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Abstract Over the past decades, operator splitting methods have become
ubiquitous for non-smooth optimization owing to their simplicity and effi-
ciency. In this paper, we consider the Forward–Douglas–Rachford splitting
method, and study both global and local convergence rates of this method.
For the global rate, we establish a sublinear convergence rate in terms of a
Bregman divergence suitably designed for the objective function. Moreover,
when specializing to the Forward–Backward splitting, we prove a stronger
convergence rate result for the objective function value. Then locally, based
on the assumption that the non-smooth part of the optimization problem is
partly smooth, we establish local linear convergence of the method. More pre-
cisely, we show that the sequence generated by Forward–Douglas–Rachford
first (i) identifies a smooth manifold in a finite number of iteration, and then
(ii) enters a local linear convergence regime, which is for instance character-
ized in terms of the structure of the underlying active smooth manifold. To
exemplify the usefulness of the obtained result, we consider several concrete
numerical experiments arising from applicative fields including, for instance,
signal/image processing, inverse problems and machine learning.
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1 Introduction

Operator splitting methods are iterative schemes to solve inclusion and opti-
mization problems by decoupling the original problem into subproblems, that
are easy to solve. These schemes evaluate the individual operators, their re-
solvents, the linear operators, all separately at various points in the course
of iteration, but never the resolvents of sums nor of composition by a linear
operator. Since the first operator splitting method developed in the 70’s for
solving structured monotone inclusion problems, the class of splitting methods
has been regularly enriched with increasingly sophisticated algorithms as the
structure of problems to handle become more complex. We refer the readers to
[1] and references therein for a through account of operator splitting methods.

In this paper, we consider a subspace constrained optimization problem,
where the objective function is the sum of a proper convex and lower semi-
continuous function and a convex smooth differentiable function with Lipschitz
gradient. To efficiently handle the constraint, a provably convergent algorithm
is Forward–Douglas–Rachford splitting algorithm (FDR) [2], which is a hy-
bridization of Douglas–Rachford splitting algorithm (DR) [3] and Forward–
Backward splitting algorithm (FB) [4]. FDR is also closely related to the
generalized Forward–Backward splitting algorithm (GFB) [5,6] and the three-
operator splitting method (TOS) [7].

Global sub-linear convergence rate to asymptotic regularity of the sequence
generated by FDR (hence all the above-mentioned algorithms) has been re-
cently established in the literature, from the perspective of Krasnosel’skĭı-
Mann fixed-point iteration; see, for instance, [8] and the references therein.
This allows to exhibit convergence rates of the distance of 0 to the objective
subdifferential evaluated at the iterate. However, very limited results have
been reported in the literature on the convergence rate of the objective func-
tion value for FDR, except for certain specific cases. For instance, the objective
convergence rate of Forward–Backward splitting and its accelerated versions
are now well understood [9,10,11,12,13,14]. These results rely essentially on
some monotonicity property of a properly designed Lyapunov function. Given
that FDR is fixed-point algorithm, it is much more difficult or even impossible
to study the convergence rate of the objective function value. Indeed, these
algorithms generate several different points along the course of iteration, mak-
ing it rather challenging to design a proper Lyapunov function (as we shall see
for the FDR algorithm in Section 4).

Recently, local linear convergence of operator splitting algorithms for op-
timization have recently attracted a lot of attention; see [15] for Forward–
Backward-type methods, [16] for Douglas–Rachford splitting, and [17] for
Primal–Dual splitting algorithms. This work particularly exploits the underly-
ing geometric structure of the optimization problems, achieving a local linear
convergence result without assuming conditions like strong convexity, unlike
what is proved in [18,8]. In practice, local linear convergence of FDR algorithm
is also observed. However, to our knowledge, there is no theoretical explanation
available for this local behaviour.
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Main Contributions In this paper, we study both the global and local con-
vergence rates of the FDR algorithm. Our main contributions consist of both
global and local aspects. First, the global convergence behaviour is studied
under a general real Hilbert space setting.
– In Section 4, we first prove the convergence of the newly proposed non-

stationary FDR scheme (6). This is achieved by capturing non-stationarity
as an error term. The proof exploits a general result on inexact and non-
stationary Krasnosel’skĭı-Mann fixed-point iteration developed in [8].

