Piuri et al., 2005).

Cells grown in high osmolarity increase the hydrophobicity
of their surface, revealed by a higher adherence to the
organic solvent. In Gram-positive bacteria, lipoteichoic acids
and proteins are the most important cell wall components
responsible for surface hydrophobicity. This high hydrophobicity
helps bacteria to tolerate the osmotic stress (Machado et al.,
2004). L. casei grown in high salt conditions limits its production
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of lipoteichoic acids. In addition, lipoteichoic acids exhibit a
lower mean chain length and a lower D-alanine substitution
during osmotic treatment. D-alanine substitution increases
negative charges in the cell wall and contributes to bacteria
tolerance by helping to evacuate toxic Na+ from the cell wall
(Palomino et al., 2013).

Regulation of the Different S-Layers
S-layer proteins are the outer layer component and have several
different functions; they maintain cell shape, provide a protective
coating, and adhere to the host cell. Lactobacilli overexpress
S-layer proteins under stress conditions like bile salts, acid, heat,
and salt stresses (Khaleghi et al., 2010; Khaleghi and Kasra,
2012; Grosu-Tudor et al., 2016). Moreover, they are involved
in osmoadaptation (Palomino et al., 2016). During osmotic
treatment, there is an overproduction of the surface layer proteins
A (SlpA) and X (SlpX), and the SlpA/SlpX ratio is modified in
L. acidophilus (Palomino et al., 2016). S-layer proteins may have a
role as a protective sheath and protect cells against mechanical
and osmotic insults. Bacteria may increase the S-layer gene
expression in order to maintain the integrity of the cell envelope
structure (Figure 1), mainly because of the decrease of the cell
wall thickness (Palomino et al., 2016).

Regulation of Exopolysaccharide
Exopolysaccharides include various forms of polysaccharides
and are located outside the microbial cell wall. They consist of
repeating units of homo- or heteropolysaccharides (Caggianiello
et al., 2016). The exopolysaccharides can be strongly or
weakly bound to the cell surface and protect bacteria against
high temperature, acid, bile salts, and osmotic stress (Alp
and Aslim, 2010; Stack et al., 2010; Caggianiello et al.,
2016). Exopolysaccharide production is improved under acidic
conditions (Torino et al., 2001) and enhances thus the bacterial
tolerance response.

Overexpression of Molecular
Chaperones and Stress-Responsive
Proteases
The synthesis of chaperones and proteases is quickly induced
under various stressing conditions (Figure 2) to decrease the
deleterious impact of the aggregation of denatured proteins and
to refold misfolded ones. Proteases act like the last line of defense
when damage is irreversible and leads to amino acids recycling.
Proteolysis of cellular proteins, which is a regulated process,
can greatly contribute to homeostasis by degrading proteins
whose functions are no longer required after modification of
environmental parameters (Papadimitriou et al., 2016). DnaK
(Hsp70) is one of the well-conserved bacterial chaperones that
can refold misfolded proteins (Papadimitriou et al., 2016).

One of the ways to counteract stress is the regulation of
membrane fluidity. This rather complex regulation involves
GroEL and HSPs universal protein chaperones (Papadimitriou
et al., 2016). Indeed, small heat shock proteins regulate
membrane lipid polymorphism (Tsvetkova et al., 2002).
Accordingly, inactivation of small heat shock proteins affects
membrane fluidity in L. plantarum (Capozzi et al., 2011). GroEL

and GroES (Hsp60) proteins are overproduced under various
stress conditions (Papadimitriou et al., 2016) (Figure 2). It has
been shown that Lactobacillus paracasei overproduces GroESL
during heat stress (Santivarangkna et al., 2007). GroEL and
GroES work in tandem to ensure the correct folding of proteins
in an ATP-regulated manner (Mills et al., 2011) (Figure 2).

