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We use X-ray imaging to study viscous resuspension. In a Taylor-Couette geometry, we shear an initially settled
layer of spherical glass particles immersed in a Newtonian fluid and measure the local volume fraction profiles. In
this configuration, the steady-state profiles are simply related to the normal viscosity defined in the framework of the
Suspension Balance Model (SBM). These experiments allow us to examine this fundamental quantity over a wide
range of volume fractions, in particular in the semi-dilute regime where experimental data are sorely lacking. Our
measurements unambiguously show that the particle stress is quadratic with respect to the volume fraction in the dilute
limit. Strikingly, they also reveal a nonlinear dependence on the Shields number, in contrast with previous theoretical
and experimental results. This likely points to shear-thinning particle stresses and to a non-Coulomb or velocity-
weakening friction between the particles, as also evidenced from shear reversal experiments.

I. INTRODUCTION

Understanding the flow of particles suspended in a fluid is
critical to obtaining reliable predictions and models of trans-
port and migration phenomena in industrial and natural slur-
ries. This problem has attracted significant attention over the
last two centuries, starting from the seminal works of Stokes 1

and Einstein 2 who studied how a single particle affects the
flow of a viscous fluid at low Reynolds number. Due to the
large number of particles in the fluid and to the presence
of both solid contacts and long-range hydrodynamic interac-
tions between them, addressing the full problem of suspen-
sion flows remains a complex challenge even after almost a
hundred years of theoretical and experimental effort. The last
two decades have seen the emergence of the suspension bal-
ance model (SBM)3,4 as a robust framework to describe mi-
gration phenomena in suspensions, despite some conceptual
flaws that were settled recently5,6. Notable progress has also
been made to reconcile this theoretical framework for dense
suspensions with those for granular rheology7.

The SBM introduces the concept of particle stress to ex-
plain particle migration in flowing suspensions. It accounts
for the fact that particle contacts tend to generate normal
stresses that act as an osmotic pressure to keep the particles
dispersed under shear. The normal viscosity tensor ηn quan-
tifies this particle stress in a dimensionless form as a function
of the volume fraction φ . In the presence of stress inhomo-
geneities, particle migration occurs leading to volume fraction
gradients that ensure the balance of particle normal stresses in
steady-state conditions.

The SBM then relies on empirical expressions of the shear
and normal viscosities of dense suspensions derived from ex-
periments performed under homogeneous conditions, such as
those provided by Morris and Boulay 4 and Boyer, Guazzelli,
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and Pouliquen7,8, to derive the particle migration dynam-
ics and the steady-state concentration profiles in any flow
geometry4. In all these works, a viscous scaling of all
stresses is assumed, which is theoretically justified for ideal
rate-independent Coulomb friction between the particles9.
Many experimental results, however, show the emergence of
a shear-thinning viscosity at high volume fraction in non-
Brownian suspensions10–14. This has been proposed to orig-
inate from a velocity-weakening friction between the parti-
cles13 or from non-Coulomb friction12,14 as evidenced experi-
mentally by Chatté et al. 12 . These nonlinear properties would
then largely depend on both the bulk and surface properties of
the particles considered.

Moreover, some aspects of the SBM remain unclear. For
instance, the anisotropy in the particle pressure is modelled
through the use of three different coefficients for the normal
viscosity, ηn,i=1,2,3 acting respectively in the direction of flow,
in the flow gradient direction and in the vorticity direction,
perpendicular to both flow and flow gradient directions. Mor-
ris and Boulay 4 assume that these coefficients are propor-
tional to each other for all φ . However, recent experimen-
tal evidence by Dbouk, Lobry, and Lemaire 11 , who measured
the particle pressure simultaneously in two directions, have
shown otherwise. Confirming such results is particularly chal-
lenging because very few experimental configurations probe
the particle pressure in the vorticity direction. Such measure-
ments indeed require a parallel-plate geometry11,15 or a tilted
trough16. The typical particle pressures in these geometries
are usually too small to be measured accurately for φ ≤ 0.2,
which means that the asymptotic limits proposed by Morris
and Boulay 4 have yet to be confirmed. Additional measure-
ments of the normal viscosity in the vorticity direction would
allow one to confirm such predictions or to correct them and
improve our understanding of particle migration and transport
in dilute and semi-dilute suspensions.

Viscous resuspension17,18, where an initially settled sus-
pension is made to flow until a steady state is reached, is an
interesting alternative to measure directly the normal viscosity



2

coefficients. Indeed, under a homogeneous and steady shear
flow, particle pressure gradients originating from the initial
particle concentration inhomogeneity induce a vertical posi-
tive particle flux –that is, particles are resuspended– which
is balanced in steady state by the negative buoyancy of the
particles. Resuspension experiments have been performed
in various geometries including the annulus geometry17 and
the Taylor-Couette geometry18. Due to technical limitations,
these two previous works only report measurements of the
maximum height of the sediment h above which the parti-
cle volume fraction is identically zero. This height increases
when raising the shear rate γ̇ , as expected from the balance
between viscous forces and buoyancy. More specifically, in
the context of viscous resuspension in a Taylor-Couette ge-
ometry, the increment h− h0 of an initially settled bed can
be related to the normal viscosity in the vorticity direction.
Interestingly, the data of Acrivos et al., analysed in the frame-
work of the suspension balance model by Zarraga, Hill, and
Leighton Jr. 10 , suggest an alternative dependence of the nor-
mal viscosity with φ compared to pressure-imposed experi-
ments4,7. In particular, for vanishing volume fractions φ , this
alternative expression converges faster to zero than the ones
proposed by Morris and Boulay 4 and by Boyer et al. (see
Section IV A for more details).

The height of the sediment in resuspension experiments is
an integral response, and as such it includes both the dilute
particle layers close to the top of the sediment and the more
concentrated parts at the bottom. However, in the steady state,
a mechanical balance links the vertical concentration profile to
the normal viscosity everywhere in the sediment, or, in other
words, at every concentration from the very dilute regime
to the highly concentrated regime. Therefore, concentration
profiles in Taylor-Couette resuspension experiments could be
used to estimate the normal viscosity for a wide range of vol-
ume fractions, including the very dilute limit. This would be
particularly helpful to reconcile the point of view of Zarraga
et al. and that of Morris and Boulay 4 and Boyer et al. on the
expression of the normal viscosity.

The objective of the present work is to achieve the mea-
surement of volume fraction profiles φ(z) during viscous re-
suspension in a Taylor-Couette geometry and to use this infor-
mation to determine the normal viscosity. For this purpose we
take advantage of X-ray imaging, since X-ray absorbance is
directly related to the particle volume fraction without being
affected by multiple scattering12,19,20. This technique allows a
precise and local measurement of the particle volume fraction.
The paper is organized as follows. Section II gives a detailed
description of the experimental setup and the derivation of the
concentration profiles from the raw X-ray radiography inten-
sity maps. Section III discusses our experimental concentra-
tion maps and vertical profiles. Our experimental profiles are
then compared to the predictions of the SBM using the two
empirical formula for the normal viscosity7,10 in Section IV.
Finally, Section V offers an interpretation of our results in the
framework of solid friction weakening and shear-thinning.

II. EXPERIMENTAL SETUP AND METHODS
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FIG. 1. Schematic diagram of the experimental setup. a) Side view:
the partially settled suspension (fluid in blue and particles in orange)
is sheared between the two concentric cylinders of a Taylor-Couette
cell (inner spindle in dark gray and outer cup in black). X-rays gen-
erated from a pointlike source 25 cm from the geometry (left of the
picture, not shown) are selectively absorbed by the suspension, which
translates into spatial variations in the transmitted intensity recorded
on the planar X-ray detector located 70 cm away from the cell in
the actual experiment (thick red line on the right). The sample tem-
perature is controlled thanks to a water circulation (in gray) around
the outer cylinder. b) Top view: the thickness w of the suspension
slab crossed by the X-rays depends on the transverse coordinate x.
The two cross-sections (left and right CS) used in our study are in-
dicated with dashed lines and a plot of w as a function of x is shown
on the right. A typical X-ray for a given x of the left CS (thick red
line) is also shown to highlight that it crosses areas of the geometry
corresponding to multiple values of r ≥ x.

