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Abstract—Human movements are inherently variable and
involve some feedback mechanism. A study of the positional
variance in a tapping task reveals that the variance profiles are
unimodal in time. In the variance-decreasing phase, the aiming
task can be modeled by a Shannon-like communication scheme
where information is transmitted from a “source”—determined
by the distance to the target at maximum variance—to a
“destination”—the movement endpoint—over a “channel” with
feedback perturbed by Gaussian noise. Thanks to the feedback
link, we show that the variance decreases exponentially at a
rate given by the channel capacity. This is confirmed on real
data. The proposed information-theoretic model has promise to
improve our understanding of human aimed movements.

I. INTRODUCTION

Variability is an important characteristic of human aimed
movement. In fact, it has long been observed [1] that a
participant will produce disparate movements when asked to
repeatedly perform the same task, while having to slow down
to perform more accurate tasks—the so-called speed-accuracy
tradeoff. Many attempts at modeling variability were proposed in
the literature, e.g., [2], [3] which only characterize the variability
of the movement’s endpoints based on Fitts’ paradigm [4].
We focus instead on the variability of the position of the limb
extremity used for aiming during the entire movement: How
does the positional variance evolve over time?

As remarked in [5], trajectory variability has “surprisingly
received little attention from researchers”. The entropy of a set
of trajectories over time was considered in [6], where unimodal
profiles were observed. Positional variance was studied in [7], [8]
but only at specific kinematic markers (peak acceleration, velocity,
deceleration, and movement time). Complete variance profiles
for elbow flexion were reported in [9], [10], most resulting
variance profiles being unimodal—yet human movements seem
much more complex as they involve many joints.

The following simple reasoning suggests that positional
variance profiles should be unimodal. Consider e.g., Fitts’
tapping task [4] where the participant aims at a target of a
given width at a given distance:

1) all movements start at the same position: initial positional
variance is null;

2) in the early stages of the movement, positional variance
increases [9], [11];

3) if time permits, the participant eventually reaches the
target [9], [12], [13] and the movement ends, which implies
that the positional variance vanishes asymptotically [14].
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Fig. 1. Ideal positional variance profile with maximum variance σ2
0 at t=τ .

We therefore expect a unimodal variance profile as illustrated
in Fig. 1: A first variance-increasing phase for time ∈ [0,τ ],
where variance increases from 0 to σ2

0 , is followed by a second
variance-decreasing phase where the variance is decreased to
arbitrarily low values and eventually vanishes.

Yet another important characteristic of human aiming is the
use of feedback [15, p. 95] for generating movements. Feedback
can be visual [16]–[18] or kinesthetic [19], [20] and affects
movement as short as 100 ms [17], [20], [21]. Feedback is
often associated to control theory, which has been applied to
human aiming movements but cannot easily handle trajectory
variability nor noise [22]. Now, feedback is also frequently
used in Shannon’s information theory [23], [24] to enhance
communication in the presence of noise. Unfortunately, even
though many previous studies have used information-theoretic
tools to model human movements [4], [25]–[27], they did not
account for feedback mechanisms. There wasn’t even any explicit
channel model described in Fitts’ seminal paper [4], and most
recent attempts like [26], [27] build on a feedforward channel
without feedback. This may explain why information theory was
said to be “no longer much of a factor” [28] for explaining human
movements or more generally in experimental psychology.

In this paper, we present a complete information-theoretic
model that uses feedback to predict that for t>τ (in the second
variance-decreasing phase) the variability decreases exponentially
at a rate given by Shannon’s channel capacity. Our contributions
are as follows. 1) Validate the unimodality hypothesis on empir-
ical pointing data 2) Propose an information-theoretic model for
the variance decreasing phase 3) Determine Shannon’s capacity
for this model, to provide an upper bound on the rate at which
variance decreases over time 4) Validate the model and estimate
the capacity on empirical pointing data for various participants.