De Dea Lindner et al. (2007) showed that there are two types
of stress protein regulation. In the first type, GroEL, GroES,
and ClpC are rapidly induced to a high level after moderate
heat stress (+5◦C) but are not induced by severe heat treatment
(+13◦C). In the second type, DnaK, GrpE, DnaJ1, and ClpB are
strongly induced in a high heat treatment but not in moderate
one (De Dea Lindner et al., 2007). Heat shock proteins are
highly conserved but it is not the case for their expression
regulation mechanisms. The heat shock response is controlled
by a combination system like transcriptional repression and
activation (De Dea Lindner et al., 2007).

Bifidobacterium breve overexpresses DnaK, DnaJ, and ClpB
in high salt conditions and during high heat treatment, which
probably means that there is an overlapping regulatory network
that controls both osmotic and severe heat stress (De Dea Lindner
et al., 2007). This is consistent with observed cross-protections
between heat and salt treatments. These proteins are also
overproduced during bile and acid stresses (Leverrier et al., 2004;
Bove et al., 2013; Jin et al., 2015).

In addition, P. freudenreichii overproduces HtrA, DnaK, and
GroEL during bile salts stress, and HtrA is known to have
protease and chaperone activities (Leverrier et al., 2003, 2004).
This suggests that bile and salt adaptation are closely related
(Savijoki et al., 2005).

The Clp protease family constitutes a major system for general
protein turnover in lactobacilli. These proteins work with ATPase
to degrade proteins (Papadimitriou et al., 2016). Chaperones and
Clp proteins are stress-induced, with induction occurring at the
transcription level, and can be regulated by the transcriptional
repressors CtsR and HrcA (Papadimitriou et al., 2016).

Cold shock proteins (Csp) are produced in cold conditions
(Figure 2) and are involved in mRNA stabilization (Mills
et al., 2011). These proteins are essential for growth in cold
temperatures (Dalmasso et al., 2012a). The production of three
Csps, CspL, CspP, and CspC, in cold conditions resulted in an
increased of bacterial tolerance toward temperature downshift
(Mills et al., 2011). In cold and other stress conditions,
P. feudenreichii upregulates genes coding for two Csp (Dalmasso
et al., 2012a). Bifidobacteria have less different chaperones and
proteases than other bacteria (De Dea Lindner et al., 2007), in
accordance with their great sensitivity to stress.

Chaperones can also behave as moonlight proteins.
Moonlighting DnaK and GroEL, for example, have adhesive
functions. The overexpression of these proteins during bile or
acid stresses can help the bacteria to adhere to intestinal cells
and to persist within the digestive tract (Bergonzelli et al., 2006;
Candela et al., 2010).

The whole studies reveal that some adaptive mechanisms are
common to different treatments. They may be induced by several
treatments and explain the observed cross-protections (Figure 2).
Osmotic and acid treatments induce large changes in bacterial
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cells, and only a few adaptation mechanisms are common to both
treatments. Oxidative treatment has been less studied than the
other treatments.

STRESS ADAPTATION IMPROVES
BACTERIAL TOLERANCE TO
TECHNOLOGICAL AND DIGESTIVE
STRESS

Understanding and mastering bacterial adaptation is crucial
for strains selection and of pretreatments to improve viability
during technological stresses, storage, and digestion (Figure 3).
Bacterial survival during technological and digestive stresses is
strain-dependent. Some bacteria are naturally more resistant
and have the ability to adapt to various stresses. Some growth
medium modifications and some physicochemical treatments
can improve bacterial survival during technological stresses,
thanks to adaptation (Tables 2, 3 and Figure 3), but only a
few studies have focused on which adaptive mechanisms are
responsible for enhanced survival.

Enhanced Tolerance Toward Drying
Process and Storage
Freeze-Drying Process
Bacteria survival during freeze-drying has been well studied.
Many studies presenting the best way to increase survival

are available. However, only few studies have focused on the
role of bacterial adaptive mechanisms on bacterial survival
during this process.