A. Geometry, Fluid and Particles

A schematic diagram of our experimental setup is shown
in Figure 1. It consists of a Taylor-Couette cell made of an
inner cylindrical spindle of radius Ri = 23.0 mm and height
H = 53.5 mm and of an outer cup of radius Ro = 25.0 mm.
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The choice of this thin-gap Couette geometry is prescribed by
the need to avoid significant shear-induced migration while
accommodating at least ∼ 8 particles across the gap. Both
cylinders are made of poly(methyl-methacrylate) (PMMA)
and are smooth compared to the particle typical size. The
spindle is recessed over 1.5 mm at its end in order to limit
secondary flows at the bottom of the geometry. Water is cir-
culated around the cup to control the temperature to 25±1◦C.

We focus on glass spheres of density ρp = 2500 kg×m−3.
The batch particles (purchased from Wheelabrator) were
sieved leading to a diameter range 250 < 2a < 315 µm. We
suspend these particles in a mixture of water at 65% wt. and
UCON (Dow Chemical, 75-H-90,000) at 35% wt. The sus-
pending fluid mixture is Newtonian with a viscosity η0 '
0.23 Pa.s−1 and a density ρ f ' 1.03×103 kg×m−3. The total
particle mass M = 4.00 g was weighed using a precision scale
before inserting them in the geometry and the global particle
volume fraction is φ = 10%.

Assessing the shear viscosity of such suspensions is diffi-
cult: strong sedimentation effects result in a suspension that is
non-homogeneous in the vertical direction. We can however
evaluate this viscosity by conducting additional experiments
with suspensions composed of the same particles suspended
in a similar but much more viscous fluid phase (20% wt. wa-
ter, 80% wt. UCON), for which homogeneous steady states
under shear are a priori reached. These additional results are
shown in Appendix A 1. They evidence that the shear viscos-
ity follows a standard Maron-Pierce like evolution with vol-
ume fraction, which seems to diverge at φm ' 0.6, in addition
to weak shear-thinning at the highest concentrations. We will
thus consider that the SBM is a priori an appropriate frame-
work to describe these suspensions rheology.

In the resuspension experiments, the spindle is driven by
a stress-imposed rheometer (AR G2, TA Instruments). The
vertical position of the spindle is set as the lowest position that
allows free rotation, usually around 50-100 µm from the cup
bottom, in order to prevent particles from getting below the
spindle. We use the rheometer feedback loop on the imposed
stress to apply a constant shear rate γ̇ = 1000, 500, 250, 100,
50, 25 and 0 s−1 in successive steps of 5 min duration each.

B. X-ray Radiography

The whole rheometer and the Taylor-Couette cell are in-
serted in a high-resolution X-ray apparatus (Phoenix v|tome|x
s, GE) set to work in two-dimensional mode with a pointlike
source (see Figures 1a, 11 and 12). The experimental X-ray
intensity map Iφ (x,z) transmitted through the Taylor-Couette
cell is recorded by a planar sensor. This intensity depends
on the absorbance of all the parts of the setup, including the
PMMA cup and spindle, the suspending fluid and the par-
ticles. To isolate the particle contribution, we first acquire
a reference intensity map I0(x,z) obtained with a geometry
filled with the pure suspending fluid. The specific absorbance
A(x,z) solely due to the presence of particles throughout the

geometry is then defined as:

A(x,z) =− log10
Iφ (x,z)
I0(x,z)

. (1)

In a homogeneous medium, the absorbance A can be di-
rectly related to the global volume fraction φ through the
Beer-Lambert law:

A = (εp− ε f )wφ , (2)

where ε f and εp are the specific extinction coefficients of the
fluid and the particles, and w is the thickness of the suspension
slab crossed by the X-rays. In our experiments, the cross-
section w depends on the transverse coordinate x (see Fig-
ure 1b) and the particle volume fraction φ depends on both
r and z. The latter point implies that the absorbance A(x,z) is
a weighted average of φ over r, the radial distance to the ro-
tation axis. A rigorous determination of the local particle vol-
ume fraction φ(r,z) requires the expression of Equation (2) in
an integral form and the application of an inverse Abel trans-
form as detailed by Gholami et al.20. Here, for the sake of
simplicity, we shall focus on the two regions corresponding
to Ri ≤ |x| ≤ Ro that we refer to as the left and right cross-
sections (CS) as depicted in Figure 1b. We denote their local
cross-sectional widths as w(x). As discussed below, the parti-
cles are essentially homogeneously distributed in the horizon-
tal plane under shear. Hence, we express φ(r,z) as the ratio
A(x,z)/[w(x)(εp− ε f )], identifying x with r and ignoring the
weighted average.

Additional parallax issues also induce a smoothing of the
actual concentration maps on a typical scale `≈ 8a along the
vertical direction. The reader is referred to Appendices C and
D for more details about the approximations used in data anal-
ysis and about calibration issues.

III. RESULTS

A. General Observations

To the best of our knowledge, the concentration maps
φ(r,z) shown in Figure 2 are the first measurements of this
kind for resuspension experiments. We first notice that the
particles show some verticle layering at the outer wall of the
Taylor-Couette geometry. This phenomenon is particularly
pronounced for the lowest shear rates where the local concen-
tration φ(r,z) may exceed random close packing. In the par-
ticular case of the sediment at rest, it even reaches φ = 0.74,
indicating that particles form a hexagonal packing close to
the outer wall (see leftmost panel in Figure 2). We cannot
conclude on the presence of layering at the inner wall: since
our determination of φ close to the rotating spindle involves
a weighted average on all Ro ≤ r ≤ Ri, layering may be hid-
den by the volume fraction in the bulk. For the same reason,
we cannot completely rule out particle migration towards the
outer edge: our measurements only confirm that strong mi-
gration does not occur and that the particle volume fraction is
quite homogeneous in the horizontal direction except where
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FIG. 2. Local volume fraction φ(r,z) obtained by averaging X-ray images over the last 60 s of each shear rate step. The two regions of interest
(left and right CS) are shown for the seven shear rates under study. Layering at the outer wall is clearly observed at rest and the lowest applied
shear rates. Image blurring due to parallax issues is visible at the bottom of the geometry (see Appendix C).

layering is present. This result is expected in our thin-gap
Couette geometry, where the stress gradients due to the curva-
ture remain small.

In the vertical direction, starting from the top of the cup,
the sediment at rest shows a rather sharp transition from φ = 0
to its maximal value over the size of the typical smoothing `
resulting from the finite distance between the X-ray source
and the geometry. The sediment at rest is homogeneous
along z with an average volume fraction over the entire gap
of 0.55, in fair agreement with the existing literature on non-
attractive spheres settling very slowly21–24. In particular, this
volume fraction is clearly lower than random close packing
(φ = 0.636) and than the critical volume fraction where the
shear viscosity of monodisperse frictional sphere suspensions
diverges (usually 0.58≤ φ ≤ 0.62, 0.6 in our case)7,8,25,26.

For increasing shear rates, Figure 2 shows the resuspension
process in action: the top of the sediment rises as γ̇ increases.
In order to conserve the number of particles, the volume frac-
tion in the bulk of the sediment decreases. In contrast with the
sediment at rest, a finite vertical gradient in volume fraction
develops throughout the sediment, including at the top of the
sediment where φ → 0.

Finally, it can be noted that the concentration maps in the
left and right cross-sections differ slightly from each other.
Measurements of the resuspended sediment height highlight
the relative differences, ranging from 1 to 9% depending on
the applied shear rate. These differences could stem from a
slight misalignment of our geometry: our measurements show
a 3% –two pixels in our images– difference in size between the
two cross-sections. They did not show any significant angular
misalignment between the spindle and the cup rotation axes.
Any potential misalignment does not prevent steady states to
be reached, as can be seen in Figure 15 in Appendix E. In the
following, we focus on one-dimensional profiles of the local
volume fraction that we compare to predictions of the SBM
based on the various expressions proposed in the literature for
the normal viscosity.

B. Concentration Pro�les Along the Vertical Direction

In order to extract one-dimensional concentration profiles
from the two-dimensional maps of Figure 2, we perform
local averages of φ(r,z) over various vertical slices across
the gap of the Taylor-Couette cell and compute φ(r0,z) =
〈φ(r,z)〉r0−∆r<r≤r0+∆r, where r0 and ∆r = (Ro − Ri)/14 '
0.14 mm respectively denote the centre position and the width
of each slice. As shown in Figure 3 for the step at γ̇ = 500 s−1,
the outermost and the innermost profiles significantly differ
from the other profiles, confirming that layering is present at
the walls and that particle migration in the bulk is limited.
These profiles also confirm that, under shear, the particle vol-
ume fraction continuously increases from the clear fluid down
to the bottom of the sediment rather than reaching a constant
value in the bulk of the sediment.