II. UNIMODAL VARIANCE PROFILES IN REAL DATA

In this section, we evaluate the unimodality hypothesis on
empirical data. Since there have been numerous published
studies on pointing tasks, we have simply re-analyzed an
existing dataset (hereafter named “G-dataset”) from a study by
Guiard et al. [29] which uses a discrete version of Fitts’ tapping
task [30]. Using a stylus on a digital tablet, participants were
instructed to reach a line located 150mm away from a starting
point, under conditions ranging from (1) full speed emphasis to
(5) full accuracy emphasis. The raw trajectory data was low-pass
filtered and re-sampled closest to the average sampling frequency,
and individual movements were extracted and synchronized
so as to have a common time origin. 16 participants produced
movements for five conditions, repeated five times, providing
80 different variance profiles1. As an illustration, Fig. 2 displays
the trajectories of participant 32 of the dataset, performing
under condition (3) balanced speed/accuracy.
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Fig. 2. The set of trajectories for participant 3 performing under condition
3 (balance speed versus accuracy) for the G-dataset.

The unimodality hypothesis was verified by computing the
positional variance profiles for each subset composed of all the
trajectories acquired by a given participant under the same condi-
tion3. We checked unimodality by ensuring that there is only one
sign change in the time derivative of the profile. We found that
64 out of 80 variance profiles in the dataset are strictly unimodal.
Fig. 3 displays a typical empirical variance profile consistent with
the ideal profile given in Fig. 1, as well as its derivative in orange,
obtained from the same set as the one used for Fig. 2. There are
a few profiles with multiple modes that are often due to outliers:
Usually, the secondary modes are very small and the variance
profile can still be reasonably well modeled by a unimodal profile.

For completeness, we also conducted the Hartigan & Hartigan
DIP test for unimodality [31], where the null hypothesis is that the
distribution is unimodal. Only 9 profiles (p<.05) were found to
be significantly non-unimodal out of the total 80 profiles and the

1No outliers were removed because removal procedures are based on arbitrary
heuristics for which we found no satisfying method. As seen below, we
nonetheless found compelling evidence in favor of the unimodality hypothesis.

2Throughout the paper we will be using the example of participant 3. The
study was carried out for every participant in the G-dataset and all participants
behaved similarly.

3As all traces end at different dates, the number of trajectories available
upon which variance can be computed decreases with time; to ensure reliable
estimations, we stopped computing variance when less than 10 trajectories were
available.
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Fig. 3. The unimodal empirical variance profile (in blue) of participant 3
performing in the balanced condition (3). The mode appears for τ'200 ms.
The derivative of the variance profile (in orange) changes sign only once.

average p-value is just below 0.6. We also proceeded to a visual
check and determined that 4 profiles that were labeled as multi-
modal had a massive outlier which distorted the variance profile.

There is thus substantial evidence to support the unimodality
of variance profiles in tapping tasks.

III. A MODEL FOR THE VARIANCE-DECREASING PHASE

A. Information-Theoretic Model Description

Whereas most existing models aim at predicting an average
trajectory, the goal here is to predict how the variability of a
set of trajectories evolves over time. Asymptotically, i.e., when
the set is large enough, the position of the limb extremity (the
‘limb’ in short) is a continuous random variable. At the end
of the first phase, we may assume that the position can be well
approximated by a Gaussian distribution4, with some standard
deviation σ0 (see Fig. 1).

Thanks to the feedback, the limb position is known at the
brain level. Due to eye-hand coordination and fast eye dynamics,
the eye is usually pointing towards the target long before the
end of the movement [20]. Hence the position of the target is
also known at the brain level. The distance from limb to target
can thus easily evaluated by the brain; in fact it can be readily
estimated by the eye if the limb is close enough to the target.