The accumulation of glycine betaine leads to an enhanced
survival during freeze-drying for Lactobacillus salivarus (Sheehan
et al., 2006). Unfortunately, this mechanism is strain-dependent,
as shown in Figure 3. Glycine betaine accumulation can be
triggered by osmotic stress (Table 1; Glaasker et al., 1996; Romeo
et al., 2003; Huang et al., 2016b). Indeed, as listed in Table 3,
the osmoadaptation enhanced Lacotbacillus bulgaricus survival
during freeze-drying (Carvalho et al., 2003). Osmotic constraint
induces bacterial adaptation, and glycine betaine accumulation
can be responsible for the better survival of L. bulgaricus and
of other species. Figure 3 shows that acid, heat, and osmotic
treatments can improve bacterial survival during freeze-drying
in strain-dependent way. Osmotic stress can be also induced by
the addition of either salt or sugar. The advantage of a sugar like
mannose is that it can increase bacterial survival during freeze-
drying (Carvalho et al., 2008). In fact, a growth medium with a
high sugar concentration leads to the accumulation of trehalose
(Cardoso et al., 2004). In addition, sugars have a positive impact
on bacterial survival when they are added at a high concentration
to the drying medium (Giulio et al., 2005).

A strain of L. paracasei which overexpresses GroESL presents
an improved survival rate after extreme stresses challenges than
other L. paracasei strains (Mills et al., 2011). GroESL is a
chaperone protein which can be induced during heat treatment
(Walker et al., 1999). The overproduction of GroESL or of

FIGURE 3 | Stressing pretreatments and modifications of the growth medium modulate survival during technological and digestive stresses. Technological and
digestive stresses are represented in the figure. Digestion triggers two main stresses: bile salts and acid stress. For each stress, the impact of stressing
pretreatments and of modifications of the growth medium on bacteria survival is indicated (+: positive; -: negative; and 0: no effect). Strain-dependent modulations
are represented by arrows (purple: osmotic; blue: cold; red: heat; yellow: oxidative; green: acid; brown: bile salts treatment). Large arrows indicate a positive effect
and thin arrows indicate either no effect or a negative effect. The numbers indicate corresponding references in the tables.
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TABLE 2 | Adaptive mechanisms reported to modulate the survival of propionibacteria, bifidobacteria, and lactobacilli under technological and digestive stresses.

Cell modification Effect Technological stress or
digestion

Bacteria References Corresponding
number in the

figures

Conversion of glutamate to GABA + Acid stress (pH = 2.5) L.a reuteri Su et al., 2011 46∗

Decrease in unsaturated fatty
acid/saturated fatty acid ratio

+ Freeze-drying L. coryniformis Schoug et al., 2008 47

Glycine betaine accumulation + Digestion B.b breve Sheehan et al., 2006 48

Glycine betaine accumulation 0 Freeze-drying B. animalis Saarela et al., 2005 49

Glycine betaine accumulation - Freeze-drying L. coryniformis Bergenholtz et al., 2012 50

Glycine betaine accumulation + Freeze-drying L. salivarius Sheehan et al., 2006 48

Glycine betaine accumulation + Spray-drying L. salivarius Sheehan et al., 2006 48

GroESL overproduction + Freeze-drying L. paracasei Corcoran et al., 2006 51

GroESL overproduction + Spray-drying L. paracasei Corcoran et al., 2006 51

Increase in cyclopropane fatty acid
number

+ Freeze-drying L. bulgaricus Li et al., 2009 25

+ indicates an improvement of survival. − indicates a decrease of survival. 0 indicates no effect on survival. ∗ indicates a cited reference. a Lactobacillus. b Bifidobacterium.

other general stress proteins is induced by various treatments
(Schoug et al., 2008) (Table 1), and their synthesis probably has a
considerable impact on bacterial survival during freeze-drying.