Defining concentration profiles φ(r0,z) requires a common
reference point z = 0 for the bottom of the sediment. The par-
allax issues described in Appendix C imply that the volume
fraction smoothly decreases to zero at the bottom of the sedi-
ment (see Figure 3b) so that we cannot trivially choose z = 0
as the bottom location at which φ vanishes. Since they are
more prominent close to the inner cylinder, we define z = 0
as the location of the maximum volume fraction of the sec-
ond outermost volume fraction profile. We finally define the
height of the resuspended sediment, named h, as the maxi-
mum vertical position z at which the particle volume fraction
exceeds the noise level of our measurements, estimated to be
around 0.45% (see Figure 3c). We also remark that φ(r0,z)
reaches zero with an oblique asymptote at z = h i.e. φ(r0,z)
scales roughly as (h− z) at the top of the sediment.

In the following, we choose to work with the central slice
φ(r0 = 24 mm,z), hereafter noted φ(z) for simplicity, as rep-
resentative of the particle vertical distribution (see purple pro-
file in Figure 3). Plotting this quantity with the origin shifted
to the top of the sediment shows that φ(z) follows the same
trend for both cross-sections (see Figure 4). This means that
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FIG. 3. Computing concentration profiles along the vertical direction in the left cross-section. a) Concentration map φ(r,z) for γ̇ = 500 s−1.
Colored lines correspond to the center r0 of the vertical slices over which φ(r,z) is averaged to produce one-dimensional concentration profiles
φ(r0,z). b) Concentration profiles φ(r0,z) obtained by averaging over the seven different vertical slices, the centers of which are indicated by
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FIG. 4. Concentration profiles φ derived from the central zones of
each cross-section of the gap. Circles: left CS. Crosses: right CS.
Colors code for the imposed shear rate from γ̇ = 0 s−1 (dark pur-
ple) to γ̇ = 1000 s−1 (yellow). Both z and the resuspended sediment
height h, as defined in Figure 3c, are normalized by the particle ra-
dius a.

particles at the top are insensitive to the particle volume frac-
tion in the bulk of the resuspended sediment and at the bottom
of the cup. This justifies the use of a local theory such as the
SBM to model resuspension processes. It also means that we
may focus our study on the left cross-section only without any
loss of generality.

IV. COMPARISON WITH RESUSPENSION MODELS

A. Theoretical Framework

Though initially modelled in the framework of a diffusive
model17,18, viscous resuspension may also be described us-

ing the SBM8,10. The advantages of this second approach lie
in that (i) the model is fully tensorial and (ii) the same phe-
nomenological expressions can be used to account for particle
migration, for normal forces and for particle pressure mea-
surements. Though the latter argument is not strictly valid5,6,
it has been argued that the theoretical refinements detailed
in Lhuillier 5 and Nott, Guazzelli, and Pouliquen 6 might be
neglected provided that contact forces dominate the particle
stress, as should be the case at sufficiently high volume frac-
tion6. We therefore choose to discuss the present experimental
data in the framework of the SBM.

The steady-state concentration profile then results from the
momentum balance in the particle phase, which reads4:

φ∆ρg+∇ ·Σp = 0 , (3)

where Σp is the particle stress tensor, assumed to be diag-
onal4,8 and with components Σp,ii = −η0 |γ̇|ηn,i (φ) where
i = 1, 2 and 3. Defining the global Shields number:

Sh =
η0γ̇

∆ρga
, (4)

which is a constant control parameter for a given shear rate,
we may recast Equation (3) in dimensionless form. Assuming
that the normal viscosity coefficient ηn,3 is a function of φ

only, we write:

φ

Sh
=−dηn,3

dφ

dφ

dẑ
, (5)

where ẑ = z/a. Other lengths will be normalized in a similar
fashion in the following sections.

Equation (5) is formally analogous to the one obtained us-
ing the diffusive model of Acrivos, Mauri, and Fan 18 . By
identification, we can relate the normal viscosity ηn,3 to the
dimensionless shear-induced diffusivity D̂ of the diffusive
model, dηn,3/dφ = 9D̂/2 f (φ), where f (φ) is the hindrance
function accounting for the presence of other particles.
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Equation (5) can be solved together with an equation for
mass conservation to compute the total height ĥ of the re-
suspended sediment and the volume fraction profile, provided
one assumes an expression for ηn,3(φ). Several tentative em-
pirical expressions for this quantity –also called correlations
in the literature8,18– have been proposed, which generally as-
sume the following form:

ηn,3(φ) = λ

(
φ/φm

1−φ/φm

)n

, (6)

where φm is the volume fraction at which both shear and nor-
mal viscosities diverge. Zarraga, Hill, and Leighton Jr. 10

choose n = 3, λ = 0.24 and φm = 0.62 based on previous ex-
perimental results of viscous resuspension in a Taylor-Couette
geometry18. Morris and Boulay 4 obtain n = 2, λ = 0.38
and φm = 0.68 combining sets of data from large-gap Taylor-
Couette and parallel-plate migration experiments. This scal-
ing is very similar to the one proposed by Boyer, Guazzelli,
and Pouliquen7,27 who derived n = 2, λ = 0.6 and φm = 0.585
from pressure-imposed shear and rotating rod experiments.

The volume fraction profiles can also be computed using
the expressions for the normal viscosity proposed by Boyer,
Guazzelli, and Pouliquen 7 and by Zarraga, Hill, and Leighton
Jr. 10 . Indeed, Equations (5) and (6) allow us to derive ĥ− ẑ as
a function of φ :

ĥ− ẑ = Sh
λ

φm

φ(2φm−φ)

(φm−φ)2 for Boyer et al., (7)

ĥ− ẑ = Sh
λ

2φm

φ 2(3φm−φ)

(φm−φ)3 for Zarraga et al. (8)

Since these two expressions are strictly monotonic functions
of φ , we can invert them to generate numerical concentration
profiles. In the case of the Boyer et al. correlation, inverting
Equation (7) analytically results in:

φ(ẑ)
φm

= 1−
(

1+
φm

λSh
(ĥ− ẑ)

)−1/2

. (9)

Finally we need to estimate ĥ in Equations (8) and (9) in
order to superimpose numerical profiles to experimental data.
To do so, we use particle conservation,

ĥ0φm =
∫ ĥ

0
φ(ẑ)dẑ , (10)

together with the values of ĥ0 obtained in Appendix D for the
left and right cross-sections of the gap. While the resuspended
sediment heights following the correlation of Zarraga et al.
have to be computed numerically, we can derive a closed, ex-
plicit formula for ĥ from the correlation of Boyer et al.:

ĥ(Sh) = ĥ0 +2

√
λ ĥ0

φm
Sh . (11)

B. Height of the sediment

We first compare our results to the resuspension heights
measured by Acrivos, Mauri, and Fan 18 , who did not have
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FIG. 5. Variations of the relative resuspended sediment height h/h0
as a function of the Shields number. Blue squares show experimental
results for the left CS, and orange circles the right CS. The solid line
shows the sediment height from the Boyer et al. correlation and given
by Equation (11). The dotted line shows the sediment height from the
Zarraga et al. correlation. The dash-dotted line is the sediment height
predicted by Acrivos, Mauri, and Fan 18 .

access to local particle concentration measurements. We re-
port our experimental results in Figure 5 along with the an-
alytical expression of Equation (11) and two other estimates
of ĥ(Sh) that are very close to one another: the first is a nu-
merical derivation based on Zarraga, Hill, and Leighton Jr.
while the second is the historical asymptotic expression pro-
posed by Acrivos, Mauri, and Fan. Our experimental data lie
systematically above the Zarraga et al. correlation while also
disagreeing with Equation (11). Height measurements indeed
offer limited or even ambiguous insight on the processes at
play and highlights the critical importance of measuring the
bulk concentration profiles in the sediment in order to fully
understand viscous resuspension.