Let A be the distance from limb to target; from the above
assumptions, A is modeled as a Gaussian random variable with
standard deviation σ0. Moreover, for rapid aiming, the first
phase may equally well undershoot or overshoot the target [34],
and we may assume zero mean: A∼N (0,σ2

0). To successfully
complete the movement, the brain has to send A to the limb;
this is precisely the role of the second phase.

4This is an assumption that is often used [11], [32], whose strict veracity
depends on the conditions in which the movements were produced [33]. Usually,
this approximation is good enough as distributions are bell-shaped. In [6], the
empirical entropy of the trajectory was compared with the theoretical entropy of
a Gaussian distribution. The difference was never more than .3 bits, throughout
the entire trajectory.



We consider the following scheme:
• From A the brain outputs a certain amplitude X1 to be

sent to the limb:

X1=f(A), (1)

where f is an unknown function performed by the brain.
• To account for the variability of the human motor

system [35], we consider a noisy transmission from
brain to limb, where X1 gets perturbed by additive white
Gaussian noise (so-called AWGN channel). The output
of the channel Y1 is given by

Y1=X1+Z1 where Z1∼N (0,N). (2)

• Based on the channel output Y1, distance Â1 is actually
covered, which is the result of some unknown function
g applied by the motor organs to the received Y1.

• Â1 is returned to the brain via ideal (noiseless) feedback
where it is compared to A. From such a comparison a new
amplitude X2 is produced by the brain.

The scheme then progresses iteratively for i = 1, 2, .... We
assume that each step i, from the creation of Xi to the reception
of Âi takes T seconds. Each such step is infinitesimal and thus,
the whole process is an intermittent iterative correction model
that becomes continuous at the limit.

At iteration i, the scheme is described by following equations
(see Fig. 4):

1) The brain (the ‘encoder’) produces Xi from A and all
received feedback information Âi−1: Xi=f(A,Â

i−1).
2) The motor organs (decoder) receive Yi contaminated by

Gaussian noise: Yi=Xi+Zi.
3) The covered distance Âi is a function of all previous

received amplitudes: Âi=g(Y
i).

At this stage, f and g are still undetermined.
In Shannon’s communication-theoretic terms, the aiming task

in the second phase can thus be seen as the transmission of
a real value from a “source” (distance from target at the end of
the first phase) to a “destination” (limb extremity) over a noisy
Gaussian channel with noiseless feedback. In human-centered
terms, the second phase is the one which deals specifically
with aiming—to make sure that the limb reliably reaches
the target, once most of the distance has been covered. This
second phase likely corresponds to the submovements of the
stochastic optimized submovement model [32], or to the second
component in two-component models [1], [19], [20].

B. Bounds on Transmitted Information

We now leverage information-theoretic definitions.
• Pi=E[X2

i ], where E is the mathematical expectation, is
the input’s average power.

• The Shannon capacity C [23], [24] of the AWGN Channel
under power constraint Pi ≤ P and noise power N is
given by

C=
1

2
log2(1+P/N). (3)

expressed in bits per channel use.

• Dn = E[(A − Ân)
2] is the quadratic distortion that

represents the mean-squared error of the estimation of
A by Ân after n iterations (channel uses); the distortion
essentially corresponds to the empirical variance.

• I(A,Ân) is Shannon’s mutual information [24] between
A and Ân.

Theorem 1. Consider the transmission scheme of Fig. 4
with an AWGN channel of Shannon capacity C and noiseless
feedback. For a zero-mean Gaussian source A with variance
σ2
0 , we have that:

1

2
log

σ2
0

Dn
≤
(a)

I(A,Ân) ≤
(b)

nC. (4)

The proof is given in the Appendix. The Theorem expresses
that enough information should be transmitted from the brain
to the limb to reduce the positional variability from the initial
variance (σ2

0) to the variance at the end of the movement (Dn).
However, it also expresses that the transmitted information can
never exceed nC, where n is the number of iterations. Since
the rate per iteration can never exceed C, being more accurate
requires sending larger amounts of information, which in turn
requires more iterations of the scheme.