Modulation of membrane lipids composition may contribute
to enhancing bacterial survival during freeze-drying. In fact,
lipid membrane modifications depend on the strain-treatment
couple, like other adaptive mechanisms. In the literature, two
lipid modifications have been reported to increase bacterial
survival during freeze-drying. It includes the increase of the
cyclic fatty/saturated fatty acid ratio and the decrease of the
unsaturated/saturated membrane fatty acid ratio, these ratios
being key features of stress adaptation (see section “Regulation
of Membrane Fluidity”) (Table 2 and Figure 3).

Combinations of stress seem to be a promising way to
induce multiple adaptation mechanisms, which unfortunately
are strain-dependent. The combination of cold and acid
treatment was tested, but this association decreased Lactobacillus
coryniformis survival during freeze-drying (Schoug et al., 2008).
However, Li et al. (2009) demonstrated that L. bulgaricus viability
is enhanced during freeze-drying, when it is grown in cold and
acid conditions (30◦C; pH = 5) or when it is submitted to a mild
cold treatment (30◦C).

Spray-Drying Process
To enhance the latter, it is possible first to select strains with
high intrinsic stress tolerance and the ability to adapt upon
pretreatment, which is strain-dependent. Indeed, bifidobacteria
species with high heat and moderate oxygen tolerance have
a better survival rate after spray-drying (68–102%) compared
to species with no intrinsic tolerance to oxygen and to heat
stress (Santivarangkna et al., 2007). In addition, it is important
to remember that grow phase harvesting may influence the
bacterium viability during spray-drying. The stationary phase
seems to be a favorable phase to harvest bacteria for drying
(Peighambardoust et al., 2011).

The three treatments – osmotic, heat, and acid – can
improve bacterial survival during spray-drying or freeze-drying
(Figure 3). Although these two drying processes impose opposite

stresses – cold and heat stress – the treatments that improve
bacterial survival are indeed the same. It is possible to rank
treatments according to their efficiency toward protection during
spray-drying for L. paracasei NFBC 338. Decreasing efficiency
is observed with heat > salt > hydrogen peroxide > and bile
treatment (Desmond et al., 2001). Obviously, this ranking is
strain-dependent and the addition of another treatment may
make more effective bacterial adaptation possible.

The heat tolerance of bacteria is defined by the decimal
reduction value (Dθ value) that represents the time needed
to kill 90% of the bacteria at a given temperature θ . Upon
heat adaptation, the D60 value of L. paracasei can increase
from 1.7 to 3.1 min (Desmond et al., 2001), in accordance
with enhanced tolerance toward spray-drying. Survival of
L. salivarius and L. paracasei is also enhanced by heat or
oxidative treatments before spray-drying (Desmond et al., 2001).
Moreover, during heat stress, GroESL can be overproduced
and enhance bacterial survival during spray-drying (Walker
et al., 1999; Corcoran et al., 2006). Silva et al. (2005)
showed that acid-adapted L. delbrueckii achieves a better
tolerance to heat and spray-drying due to the production of
heat shock proteins.

In addition, the accumulation of glycine betaine improves
lactic acid bacteria viability during spray-drying (Sheehan et al.,
2006). High fermentable sugar concentrations in the growth
medium permit the production of metabolites like mannitol.
Non-fermentable sugars increase the osmotic pressure of the
medium and induce osmoadaptation of bacteria, so that both
types of sugars improve cell survival during spray-drying
(Peighambardoust et al., 2011). Osmoadaptation increases the
survival of several species during spray-drying (Desmond et al.,
2001; Huang et al., 2016a,b).

Spray-drying is a stressful process that affects the bacterial
membrane. Acid, osmotic, heat, and oxidative treatments lead
to the modification of the membrane composition (Figure 2).
Membrane fluidity should be optimized to increase bacteria
survival. If the fluidity is too high or too low, bacterial
survival may decrease.
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TABLE 3 | Treatments and modifications of the growth medium that modulate the survival of propionibacteria, bifidobacteria, and lactobacilli under technological and
digestive stresses.