C. Direct estimation of the normal viscosity

The volume fraction profiles measured in the previous sec-
tion allow us to determine directly the normal viscosity. In-
deed, integrating Equation (5) from any normalized position ẑ
along the resuspended sediment height to ĥ leads to

ηn,3(ẑ) =
1

Sh

∫ ĥ

ẑ
φ(u)du . (12)

Interestingly, a single volume fraction profile provides an esti-
mation of the normal viscosity on a range of φ that depends on
the Shields number of the experiment. By varying the Shields
number, we could not only cover a wide range of volume frac-
tions but also test the robustness of the approach thanks to data
redundancy.

The normal viscosities ηn,3(ẑ) inferred from our experi-
mental measurements are shown as a function of φ(ẑ) in
Figure 6a together with the correlations of Boyer, Guazzelli,
and Pouliquen 7 , Morris and Boulay 4 and Zarraga, Hill, and
Leighton Jr. 10 (see section IV A). The maximum volume
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fraction was set to φm = 0.6 for all correlations following
the viscosity measurements reported in Appendix A 1 for ho-
mogeneous suspensions. Maximum volume fractions are in-
deed not universal and have to be adjusted depending on the
solid friction coefficient between particles26. Rather than col-
lapsing on a master curve independent of the applied shear,
the normal viscosity curves ηn,3(φ) shift downwards with in-
creasing shear rates. We checked that such a shear rate de-
pendence cannot be ascribed to the uncertainty on the local
volume fraction measurements or to a lack of precision on the
determination of ẑ = 0 and ẑ = ĥ; it is also unlikely that po-
tential wall slip or confinement effects both in the vertical and
the lateral directions are responsible for this progressive shift
(see Appendix B for more details). Moreover, none of these
curves match any of the three correlations presented above in
Section IV A. This result is quite intriguing since all shear
rate dependence should be taken into account by the Shields
number in Equations (5) and (12) for hard, spherical particles
with a constant friction coefficient.

Figure 6b further shows that, when rescaled by a factor
0.60Sh0.30, all normal viscosity profiles follow a universal
shape for φ ≥ 0.2. Significant discrepancies are observed at
low volume fractions, which can be attributed to the paral-
lax issues described in Appendix C. Additional experiments
shown in Appendix F and performed with a smaller amount
of the same particles support the same scaling for φ ≥ 30%.
Interestingly, while the correlation proposed by Zarraga et al.
can be clearly ruled out, the normal viscosity correlations of
Boyer et al. and Morris and Boulay now yield accurate de-
scriptions of the experimental data in this new set of axes,
down to volume fractions of about 0.1 for the largest shear
rates, whose profiles are least sensitive to parallax issues.
Such a shift amounts to using an effective Shields number in
Equation (12) given by Sheff = 1.65Sh0.70 to match the pre-
diction of Boyer et al., or 2.60Sh0.70 to match that of Morris
and Boulay. This reflects the fact that the normal viscosity
grows –unexpectedly– slower than γ̇ , or, equivalently, that re-
suspension becomes less and less efficient as the shear rate
increases.

D. Comparison with theoretical concentration pro�les

Figure 7a-b and 7c-d respectively show the numerical pro-
files of the volume fraction φ(z) computed from the Zarraga et
al. and the Boyer et al. normal viscosity correlations without
any free parameters. The Zarraga et al. correlation describes
the sediment height ĥ somewhat correctly for the three lower
shear rates and underestimates it for γ̇ > 100 s−1, as suggested
in Figure 5. More importantly, it fails to fit the data at low vol-
ume fractions, i.e. close to ẑ = ĥ, where the numerical profiles
display a vertical tangent whereas the experimental data show
a finite slope. In contrast, the Boyer et al. correlation cor-
rectly fits the data at γ̇ = 50 s−1 for almost all z but grossly
overestimates the sediment height at larger shear rates.

A much better agreement is obtained if we take the Shields
number as a free parameter in Equation (9). The numerical
profiles resulting from this procedure are displayed in Fig-
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FIG. 6. a) Normal viscosity ηn,3 as a function of volume fraction
φ for shear rates ranging from γ̇ = 25 s−1 (blue) to γ̇ = 1000 s−1

(yellow) for the left (thin solid lines) and right (thin dash-dotted
lines) cross-sections. ηn,3 is obtained from the experimental volume
fraction profiles using Equation (12). The black solid line shows
the normal viscosity correlation proposed by Boyer, Guazzelli, and
Pouliquen 7 , the dashed line corresponds to the one proposed by
Morris and Boulay 4 and the dotted line to the Zarraga, Hill, and
Leighton Jr. 10 correlation. b) Same data where the normal viscosity
has been rescaled by a factor 0.60Sh.0.30; the data coincide with the
Morris and Boulay correlation by changing the prefactor to 0.38.

ure 7e-f and coincide very well with the experimental data for
all shear rates and particle volume fractions. Figure 7g shows
the variation of the effective Shields number deduced from
the fitting procedure as a function of the global Shields num-
ber Sh. Therefore, using the Boyer et al. correlation with an
effective Shields number Sheff = 1.65Sh0.70 provides an ex-
cellent description of our data, consistently with Section IV C
and, as will be discussed in the next Section, with nonlinear
particle stresses as in Equation (13).

V. DISCUSSION

The volume fraction profiles obtained for a wide range of
shear rates provide a strong test of the constitutive behavior
of suspensions. From our observations, and after ruling out
parallax issues, wall slip and confinement effects, it appears
that the SBM with the standard viscous scaling of all stresses
is not able to describe our system. Instead, the particle stresses
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FIG. 7. Particle volume fraction profiles φ(z) from the left cross-section for γ̇ = 25, 50, 100 [a), c) and e)] 250, 500 and 1000 s−1 [b) and
d) and f)]. Same color code as in Figures 4 and 6. Circles correspond to experimental data whereas solid lines show the numerical profiles
computed from (a-b) the Zarraga et al. correlation with no free parameter, (c-d) the Boyer et al. correlation with no free parameter and (e-f)
the Boyer et al. correlation with the effective Shields number shown in (g) where the dashed line is Sh = Sheff and the solid line is the best
power-law fit Sheff = 1.65Sh0.70.

seem to obey the following scaling:

Σp ∝

(
φ/φm

1−φ/φm

)2

γ̇
0.7 . (13)

Let us discuss separately the dependence of the particle stress
Σp with respect to the volume fraction and to the shear rate.
Although coupling between these two variables cannot be ex-
cluded in the general case, this separation is natural in our
thin-gap Taylor-Couette geometry, as the shear rate is homo-
geneous. Furthermore, such an approach has been systemati-
cally used in the framework of SBM.

A. E�ect of volume fraction

As recalled in section IV A, two main correlations for the
normal viscosity ηn,3(φ) have been proposed in the literature.
The main difference between the correlation of Zarraga et al.
and that of Morris and Boulay 4 or Boyer et al. is the value
of the exponent n in Equation (6), which sets both the asymp-
totic behavior at low volume fraction ηn,3 ∼ φ n and the one
close to jamming. The fits to the concentration profiles of
Figure 7 and the direct normal viscosity determination of Fig-
ure 6 lead to the same conclusion: the n = 2 correlation of
Boyer, Guazzelli, and Pouliquen 7 matches our results much
better that the n = 3 equation proposed by Zarraga, Hill, and
Leighton Jr. 10 . In particular, close to the top of the sediment,
the oblique asymptotes of the φ(z) profiles highlight the n = 2
scaling of the normal viscosity at low φ , which was proposed
–yet never measured– by Morris and Boulay and by Boyer et
al..

Strikingly, the n = 3 scaling was deduced in Ref. 10 from
viscous resuspension experiments in a Taylor-Couette geom-
etry, in which Acrivos, Mauri, and Fan 18 measured the resus-
pended sediment height. However, as shown in Figure 5 and
contrary to the volume fraction profiles, this height provides
limited insight into the asymptotic behavior of the normal vis-
cosity at low φ , which might allow an n = 3 scaling to fit the
data.

From a physical point of view, the φ 2 scaling at low volume
fractions points to pairwise interactions, contrary to a φ 3 scal-
ing which would rather hint at three-body hydrodynamic inter-
actions as considered in Ref. 28. As pointed out by Lhuillier5,
both non-hydrodynamic and hydrodynamic forces could in
principle lead to shear-induced migration. It has been argued
that the effect of non-hydrodynamic forces such as contact
forces between particles is likely to dominate at high volume
fraction6. Our finding that Σp ∝ φ 2 at low φ thus indicates that
the shear-induced migration evidenced in resuspension exper-
iments originates –at least for the system studied here– from
non-hydrodynamic interactions, even at low volume fractions,
where the shear viscosity is dominated by viscous stress. As
will be shown in the following, these non-hydrodynamic in-
teractions are likely to be contact forces.