– We design a Bregman divergence as a meaningful convergence criterion.
Under the standard assumptions, we show pointwise and ergodic conver-
gence rates of this criterion (Theorem 4.2). When specializing the result
to Forward–Backward splitting, we obtain a stronger claim for the objec-
tive convergence rate of the method. The allowed range of step-size for the
latter rate to hold is twice larger than the one known in the literature.

For local convergence analysis, we turn to finite-dimension as partial smooth-
ness, which is at the heart of this part is only available in the Euclidean setting.
– Finite Time Activity Identification Under the assumption that the non-

smooth component of the optimization problem is partly smooth around a
global minimizer relative to its smooth submanifold (see Definition 2.4) and
under a non-degeneracy condition (see (31)), we show in Section 5 (Theo-
rem 5.1) that the sequence generated by the non-stationary FDR identifies
in finite time the solution submanifold. In plain words, this means that,
after a finite number of iterations, the sequence enters the submanifold and
never leaves it. We also provide a bound on the number of iterations to
achieve identification.

– Local Linear Convergence Exploiting the finite identification property, we
then show that the sequence generated by non-stationary FDR converges
locally linearly. We characterize the convergence rate precisely based on
the properties of the identified partial smoothness submanifolds.

– Three-operator Splitting Given the close relation between the three-operator
splitting method and FDR, in Section 5.4, we extend the above local linear
convergence result to the case of the three-operator splitting algorithm.

Relation to Prior Work The convergence rate of the objective value for FDR
has been studied in [18]. There, the author presented ergodic and pointwise
convergence rates on the objective value under different (more or less strin-
gent) assumptions imposed on the non-smooth function in the objective (1).
Without any further assumptions other than (A.1)-(A.5), the author proved
a pointwise convergence rate on a criterion associated to the objective value,
but in absolute value (see [18, Theorem 3.5]). However, this rate seems quite
pessimistic (it suggests that FDR is as slow as sub-gradient descent). More-
over, there is no non-negativity guarantee for such criterion and the obtained
rate is thus of a quite limited interest. Improving this rate on the objective
value requires quite strong assumptions on the non-smooth component.

As far as local linear convergence of the sequence in absence of strong
convexity is concerned, it has received an increasing attention in the past few
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years in the context of first-order proximal splitting methods. The key idea here
is to exploit the geometry of the underlying objective around its minimizers.
This has been done for instance in [19,15,16,17] for the FB scheme, Douglas–
Rachford splitting/ADMM and Primal–Dual splitting, under the umbrella of
partial smoothness. The error bound property1, as highlighted in the seminal
work of [22,23], is used by several authors to study linear convergence of first-
order descent-type algorithms, and in particular FB splitting; see, e.g., [20,24,
25,21]. However, to the best of our knowledge, we are not aware of local linear
convergence results for the FDR algorithm.

Paper Organization The rest of the paper is organized as follows. In Section 2,
we recall some classical material on convex analysis and operator theory, that
are essential to our exposition. We then introduce the notion of partial smooth-
ness. The problem statement and FDR algorithm are presented in Section 3.
The global convergence analysis is presented in Section 4, followed by finite
identification and local convergence analysis in Section 5. Several numerical
experiments are presented in Section 6. Some introductory material on smooth
Riemannian manifolds is gathered in the appendix.

2 Preliminaries

Throughout the paper, H is a Hilbert space equipped with scalar product 〈·, ·〉
and norm || · ||. Id denotes the identity operator on H. Γ0(H) denotes the set
of proper convex and lower semi-continuous functions on H.

Sets For a non-empty convex set C ⊂ H, par(C):=R(C − C) the smallest
subspace parallel to C. Denote ιC the indicator function of C, NC the associ-
ated normal cone operator and PC the orthogonal projection on C. The strong
relative interior of C is sri(C).

Functions Given R ∈ Γ0(H), its sub-differential is a set-valued operator de-
fined by ∂R : H⇒ H, x 7→

{
v ∈ H : R(x′) ≥ R(x) + 〈v, x′ − x〉,∀x′ ∈ H

}
.

Lemma 2.1 (Descent Lemma [26]) Suppose that F : H → R is convex
continuously differentiable and ∇F is (1/β)-Lipschitz continuous. Then,

F (x) ≤ F (y) + 〈∇F (y), x− y〉+ 1
2β
||x− y||2, ∀x, y ∈ H.