Adaptation Effect Technological stress or
digestion

Bacteria References Corresponding
number in the

figures

Acid adaptation + Acid stress (pH = 2) L.a casei Broadbent et al., 2010 19∗

Acid adaptation + Acid stress (pH = 2) P.b freudenreichii Jan et al., 2000, 2002 52, 53

Acid adaptation - Bile salt stress (1g.L-1) P. freudenreichii Leverrier et al., 2004 34

Acid adaptation + Freeze-drying L. bulgaricus Li et al., 2009 25

Acid adaptation - Freeze-drying L. coryniformis Schoug et al., 2008 47

Acid adaptation + Freeze-drying L. reuteri Palmfeldt and Hahn-Hägerdal, 2000; Koch
et al., 2008

54, 55

Acid adaptation - Freeze-drying L. rhamnosus Ampatzoglou et al., 2010 56

Acid adaptation + Spray-drying L. delbrueckii Silva et al., 2005 44

Acid adaptation 0 Storage (SD) L. delbrueckii Silva et al., 2005 44

Cold + acid adaptation - Freeze-drying L. coryniformis Schoug et al., 2008 47

Cold + acid adaptation + Freeze-drying L. bulgaricus Li et al., 2009 25

Acid + heat adaptation + Acid stress (pH = 3,5 in
Synthetic Gastric Fluid)

B.c lactis Maus and Ingham, 2003 57

Acid + heat adaptation 0 Acid stress (pH = 3,5 in
Synthetic Gastric Fluid)

B. longum Maus and Ingham, 2003 57

Addition of mannose + Freeze-drying L. delbrueckii Carvalho et al., 2008 58

Addition of mannose + Storage (FD) L. delbrueckii Carvalho et al., 2008 58

Addition of trehalose 0 Freeze-drying L. salivarius Zayed and Roos, 2004 59

Addition of glutamate 0 Freeze-drying L. sakei Ferreira et al., 2005 3

Addition of glutamate 0 Spray-drying L. sakei Ferreira et al., 2005 3

Addition of glutamate 0 Storage (FD) L. sakei Ferreira et al., 2005 3

Addition of glutamate + Storage (SD) L. sakei Ferreira et al., 2005 3

Addition of sucrose 0 Freeze-drying L. sakei Ferreira et al., 2005 3

Addition of sucrose 0 Freeze-drying L. bulgaricus Carvalho et al., 2003 60

Addition of sucrose 0 Spray-drying L. sakei Ferreira et al., 2005 3

Addition of sucrose + Storage (SD) L. sakei Ferreira et al., 2005 3

Addition of sucrose 0 Storage (FD) L. sakei Ferreira et al., 2005 3

Bile salt adaptation + Bile salt stress (1 g.L−1) P. freudenreichii Jan et al., 2002; Leverrier et al., 2003, 2004 53, 61, 34

Cold adaptation - Freeze-drying L. coryniformis Schoug et al., 2008 47

Heat adaptation + Acid stress (pH = 2) P. freudenreichii Jan et al., 2000, 2002 52, 53

Heat adaptation + Bile salt stress (1 g.L−1) P. freudenreichii Leverrier et al., 2004 34

Heat adaptation 0 Freeze-drying L. acidophilus Paéz et al., 2012 62

Heat adaptation + Freeze-drying L. bulgaricus Li et al., 2009 25

Heat adaptation + Freeze-drying L. casei Paéz et al., 2012 62

Heat adaptation 0 Freeze-drying L. coryniformis Schoug et al., 2008 47

Heat adaptation + Freeze-drying L. plantarum Paéz et al., 2012 62

Heat adaptation + Spray-drying L. paracasei Desmond et al., 2001 63

Heat adaptation 0 Storage (FD) L. acidophilus Paéz et al., 2012 61

Heat adaptation 0 Storage (FD) L. casei Paéz et al., 2012 61

Heat adaptation + Storage (FD) L. plantarum Paéz et al., 2012 61

Osmoadaptation + Acid stress (pH = 2) P. freudenreichii Jan et al., 2000; Huang et al., 2016b 6, 51