B. E�ect of shear-rate: nonlinear particle stress

The nonlinear power-law scaling of the particles stresses
Σp ∝ γ̇0.7 [Equation (13)] is not expected for a viscous sus-
pension when interparticle contact forces are modeled by an
ideal Coulomb friction law9. Many experimental results, how-
ever, show departures from the simple viscous scaling Σp ∝ γ̇

through a shear-thinning viscosity at high volume fraction
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in non-Brownian suspensions10–14. For our suspension, we
find in Appendix A 1 that η ∝ γ̇−0.17 for the largest volume
fractions. Recently, several authors have introduced non-
Coulomb friction laws to explain such shear thinning, either
by adding an explicit velocity dependence13 or a normal stress
dependence12,14 to the microscopic sliding friction coefficient
between particles.

Still, the shear viscosity cannot be correlated directly to the
particle stress that we extract from the shear-induced resus-
pension experiment. Indeed, the shear viscosity of the sus-
pension finds its contribution from both hydrodynamic and
contact stresses. In order to get some insight into contact
stresses, one needs to perform, for example, shear reversal
experiments29–32. In such experiments, the suspension is first
sheared at a given shear stress or shear rate in a simple shear
flow until steady-state is reached. The direction of shear is
subsequently reversed (keeping the same value of the applied
shear rate or stress), and the viscosity evolution with strain is
recorded. In the presence of contact forces, most contacts are
predominantly oriented in the compression direction of sim-
ple shear. Upon shear reversal, all of these contacts are now in
traction and are suddenly broken, which results in an abrupt
decrease of the viscosity. The minimum viscosity achieved
during the reversal can then be associated mostly with hy-
drodynamic interactions, whereas the difference between the
steady-state viscosity and this minimum provides the contact
contribution to the viscosity32.

In order to estimate the particle contact contribution to
the shear viscosity, we performed shear reversal experiments
on suspensions composed of the same glass beads as in the
resuspension experiments, but in a more viscous fluid to
avoid sedimentation. These experiments are discussed in Ap-
pendix A 2 and the results are shown in Figure 10. Follow-
ing Peters et al. 32 to analyze these results, we show that the
hydrodynamic part of the shear viscosity is essentially rate-
independent, whereas the contact contribution to the viscosity
shows a pronounced shear-thinning behavior (see Table I). It
suggests that the contact contribution to stress scales as γ̇0.76,
which is broadly consistent with particle stresses scaling as
γ̇0.7 in resuspension experiments [Equation (13)]. Altogether,
these observations point to non-Coulomb friction between our
glass particles, as recently proposed by Chatté et al. 12 and by
Lobry et al. 14 . This means that the resuspension properties
of non-Brownian particles should depend much on the exact
nature of the particles and on the way their friction coefficient
varies with load and velocity.

VI. CONCLUSION

Previous experimental studies of shear-induced resuspen-
sion in the literature focused on the height of the resuspended
sediment and needed to assume a viscous scaling either for
the particle stress (in the case of the SBM) or for the diffu-
sion coefficient (in the case of the Acrivos model) in order to
model their observations. This assumption is justified in the
case of rate-independent Coulomb friction between the parti-
cles. Here, we have obtained local volume fraction profiles for

resuspension in a Taylor-Couette geometry thanks to X-ray
imaging. A broad range of volume fractions is covered un-
der various applied shear rates, which allows us to investigate
both the volume fraction and shear rate dependence of parti-
cle stresses. In the framework of the SBM, our data demon-
strate that the particle stresses asymptotically scale as φ 2 at
low volume fractions and display a nonlinear, shear-thinning
scaling with respect to the shear rate. The latter is consistent
with the shear thinning observed both in the shear viscosity
of the suspension and in the contribution of contacts to this
viscosity. This likely points to a non-Coulomb or velocity-
weakening friction between the glass particles. Similar ex-
periments should now be conducted on other non-Brownian
particles in order to get more insight into the impact of the
precise local contact laws between pairs of particles on the
particle stresses, as well as on the efficiency of resuspension.
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Appendix A: Macroscopic behavior

In this Appendix we report and discuss the steady-state
macroscopic viscosity of suspensions. We also present the
results of a series of shear reversal experiments performed to
characterize the particle contact contribution to the shear vis-
cosity.

We use the same glass spheres as those used in the resus-
pension experiments of the main text. This time, the particles
are suspended in a mixture of 20% wt. water and 80% wt.
UCON (instead of 65% wt. water, 35% wt. UCON), which
is also a Newtonian fluid, with a viscosity η0 ' 14.5 Pa.s−1

at 25◦C. Suspensions are prepared at various volume fractions
ranging from 10 to 50%. We use a Kinexus Ultra+ rheome-
ter (Malvern Panalytical) equipped with a wide-gap Taylor-
Couette geometry, with sandblasted surfaces (rotor diame-
ter 25 mm, stator diameter 37 mm), to characterize the sus-
pensions. Experiments are conducted in the controlled-stress
mode. The shear stress and shear strain are obtained from the
applied torque and the measured rotation angle by using the
standard equations for the Taylor-Couette geometry at the ro-
tor surface.

1. Steady-shear viscosity

For each volume fraction, the steady-shear apparent viscos-
ity is measured by applying a series of logarithmically-spaced
constant shear stresses, corresponding to shear rates varying
between 0.01 and 10 s−1. Each shear stress is applied for a
duration of 10 s.

The steady-state viscosity η is plotted as a function of the
steady-state shear rate in Fig. 8 for various particle volume
fractions φ . At low φ , a Newtonian behavior is observed with
a viscosity higher than that of the interstitial fluid. As the vol-
ume fraction is increased, the viscosity increases and a mild
shear-thinning is observed. For φ = 50%, the apparent vis-
cosity follows a scaling η ∝ γ̇−0.17. Similar shear-thinning
at high particle concentration has already been reported in a
number of other non-Brownian suspensions10–14.

In order to characterize the viscosity increase with vol-
ume fraction, we plot the dimensionless viscosity η(φ , γ̇ =
1 s−1)/η0 as a function of φ in Figure 9. Since the sus-
pensions show shear-thinning at high concentrations, we also
show error bars extending from the lowest to the highest di-
mensionless viscosity measured at each φ within the range of
investigated shear rates. The increase of η/η0 with φ is sim-
ilar to that reported for other non-Brownian suspensions8 and
may be fitted fairly well to a Maron-Pierce law33:

η

η0
=

(
1− φ

φm

)−2

, (A1)

with φm = 0.6, which is in the range of φm values typically
observed for monodisperse frictional spheres7,8,25,26.
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FIG. 8. Shear viscosity η of a suspensions of glass spheres (diam-
eter 2a = 250 µm) in an 80% wt. UCON aqueous solution as a
function of the shear rate γ̇ . The thick black line shows the viscos-
ity of the pure fluid. The purple circles, blue left pointing triangles,
teal squares, green diamonds and yellow upwards pointing triangle
respectively correspond to φ = 10%, 20%, 40%, 45% and 50%. The
gray solid line provides the best power-law fit η ∝ γ̇−0.17 to the 50%
data.
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FIG. 9. Dimensionless shear viscosity η/η0 of a suspension of glass
spheres (diameter 2a = 250µm) in an 80% wt. UCON aqueous so-
lution, plotted for γ̇ = 1 s−1, as a function of the particle volume
fraction φ . Error bars on the experimental data show the maximum
and minimum value measured over the range of shear rates of Fig. 8.
The empirical viscosity laws of Maron and Pierce33 (solid line) and
Krieger and Dougherty34 (dashed line), both with φm = 0.6, are also
shown.