IV. ACHIEVING CAPACITY

For a given channel C and number of channel uses n,
maximizing accuracy is equivalent to minimizing Dn. Similarly,
for a given accuracy (distortion), minimizing time is equivalent
to minimizing n. Optimal aiming, which consists of achieving
the best possible accuracy in the least amount of time is thus
achieved when equality holds in (4):

1

2
log

σ2
0

Dn
= I(A,Â) = nC. (5)

The goal of this section is to find the scheme that achieves
optimality (Eq. (5)).

In all what follows we use the list notation `i=(`1,...,`i).

Lemma 1. Optimal aiming can be achieved if, and only if, we
have the following conditions:

1) all considered random variables A,Âi, A−Âi, Xi, Y i,
Zi are Gaussian;

2) input powers Pi=E[X2
i ] are equal (to, say, P );

3) endpoints Âi are mutually independent;
4) channel outputs Y i are independent from the errors

A−Âi;
5) Âi=g(Y

i) is a sufficient statistic of Y i for A.

The proof is given in the Appendix. Working with Gaussian
variables considerably simplifies operations, as independence
between Gaussian variables is equivalent to decorrelation, and
the minimum mean-squared error (MMSE) estimator—which
minimizes Dn—reduces to a linear function in the Gaussian
setting. As seen below, this implies that both f and g are
linear—which is not too surprising as linear functions are
known to preserve normality.

Notice that since g(Y i) is a sufficient statistic of Yi for A,
it does not matter if the feedback comes from the endpoints Âi
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Fig. 4. Information-theoretic model for the aiming task, with initial distance A to the target at the end of the first phase; amplitude Xi created by the brain
at t=τ+iT ; noisy version Yi of Xi; distance Âi actually covered by the limb at t=τ+iT , where T is the infinitesimal time between two iterations.

or from the outputs of the channel Y i. In this way our model
can account for feedback information prior to the motor organs
(e.g. kinesthetic feedback).

By working out the conditions of Lemma 1, we can derive the
structure of the optimal scheme, namely the expression of f and g.
We first obtain g by using the following result known as the
orthogonality principle: if a certain quantity x is to be estimated
from the observed data y by the unbiased estimator x̂(y), the
orthogonality principle states that the following are equivalent:
• x̂(y) = E[x|y] = E[xy]tE[yyt]−1y is the unique MMSE

estimator;
• E[(x−x̂(y))yt]=0.

Theorem 2. For the optimal transmission scheme, g(Y i) is
the MMSE estimator, g(Y i)=E

[
A|Y i

]
.

Proof. From condition 4 one has E[(A−g(Y i))Y i] = 0. The
result follows immediately from the orthogonality principle.

The optimal scheme thus yields an endpoint Âi = g(Y i)
obtained as the best least-squares estimation of A from all the
previous observations of channel outputs Y i=(Y1,...,Yi).

Theorem 3. For the optimal transmission scheme,

Xi=f(Â
i−1,A)=αi(A−Âi−1) (6)

=αi(A−E
[
A|Y i−1]), (7)

where αi meets the power constraint E[X2
i ]=P .

The proof is given in the Appendix. The signal sent to the channel
is thus simply the difference between the initial message A and
its current estimate Âi−1, rescaled to meet the power constraint.

The previous two theorems formally define the encoding
function f and decoding function g; both are linear functions.
Incidentally, the motor system is known to be able to produce
linear functions [36]. The functions f and g are mathematically
simple and biologically feasible and the distance difference
A−Âi−1 can be readily estimated by the eye.

The next result shows that the procedure is incremental, yet
optimal at each step, allowing optimal on-line control.

Theorem 4. Let Ai =Xi/αi be the unscaled version of Xi.
We have

E[A|Y i−1]=

i−1∑
j

E[A|Yj ]=
i−1∑
j

E[Aj |Yj ]. (8)

Again the proof is given in the Appendix. The theorem shows
that the “decoding” process is recursive: At each step, a
“message” Ai that is independent from the previous ones
Ai−1=(A1,...,Ai−1) is formed, and is then estimated optimally
by least-square minimization.