Osmoadaptation + Bile salt stress (1 g.L−1) P. freudenreichii Huang et al., 2016b 6

Osmoadaptation + Freeze-drying L. bulgaricus Carvalho et al., 2003 60

Osmoadaptation + Spray-drying L. paracasei Desmond et al., 2001 63

Osmoadaptation + Spray-drying P. freudenreichii Huang et al., 2016b 6

Osmoadaptation + Storage (FD) L. bulgaricus Carvalho et al., 2003 60

Oxidative adaptation + Spray-drying L. paracasei Desmond et al., 2001 63

Spray-dried + Digestion L. acidophilus Paéz et al., 2012 61

Spray-dried + Digestion L. casei Paéz et al., 2012 61

+ indicates an improvement of survival. - indicates a decrease of survival. 0 indicates no effect on survival. ∗ indicates a cited reference. a Lactobacillus. b Propionibacterium.
c Bifidobacterium.
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Pretreatments prior to drying are thus promising tools to
improve bacterial viability during technological processes, but
must be adapted for each strain. It can be observed that
bacterial adaptation has its own limits. As an example, the heat
adaptation of L. paracasei would be useful in order to deal
with high drying outlet temperatures (higher than 95◦C) and,
conversely, less useful for lower outlet temperatures (85–90◦C)
because the temperature would cause less damage in this case
(Desmond et al., 2001). Moreover, the outlet temperature can
be decreased while optimizing the drying parameters. It seems
that the best pretreatment would be acid and osmotic stresses
for spray-drying.

Storage
The challenge is not only to maintain the viability of bacteria
during the drying process, but also during storage. Relative
humidity and temperature are two key factors controlling the
loss of viability upon storage. Since the oxidation of lipids
increases with relative humidity (Golowczyc et al., 2011) and
temperature, the stability is negatively correlated with these
two factors. Cells have the best stability during storage with
a relative humidity of 0%, even if the temperature is 30◦C
(Golowczyc et al., 2011).

To increase the stability of cells during storage, a protective
agent can be added during growth. When monosodium
glutamate or fructo-oligosaccharides (FOS) are added during
the growth of Lactobacillus kefir, the cells have a higher
stability after drying and during storage at 0–11% relative
humidity (Golowczyc et al., 2011). Sugars like glucose,
fructose, mannose, and sorbitol can provide protection
(Peighambardoust et al., 2011). Protection through the
addition of sucrose is strain-dependent (Golowczyc et al.,
2011). Storage at relative humidity higher than 23% resulted
in low stability, regardless of the protective agent, with a
correspondingly low D20 value (Golowczyc et al., 2011). This
highlights the importance of decreasing the relative humidity of
the storage room.

Another way to prepare bacteria to storage conditions is
cross-protection. Cells cultivated with a moderate stress can
have better stability during storage. Only heat and osmotic
treatments are reported to increase bacterial survival upon
storage (Figure 3). Indeed, mild heat treatment enhances the
stability of L. paracasei (Paéz et al., 2012) and of Lactobacillus
rhamnosus (Prasad et al., 2003) during storage, these results being
strain-dependent (Paéz et al., 2012).

Osmotic adaptation can also improve stability during storage
for L. rhamnosus (Prasad et al., 2003). In powders, the absence of
water may have deleterious effects on bacteria. Osmotic treatment
during growth induces the accumulation of compatible solutes
like glycine betaine, glycerol, and trehalose, and leads to changes
in carbohydrate metabolism, resulting in the accumulation of
glycerol linked to polysaccharides. These molecules interact
with macromolecules instead of water. This protection increases
the stability of L. rhamnosus during storage (Prasad et al.,
2003). The modification of membrane composition during heat
and osmotic treatments may reduce membrane damage, which
occurs during storage.