2. Shear reversal experiments

Next, following Lin et al. 31 and Peters et al. 32 , we use
shear reversal experiments to evaluate the particle contact
contribution to the shear viscosity. As in Blanc, Peters, and
Lemaire 30 , since we use a stress-controlled rheometer, we
work in the controlled-stress mode in order to monitor accu-
rately the transient evolution of the viscosity with strain. We
first shear the suspension at a constant imposed stress τ until
the shear strain γ exceeds 10 and a steady state is reached. We
then apply a resting period of 10 s at zero stress before apply-
ing a stress −τ until a new steady state is reached. We call γR
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FIG. 10. Shear Reversal experiments of a 50 % wt. suspension of glass particles in an 80 % wt. UCON-20% wt. aqueous mixture. a)
Steady-state relative viscosity η/η0 of the suspension plotted as a function of the strain before reversal γR− γ . Colors code for the applied
shear stress ranging from 11.5 Pa (yellow) to 1310 Pa (purple). b) Evolution of the relative viscosity η/η0 as a function of the shear strain
after reversal γ− γR. The shear reversal data for the all shear rates were smoothed over 10 samples for clarity. c) Relative viscosity η/η0 as a
function of the applied shear rate. Squares: steady-state viscosity, obtained from a). Circles: relative viscosity minimum ηmin/η0 reached in
b) soon after reversal. Triangles: contact contribution to the suspension viscosity ηC. Diamonds: hydrodynamic contribution to the suspension
viscosity ηH. Contact and hydrodynamic contributions are deduced from the decomposition proposed by Peters et al. 32 , which we recall in
Equations (A2) and (A3). Same color codes as in a) and b).

the reversal shear strain attained when the stress is set to −τ .
We monitor the evolution of the shear viscosity both before
and after shear reversal. These measurements are repeated for
the same values of τ as in the previous section and shown in
Fig. 10a-b for a suspension of volume fraction φ = 50%.

As already observed in the literature29,31,32, the shear vis-
cosity just after reversal is smaller than the steady-state vis-
cosity and it subsequently increases with strain until it reaches
a steady state for a strain of order 5. Figure 10b-c shows that
the steady-state viscosity is more sensitive to the shear rate
than the viscosity minimum ηmin reached shortly after shear
reversal. This last observation is consistent with the numeri-
cal simulations of Peters et al. 32 , which suggest the following
decomposition:

η = η
H +η

C , (A2)

ηmin = η
H +0.17η

C , (A3)

ηH and ηC being the hydrodynamic and contact contributions
to viscosity; the choice of the 0.17 numerical factor may a pri-
ori depend on the interparticle, local friction coefficient. We
perform a similar decomposition in Figure 10c. Using a nu-
merical factor 0.12 (instead of 0.17) in Equation (A3), we ob-
serve that the hydrodynamic part of the suspension viscosity
ηH is constant, as expected of a suspension of non-Brownian
hard spheres. Following that choice, the contact viscosity ηC

decreases for increasing shear rates γ̇ , and point to an aver-
age shear-thinning exponent of −0.24± 0.02 for the contact
viscosity, as shown in Table I. This exponent broadly agrees
with the −0.30 shear-thinning exponent of the normal viscos-
ity obtained from resuspension experiments in the main text.

φ 0.10 0.20 0.40 0.45 0.50

n (total) −0.01 −0.02 −0.15 −0.18 −0.17

n (contacts) / / −0.25 −0.25 −0.22

TABLE I. Shear-thinning exponents n of the suspension viscosity η

with the shear rate: η ∝ γ̇n. The total exponent is obtained from
the flow curves of Fig. 8. The contact exponent is deduced from the
viscosity decomposition of Peters et al. 32 for shear reversal experi-
ments, such as the one shown in Fig. 10. A viscous scaling implies
n = 0.

Appendix B: E�ect of slip and con�nement in the experiment

The results shown in Figures 6 and 7, discussed in Sec-
tion V, are striking and counter intuitive. We must ensure that
they do not result from undesirable physical effects present in
our experiment.

1. Wall slip

Slip may be present at the walls of our Taylor-Couette cell.
Experiments by Jana, Kapoor, and Acrivos 35 conducted in
suspensions of non-Brownian hard spheres in a Newtonian
solvent show that slip becomes noticeable only for volume
fractions above 0.45. The slip rate then increases with φ

but remains quite limited up to φ = 0.52, the maximum vol-
ume fraction investigated by Jana, Kapoor, and Acrivos 35 . In
our experiments, the profiles of ηn,3(φ) deviate much more
strongly from the Boyer correlation at high shear rates, where
the volume fraction φ is lower than at low shear rates. There-
fore, it is very unlikely that such a deviation results from wall
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slip.

2. Con�nement

The peculiar dependence of Σp with φ and γ̇ could also be
due to particle confinement present in our geometry. Confine-
ment effects may come from the narrow gap width of the ge-
ometry or from the limited height of the sediment h compared
to the particle radius a.

a. Lateral confinement Our experimental configuration
involves ∼ 8 particles across the gap, which is slightly below
the classical limit requiring at least ∼ 10 particle diameters to
accurately reflect bulk behavior in granular materials36. How-
ever, radial confinement may not be that crucial since we re-
port layering that extends over only 1 to 2 particle radii from
the walls without any other significant radial gradients in the
volume fraction.

b. Vertical confinement Turning to the case of vertical
confinement, we note that imposing a zero velocity at the bot-
tom of the cup provides incompatible boundary conditions
with the velocity of the inner cylinder that imposes the global
shear rate. The consequences of such incompatibility should
be even more drastic for smaller sediment heights. To test
this idea, we performed additional resuspension experiments
with a number of particles two times smaller than in previous
measurements (see Appendix F). Such experiments show a
larger dispersion of the normal viscosity ηn,3 when plotted as
a function of φ . Yet, the scaling proposed in Equation (13)
remains valid for the larger volume fractions, i.e. close to
the bottom wall, suggesting that it results from a bulk prop-
erty of the suspension rather than from confinement effects.
A better control of boundary conditions at the edges of the
geometry (top or bottom) is possible, for instance by using a
non-miscible, very dense fluid such as mercury at the bottom
of the geometry18,37 or by considering positively buoyant par-
ticles in a dense fluid. Such experiments could confirm the
general nature of Equation (13).

Appendix C: Geometrical Approximations and Parallax Issues

In this Appendix, we provide more details on the approxi-
mations made in Section II B. We first describe how comput-
ing φ(r,z) involves averaging over different radial positions.
We then detail the impact of a finite distance between the X-
ray source, the geometry and the detector on the final mea-
surements, which we shall refer to as parallax issues in the
main text.

1. General Approximation

For an X-ray source located at infinity, the apparent thick-
ness w(x) of the slab of suspension crossed by the X-rays at a
position x within the two cross-sections defined in Figure 1b

is simply given by:

w(x) = 2
√

R2
o− x2 . (C1)

X-rays actually cross slabs of the suspension corresponding to
multiple values of the radial distance r. Given the notations in
Figure 1b, the integral version of the Beer-Lambert law reads:

A(x,z) = 2(εp− ε f )
∫ Ro

r=x
φ(r,z)

r√
r2− x2︸ ︷︷ ︸
ζ (x,r)

dr . (C2)

The approximation that we make in the main text consists in
assuming that:

φ(r = x,z)' A(x,z)
w(x)(εp− ε f )

. (C3)

Since 2
∫ Ro

x ζ (x,r)dr = w(x), Equation (C2) shows that the
above approximation is true only for r-independent concen-
tration fields or for x very close to the outer edge. In the latter
case, however, the precision on the volume fraction measure-
ment is poor due to the small value of w(x) (see Appendix D
for more details).

Consequently, the apparent φ(r,z) inferred from Equa-
tion (C3) is actually a weighted average of the true φ(r,z) over
x ≤ r ≤ Ro. The weight of r ' x in this averaging process is
particularly high since ζ (x,r) diverges for r→ x. This means
that in the absence of strong radial gradients in the particle
volume fraction, we may use Equation (C3) to obtain a rea-
sonable estimate of the local volume fraction. In any case, our
study is mostly focused on the vertical distribution of particles
so that the details of the volume fraction field in horizontal
planes can be averaged out.