Finally, we check optimality in Eq. (5) by evaluating the
distortion in the following

Theorem 5. The quadratic distortion Di = E[(A − Âi)
2]

decreases exponentially in i:

Di=
σ2
0

(1+P/N)i
. (9)

With this scheme, it is immediately checked that capacity
C is exactly achieved and the distortion decreases geometrically
(divided by (1 + P/N)) at each iteration. The scheme
successfully makes the correspondence between the transmission
of one real value A using feedback, with that of n independent
channel uses (transmissions).

It is important to note that the obtained equations were
already given in an information-theoretic context by Gallager
and Nakiboğlu [37] who discussed an older scheme by
Elias [38]. To our knowledge, the constructive approach of the
Elias scheme given here, as well as its application to model
human aimed movements is novel.

V. EMPIRICAL EVIDENCE

Let t=nT be the total time spent during the second phase
and notice that Dn =σ2

n is the variance of endpoints after n
iterations. From Theorem 5, we have

log2 σn=log2 σ0−C/Tt=log2 σ0−C ′t. (10)

where C is the Shannon capacity (3) and C ′ = C/T is the
capacity in bits/s. This equation is illustrated on real data in
Fig. 5. The figure shows the standard deviation profile from
participant 3 performing under the balanced (3) instruction. For
τ > 0.18 s, the logarithm log2σ(t) of the standard deviation
decreases regularly and linearly with high goodness of fit
(r2=0.984, Student t-test for significance of the slope yields
F (1,76)=4693, p=10−16). Computing the same statistics
on the other 11 participants, we found an average goodness of
fit of r2=0.93 and an average C ′=4.52 bits/s. This provides
strong empirical support for Theorem 5.
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Fig. 5. Linear decrease of the logarithm of standard deviation of position over
time for participant 3 of the G-dataset, performing in the balanced (3) condition.

VI. CONCLUSION

In this paper, we have established that for human aimed
movements, the profiles of positional variance are unimodal
in time, and that the variance-decreasing phase can naturally
be modeled by an information-theoretic transmission scheme
with feedback information from the current position. Positional
variance decreases at best exponentially at a rate given by
Shannon’s capacity C. Increasing accuracy, i.e., decreasing
the endpoint variance from σ2

0 to σ2
n, requires longer time

t as shown in (10). This is consistent with the well-known
speed-accuracy tradeoff5. We believe that there is a lot of insight
to be gained from information-theoretic considerations in the
study of human aimed movements. An interesting perspective
is to consider the effect of non-ideal feedback or multiplicative
noise on the optimal rate, and their practical implications.

APPENDIX A

Proof of Theorem 1. The proof uses well known techniques and
inequalities from information-theory [24]. For inequality (4a):

I(A;Ân)=H(A)−H(A|Ân) (11)

=H(A)−H(A−Ân|Ân) (12)

≥H(A)−H(A−Ân) (13)

≥H(A)− 1

2
log
(
2πeE[(A−Ân)

2]
)

(14)

=
1

2
log

σ2
0

Dn
(15)

Eq. (11) by definition of mutual information; Eq. (12) because of
the conditioning by Ân; Eq. (13) because conditioning reduces
entropy H ; Eq. (14) because the Gaussian distribution maximizes
entropy under power constraints; Eq. (15) by definition of the
distortion and the entropy formula for a Gaussian distribution.

5In [34], we show that our result is also consistent with the well known
Fitts’ law.