Lactobacillus delbrueckii spp. bulgaricus grown under
uncontrolled pH, thus experiencing acid stress, do not have a
higher stability during storage (Silva et al., 2005).

Enhance Tolerance Toward Digestive
Stresses
During digestion, bile salts and acid stresses are two major
stresses which affect probiotics survival and thus their beneficial
effects. The effect of adaptation on bacterial survival during
digestion is not well known (Figure 3).

Pre-adaptation of bifidobacteria to bile salts induces many
metabolic changes. The first is the more efficient use of maltose
by Bifidobacterium animalis. In addition, Bifidobacterium longum
over-produces mucin-binding protein in acid pH conditions.
This should facilitate its efficient targeting to the colon, which
is its natural habitat. Moreover, B. animalis overproduces
the membrane-bound ATPase that controls the pHi (Sánchez
et al., 2013). Finally, adapted bifidobacteria are then able
to consume raffinose and maltose, in addition to glucose
(Sanchez et al., 2007). All these elements lead to a better
survival within the gut, particularly because acid and bile salts
adaptation prepare cells to use carbon sources, which cannot
be used by the indigenous microbiota (Collado and Sanz, 2007;
Sánchez et al., 2013).

Acid response is well documented for bifidobacteria. More
than 20 bifidobacteria showed an increase of their tolerance to a
simulated GIT after acid adaptation (Sánchez et al., 2013). Acid
and heat adaptation can be used together at the same time to
improve Bifidobacterium lactis survival to acid stress (Maus and
Ingham, 2003).

Heat and osmotic treatments can be used to adapt bacteria
to acid stress. In addition, L. casei can be acid-adapted
with a treatment at pH 4.5 for 10 or 20 min, with an
enhanced viability to acid challenge (Broadbent et al., 2010)
and, consequently, to digestion. During bile salts adaptation,
some probiotics express a range of bile salts hydrolases which
lead a better bacterial viability (Papadimitriou et al., 2016). The
spray-drying process can improve the tolerance to simulated
gastrointestinal digestion as a result of encapsulation (Paéz et al.,
2012) (Figure 3).

The probiotic delivery vehicle, used as drying matrix, has
a high impact on viability during digestion. Several studies
reported that spray-drying is the best method to maintain and
improve the effect of probiotics. The protection of bacteria during
digestion, both by encapsulation or by a food matrix, seems to
be an important factor and has to be further studied in order to
improve the effect of probiotics.

CONCLUSION

Treatments used to adapt bacteria before technological
and digestive challenges offer promising opportunities for
improvement. Osmotic and heat treatments reportedly enhance
bacteria survival during stressing challenges, via accumulation
of compatible solutes and overexpression of key stress proteins,
respectively. In the literature, these treatments are reported to

Frontiers in Microbiology | www.frontiersin.org 16 April 2019 | Volume 10 | Article 841

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00841 April 17, 2019 Time: 16:21 # 17

Gaucher et al. Probiotic Stress Adaptation and Technology

have positive impacts on bacterial survival during freeze-drying,
spray-drying, storage, and, to a lesser extent, during digestion.
Acid treatment also seems promising because it can have
a positive impact during drying, bile salts, and acid stress
challenges. Treatments including bile salts have not been well
studied, particularly in terms of their impact on bacterial
survival during technological stresses. The combination of two
or three of these stresses could be very interesting, especially
the osmotic-acid combination. Indeed, it can be observed that
these two treatments can induce a high number of adaptive
mechanisms. Starter bacteria apart from two-in-one bacteria
do not require an adaptation to digestive stress because they
will grow in a food matrix. For starters, osmotic or heat
treatment, or the combination thereof, seem to afford protection
toward technological constraints. To trigger the adaptation of
beneficial bacteria, the growth medium should be adapted, as
carbon (saccharides) and nitrogen (amino acids) sources can be
modulated. Growth conditions have to be chosen according to the

subsequent probiotic/starter use and the strain since this review
shows that most of the treatment effects are strain-dependent.
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