2. Finite distance e�ects: parallax issues

In practice, both the X-ray source and the detector are lo-
cated at a finite distance from the Taylor-Couette geometry.
This implies that the incident X-rays, depicted so far as a par-
allel beam, actually diverge from the source. This has a direct
impact on the data especially in the vertical plane.

a. Changes in the horizontal plane

First, the width w(x) has to be computed for a source lo-
cated at a finite distance d ' 25 cm from the center of the ge-
ometry. The location x at which an X-ray hits the sensor now
varies with the distance between the source and the detector,
D ' 70 cm. The geometrical relations shown in Figure 11
allow us to derive the finite-distance slab thickness of the sed-
iment crossed by the X-rays as a function of x through the use
of θ , defined as tanθ = x/D:

wFD(x) = 2Ro sinβ (C4)

= 2

√
R2

o−
d2x2

D2 + x2 . (C5)
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FIG. 11. Impact of the finite distance between source, geometry and
detector in the horizontal plane. We notice that x is proportional to D

The boundaries of our cross-sections are defined by two
limit rays of angles θm and θM , such that d sinθm = Ri and
d sinθM = Ro. We can relate these angles to the locations xm
and xM where the limit rays hit the sensor plane:

xm =
RiD√
d2−R2

i

, (C6)

xM =
RoD√
d2−R2

o
. (C7)

We notice that xM − xm is not equal to Ro−Ri and is instead
proportional to D. The size –expressed as a number of pixels–
of the cross-section in our raw images thus depends on both
the true resolution of the sensor (the number of pixels per mm)
and the distance D. In practice, we choose a scaling factor S
in the pictures so that the apparent cross-section size is equal
to S(xm− xM) = Ro−Ri.

Finally, the impact of the finite distance between the source
and the detector can be quantified as [wFD(Sx)−w(x)]/w(x).
Given our estimates for d/Ro ≥ 10 and D/Ro ≥ 20, the finite
distance leads to corrections on w that are always smaller than
0.1% and can therefore be neglected.

b. Impact in the vertical direction

Since the source is pointlike and set at a finite distance from
the geometry, X-rays may cross the suspension at some angle
relative to the horizontal direction. Consequently, as shown
in Figure 12, our measurements are also averaged vertically
over a typical “smoothing” length ` that can be expressed as
a function of the vertical distance ∆z between the source and
the slab of suspension under investigation and as a function of

the slab thickness w(x):

`= 4D
w(x)|∆z|

4d2−w2(x)
. (C8)

In our setup, the vertical position of the source is z ' 16 mm
in the reference frame of Figure 2. In the case of the sedi-
ment at rest, there should be a sharp transition from φ = φm to
φ = 0 at the top of the sediment. We can thus readily estimate
` by measuring the typical width of the transition zone on the
experimental map of Figure 2a. In the worst-case scenario,
i.e. at the bottom of the sediment and close to the inner wall,
we predict `' 3.3 mm, which is compatible with the concen-
tration maps of Figure 2. We further predict ` ' 1.4 mm at
the top of the sediment at rest and close to the inner wall, in
fair agreement with Figure 2a-b. We finally compute an esti-
mate of ` at the centre of the cross-section, used to derive the
concentration profiles examined in Sections III B and IV. We
obtain `= 0.146|∆z| which amounts to 4 particle diameters at
the top of the sediment and to 9 particle diameters at the bot-
tom of the sediment. The impact of parallax is very limited
at the bottom of the sediment since no significant variations
of φ are observed over `. Rather, its impact is maximal at the
top of the sediment and for low shear rates where φ show the
strongest spatial variations. Therefore, parallax issues along
the vertical direction may explain the dispersion of the nor-
mal viscosity data at low volume fraction in Figures 6 and 16
as well as the slight curvature of the concentration profiles for
φ very close to 0 in Figures 3, 4 and 7. We believe the impact
of this parallax issue remains limited to such details.
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FIG. 12. Parallax issues along the vertical direction. For a pointlike
source located at a vertical distance ∆z from the suspension slab un-
der study, volume fraction measurements are smoothed over a typical
size `, proportional to the suspension thickness crossed by the X-rays
w(x) and to ∆z for small X-ray angles.
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Appendix D: Data validation and calibration

1. Locating the gap in X-ray images

When computing φ(r,z) using Equation (C3), we notice
that both A and w tend to zero for x = Ro. Therefore, volume
fraction measurements close to the outer cylinder are particu-
larly sensitive to where we define x = Ro in the raw images.
Any imprecision δx on the position of the outer wall may
result in dividing A by an effective thickness w(x+ δx) that
greatly differs from the actual w(x) in the vicinity of x = Ro.
Thus, we carefully choose the position of x=Ro in both cross-
sections so as to (i) obtain a gap width compatible with the
actual gap of the geometry (we respectively get 2.00 mm and
2.06 mm for the left and right cross-sections) and (ii) obtain a
local minimum of volume fraction at the outer edge of the ge-
ometry, followed by a progressive increase of φ up to r≈ a for
all shear rates. Our setup indeed allows us to resolve particles
that are in contact with the walls, which naturally introduces
an apparent particle concentration gradient at the outer bound-
ary.

2. Estimating the extinction coe�cients εp and ε f

The last step when converting A(x,z) into φ(r,z) consists in
estimating the proportionality constant between A/w and φ ,
namely the extinction coefficient difference εp− ε f . To this
aim, we perform the following integral:

2πρp

∫ Ro

Ri

xdx
∫

∞

0
dz

A(x,z)
w(x)

= M(εp− ε f ) (D1)

For a given shear rate, we compute the above integrals for each
cross-section. Measuring independently the particle mass
M = 4.00± 0.01 g with a precision scale allows us to de-
duce the extinction coefficient difference εp− ε f from Equa-
tion (D1). Figure 13 shows all the individual estimations of
εp− ε f together with the average value εp− ε f ≈ 14.9 m−1.

Such an extinction coefficient difference is compatible with
an ordered layer at the outer edge of the experiment. We have
plotted in Figure 14 the volume fraction profiles for the pix-
els corresponding to the outermost concentration profile zone
(see Section III B and Figure 3) for the sediment at rest, us-
ing εp−ε f = 14.9. We notice that φ sometimes exceeds 0.74,
yet we have verified that the excursions above φ = 0.74 never
occur over more than one particle diameter, reflecting both on
the ordering at the wall and the subparticle resolution of the
X-ray apparatus. The average profile (Figure 14, in black)
shown in the main text only seldom exceeds this value, con-
firming our data validation scheme.

Finally, we estimate the initial height h0 to be used for the
models in Section IV D from the measured particle mass M
and by taking φm = 0.6 for the maximum volume fraction so
that h0 = M/[ρπ(R2

o−R2
i )φm] = 70.4a. In practice, since we

observe discrepancies in the sediment height between the left
and right cross-sections (see Figures 2 and 4), we correct h0
for each cross-section based on the data in Figure 13 and ob-
tain ĥ0 = 72.8 for the left CS and 68.6 for the right CS.
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FIG. 13. Estimation of the differential extinction coefficient εp− ε f
deduced from the concentration profiles when using Equation (D1)
with the total particle mass M = 4.00 g. Blue squares: estimation
from the left CS. Beige circles: estimation from the right CS. The
black line shows the average over the two CS. The dashed line cor-
responds to the global average εp− ε f = 14.9 m−1.
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FIG. 14. Particle volume fraction profiles near the outer wall of
the Taylor-Couette geometry obtained with εp− ε f = 14.9 m−1 for
γ̇ = 0 s−1. Gray lines correspond to a time-average of φ(r,z) at steady
state for r values corresponding to the 6 pixels closest to the outer
cup on the raw images for both the left and right cross-sections. The
thick black line is an average of the gray lines. The dashed line cor-
responds to φcfc = 0.74, which is the upper volume fraction limit for
monodisperse spheres.

Appendix E: Spatiotemporal diagrams of resuspension
experiments

Figure 15 displays particle volume fraction maps averaged
over the gap width as a function of vertical position z and time
t for three different applied shear rates. All three plots show
that a steady profile is reached after t ' 70 s. Hence, the mean
volume fraction fields shown in Figure 2, where the temporal
average was performed over t = 90–150 s, do not include any
transient regime and fully characterize viscous resuspension
at the steady state.
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FIG. 15. Spatiotemporal maps of the particle volume fraction for
three different shear rates: a) 500 s−1; b) 100 s−1; c) 25 s−1. Each
individual φ(r,z, t) at time t is averaged over r in order to provide
a space-time representation in the (z, t) plane. The mean volume
fraction fields presented in Figure 2 are averaged over the last 120
images, i.e. from the white dashed line to the right end of the axis.