For inequality (4b):

I(A;Ân)≤I(A;Y n) (16)
=H(Y n)−H(Y n|A) (17)

=
∑
i

[
H(Yi|Y i−1)−H(Yi|Y i−1,A)

]
(18)

=
∑
i

[
H(Yi|Y i−1)−H(Yi|Xi)

]
(19)

≤
∑
i

[H(Yi)−H(Zi)] (20)

≤
∑
i

[
1

2
log(2πe(Pi+N))− 1

2
log(2πeN)

]
(21)

≤
∑
i

[
1

2
log

(
1+

Pi

N

)]
≤nC (22)

Eq. (16) by the data processing inequality [24], where
A −→ Y i −→ g(Y i)= Âi form a Markov chain; Eq. (17)
by definition; Eq. (18) by applying the chain rule to both terms;
Eq. (19) because of the feedback scheme; Eq. (20) because
conditioning reduces entropy, Yi = Zi +Xi and Xi and Zi

are independent; Eq. (21) because the Gaussian distribution
maximizes entropy and Xi and Zi are independent (where Pi

and N are the powers of respectively Xi and Zi); Eq. (22) by
the concavity of the logarithm function.

Proof of Lemma 1. The proof consists of finding the conditions
that turn the inequalities in the proof of Theorem 1 into equalities.
Equality in Eqs. (13) and (16) directly imply condition 4.
Equality in Eq. (14) implies that the A − Âi are Gaussian.
Equality in Eq. (16) implies that H(A|Y i)=H(A|Y i,g(Y i))=
H(A|g(Y i)), so that Y i −→ g(Y i) −→ A should form
a Markov chain, implying condition 5. Equality in Eq. (20)
implies condition 3. Equality in Eq. (21) implies that the Yi’s
are Gaussian. Eq. (22) implies condition 2 by concavity of the
logarithm. Finally, Xi is Gaussian, as the result of the sum of
Yi and Zi, both Gaussian. Similarly, Âi is Gaussian as both A
and A−Âi are Gaussian, which finally yields condition 1.

Proof of Theorem 3. On one hand, Xi = E[Xi|A, Âi−1] is
a linear function of A and Âi−1, because the conditional
expectation is linear for Gaussian variables. On the other hand,
condition 3 reads that E[ÂiÂ

i−1] = E[g(Xi +Zi)Â
i−1] = 0.

Because Zi is independent from Xi and Âi−1, and g is linear,
we get E[g(Xi)Â

i−1] = 0. Combining the two results, and
because g is linear, we have E[αi(A−f̃(Âi−1))Âi−1]=0. The
orthogonality principle clearly appears and f̃=E

[
A|Ai−1] is

the MMSE estimator.

Proof of Theorem 4. The goal is to evaluate E[A|Y i−1]. We
first use the operational formula for the conditional expectation
E[A|Y i−1] = E(AY i−1)tE[Y i−1(Y i−1)t]−1Y i−1. We get,
using the fact that the Yj are independent and have power P+N :

E[A|Y i−1]=

i−1∑
j=1

(P+N)−1E[AYj ] Yj .



Second, it follows from previous computations that
A−Ai=E

[
A|Y i−1], which is a function of the observations

Y i−1 and therefore independent of Yi. This leads to A−Ai being
independent of Y i and the following equality: E[AYi]=E[AiYi].

Combining both results, we thus get

E[A|Y i−1]=

i−1∑
j=1

E[A|Yj ]=
i−1∑
j=1

E[Aj |Yj ].

Proof of Theorem 5. First notice that we can write Di as
E[(Ai − E[Ai|Yi])2] as A − Âi = A − Âi−1 − E[Ai|Yj ] =
Ai−[Ai|Yj ]. Next, we have that

Di=E(A2
i )+E[E2(Ai|Yi)]−2E(AiE(Ai|Yi))

From the proof above,

E[Ai|Yi]=E[AiYi](P+N)−1Yi=
1

αi

P

P+N
Yi.

With some calculus and using E(A2
i )=Di−1=P/α

2
i , we get

that

Di=
Di−1

1+P/N
.

The proof is finished by applying this equation recursively.
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