Appendix F: Normal viscosities for a di�erent number of
particles

Additional experiments have been conducted using only
half of the particle number used in the main text, bringing
the global volume fraction in the experiment down to 5%.
Figure 16 shows the normal viscosities ηn,3 rescaled by the
same factors as those used in Figure 6. Discrepancies be-
tween shear rates are rather high for volume fractions below
φ = 30%. This is to be expected since the resuspended sedi-
ment height is smaller, leading to larger parallax issues in the
vertical direction. Nevertheless, their behavior at large vol-
ume fractions looks universal and matches the correlation pro-
posed by Boyer, Guazzelli, and Pouliquen 7 fairly well. This
result confirms that resuspension does not depend on the total
number of particles, and hence that the process is not strongly
affected by boundary conditions.
1G. G. Stokes, On the effect of the internal friction of fluids on the motion of
pendulums, Vol. 9 (Pitt Press Cambridge, 1851).

2A. Einstein, “Eine neue Bestimmung der Moleküldimensionen,” Ann. Phys.
324, 289–306 (1906).

3P. R. Nott and J. F. Brady, “Pressure-driven flow of suspensions: Simulation
and theory,” J. Fluid Mech. 275, 157–199 (1994).

4J. F. Morris and F. Boulay, “Curvilinear flows of noncolloidal suspensions:
The role of normal stresses,” J. Rheol. 43, 1213–1237 (1999).

5D. Lhuillier, “Migration of rigid particles in non-Brownian viscous suspen-
sions,” Phys. Fluids 21, 023302 (2009).

6P. R. Nott, É. Guazzelli, and O. Pouliquen, “The suspension balance model
revisited,” Phys. Fluids 23, 043304 (2011).

7F. Boyer, É. Guazzelli, and O. Pouliquen, “Unifying suspension and gran-
ular rheology,” Phys. Rev. Lett. 107, 188301 (2011).

0 10 20 30 40 50 60
10−3

10−2

10−1

100

101

φ

0.
6
0
S
h
0
.3
0
η n

,3
(φ
)

FIG. 16. Rescaled normal viscosity 0.60Sh0.3
ηn,3 as a function of

volume fraction φ for experiments with a global volume fraction of
5%, plotted following the results of Figure 6. Colored lines depict
experimental data: shear rates range from 25 s−1 (blue) to 1000 s−1

(yellow). The black solid line corresponds to the normal viscosity
correlation proposed by Boyer et al.7.

8É. Guazzelli and O. Pouliquen, “Rheology of dense granular suspensions,”
J. Fluid Mech. 852 (2018).

9É. Guazzelli and J. F. Morris, A Physical Introduction to Suspension Dy-
namics (Cambridge University Press, 2012).

10I. E. Zarraga, D. A. Hill, and D. T. Leighton Jr., “The characterization
of the total stress of concentrated suspensions of noncolloidal spheres in
Newtonian fluids,” J. Rheol. 44, 185–220 (2000).

11T. Dbouk, L. Lobry, and E. Lemaire, “Normal stresses in concentrated
non-Brownian suspensions,” J. Fluid Mech. 715, 239–272 (2013).

12G. Chatté, J. Comtet, A. Niguès, L. Bocquet, A. Siria, G. Ducouret,
F. Lequeux, N. Lenoir, G. Ovarlez, and A. Colin, “Shear thinning in non-
Brownian suspensions,” Soft Matt. 14, 879–893 (2018).

13R. I. Tanner, C. Ness, A. Mahmud, S. Dai, and J. Moon, “A bootstrap
mechanism for non-colloidal suspension viscosity,” Rheol. Acta 57, 635–
643 (2018).

14L. Lobry, E. Lemaire, F. Blanc, S. Gallier, and F. Peters, “Shear thinning
in non-Brownian suspensions explained by variable friction between parti-
cles,” J. Fluid Mech. 860, 682–710 (2019).

15C. Gamonpilas, J. F. Morris, and M. M. Denn, “Shear and normal stress
measurements in non-Brownian monodisperse and bidisperse suspensions,”
J. Rheol. 60, 289–296 (2016).

16É. Couturier, F. Boyer, O. Pouliquen, and É. Guazzelli, “Suspensions in a
tilted trough: Second normal stress difference,” J. Fluid Mech. 686, 26–39
(2011).

17D. T. Leighton Jr. and A. Acrivos, “Viscous resuspension,” Chem. Eng. Sci.
41, 1377–1384 (1986).

18A. Acrivos, R. Mauri, and X. Fan, “Shear-induced resuspension in a Cou-
ette device,” Int. J. of Multiph. Flow 19, 797–802 (1993).

19S. Deboeuf, N. Lenoir, D. Hautemayou, M. Bornert, F. Blanc, and G. Ovar-
lez, “Imaging non-Brownian particle suspensions with X-ray tomography:
Application to the microstructure of Newtonian and viscoplastic suspen-
sions,” J. Rheol. 62, 643–663 (2018).

20M. Gholami, A. Rashedi, N. Lenoir, D. Hautemayou, G. Ovarlez, and
S. Hormozi, “Time-resolved 2d concentration maps in flowing suspensions
using X-ray,” J. Rheol. 62, 955–974 (2018).

21J.-C. Bacri, C. Frenois, M. Hoyos, R. Perzynski, N. Rakotomalala, and
D. Salin, “Acoustic study of suspension sedimentation,” Europhys. Lett. 2,
123 (1986).

22G. Y. Onoda and E. G. Liniger, “Random loose packings of uniform spheres
and the dilatancy onset,” Phys. Rev. Lett. 64, 2727–2730 (1990).

23K. J. Dong, R. Y. Yang, R. P. Zou, and A. B. Yu, “Role of interparti-
cle forces in the formation of random loose packing,” Phys. Rev. Lett. 96,
145505 (2006).



16

24M. Jerkins, M. Schröter, H. L. Swinney, T. J. Senden, M. Saadatfar, and
T. Aste, “Onset of mechanical stability in random packings of frictional
spheres,” Phys. Rev. Lett. 101, 018301 (2008).

25G. Ovarlez, F. Bertrand, and S. Rodts, “Local determination of the consti-
tutive law of a dense suspension of noncolloidal particles through magnetic
resonance imaging,” J. Rheol. 50, 259–292 (2006).

26R. Mari, R. Seto, J. F. Morris, and M. M. Denn, “Nonmonotonic flow
curves of shear thickening suspensions,” Phys. Rev. E 91, 052302 (2015).

27F. Boyer, O. Pouliquen, and É. Guazzelli, “Dense suspensions in rotating-
rod flows: normal stresses and particle migration,” J. Fluid Mech. 686, 5–25
(2011).

28Y. Wang, R. Mauri, and A. Acrivos, “Transverse shear-induced gradient
diffusion in a dilute suspension of spheres,” Journal of Fluid Mechanics
357, 279–287 (1998).

29F. Gadala-Maria and A. Acrivos, “Shear-induced structure in a concentrated
suspension of solid spheres,” J. Rheol. 24, 799–814 (1980).

30F. Blanc, F. Peters, and E. Lemaire, “Local transient rheological behavior
of concentrated suspensions,” J. Rheol. 55, 835–854 (2011).

31N. Y. Lin, B. M. Guy, M. Hermes, C. Ness, J. Sun, W. C. Poon, and I. Co-
hen, “Hydrodynamic and contact contributions to continuous shear thick-
ening in colloidal suspensions,” Phys. Rev. Lett. 115, 228304 (2015).

32F. Peters, G. Ghigliotti, S. Gallier, F. Blanc, E. Lemaire, and L. Lobry,
“Rheology of non-Brownian suspensions of rough frictional particles under
shear reversal: A numerical study,” J. Rheol. 60, 715–732 (2016).

33S. H. Maron and P. E. Pierce, “Application of Ree-Eyring generalized flow
theory to suspensions of spherical particles,” Journal of colloid science 11,
80–95 (1956).

34I. M. Krieger and T. J. Dougherty, “A mechanism for non-Newtonian flow
in suspensions of rigid spheres,” Transactions of the Society of Rheology
3, 137–152 (1959).

35S. Jana, B. Kapoor, and A. Acrivos, “Apparent wall slip velocity coeffi-
cients in concentrated suspensions of noncolloidal particles,” J. Rheol. 39,
1123–1132 (1995).

36B. Andreotti, Y. Forterre, and O. Pouliquen, Granular Media: Between
Fluid and Solid (Cambridge University Press, 2013).

37E. D’Ambrosio, F. Blanc, F. Peters, L. Lobry, and E. Lemaire, (2019), in
preparation.