Definition 2.1 (Bregman Divergence) Given a function R ∈ Γ0(H) and
two points x, y in its effective domain dom(R), the Bregman divergence is
defined by

DvR(y, x):=R(y)−R(x)− 〈v, y − x〉,

where v ∈ ∂R(x) is a sub-gradient of R.

1 For the interplay between the error bound property, the Kurdyka- Lojasiewicz property,
and the quadratic growth property; see [20,21].
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Notice that the Bregman divergence is not a distance in the usual sense,
as it is in general not symmetric2. However, it measures the distance of two
points in the sense that DvR(x, x) = 0 and DvR(y, x) ≥ 0 for any x, y in dom(R).
Moreover, DvR(y, x) ≥ DvR(w, x) for all w in the line segment between x and y.

Operators Given a set-valued mapping A : H ⇒ H, define its graph as
gph (A):={(x, u) ∈ H × H : u ∈ A(x)}, and set of zeros zer(A) = {x ∈
H : 0 ∈ A(x)}. Denote (Id +A)−1 the resolvent of A

Definition 2.2 (Cocoercive Operator) Let β > 0 and B : H → H, then B

is β-cocoercive, if 〈B(x1)−B(x2), x1−x2〉 ≥ β||B(x1)−B(x2)||2, ∀x1, x2 ∈ H.

If an operator is β-cocoercive, then it is β−1-Lipschitz continuous.

Definition 2.3 (Non-expansive Operator) An operator F : H → H is
non-expansive, if ||F(x) − F(y)|| ≤ ||x − y||, ∀x, y ∈ H. For any α ∈]0, 1[,
F is called α-averaged, if there exists a non-expansive operator F′ such that
F = αF′ + (1− α)Id.

In particular, when α = 1
2 , F is called firmly non-expansive. Several prop-

erties of firmly non-expansive operators are collected in the following lemma.

Lemma 2.2 Let F : H → H, the following statements are equivalent:

(i) F is firmly non-expansive;
(ii) 2F− Id is non-expansive;
(iii) F is the resolvent of a maximal monotone operator A : H⇒ H.

Proof (i)⇔(ii) follows [1, Proposition 4.2, Corollary 4.29], and (i)⇔(iii) is [1,
Corollary 23.8]. ut

Lemma 2.3 ([1, Proposition 4.33]) Let F : H → R be a convex dif-
ferentiable function, with 1

β -Lipschitz continuous gradient, β ∈]0,+∞[, then

Id− γ∇F is γ
2β -averaged for γ ∈]0, 2β[.

The next lemma shows the composition of two averaged operators.

Lemma 2.4 ([27, Theorem 3]) Let F1,F2 : H → H be α1, α2-averaged
respectively, then F1 ◦F2 is α-averaged with α = α1+α2−2α1α2

1−α1α2
∈]0, 1[.

Sequence The following lemma is very classical, see e.g. [28, Theorem 3.3.1].

Lemma 2.5 Let the non-negative sequence {ak}k∈N be non-increasing and
summable. Then ak = o(k−1).

2 It is symmetric, if and only if R is a non-degenerate convex quadratic form.
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Partial Smoothness In this part, let H = Rn. We briefly introduce the concept
of partial smoothness, which was introduced in [29] and lays the foundation
of our local convergence analysis.

LetM be a C2-smooth manifold of Rn around a point x. Denote TM(x′) the
tangent space toM at any point near x inM; See Section 8 for more materials.
Below we present the definition of partly smooth functions in Γ0(Rn) setting.

Definition 2.4 (Partly Smooth Function) Let R ∈ Γ0(Rn), and x ∈ Rn
such that ∂R(x) 6= ∅. R is then said to be partly smooth at x relative to a set
M containing x, if

(i) Smoothness: M is a C2-manifold around x, R|M is C2 around x;
(ii) Sharpness: The tangent space TM(x) coincides with Tx:=par(∂R(x))⊥;

(iii) Continuity: The set-valued ∂R is continuous at x relative toM.
The class of partly smooth functions at x relative toM is denoted as PSFx(M).

Popular examples of partly smooth functions are summarized in Section 6
whose details can be found in [15].

3 Problem and Algorithms

Non-smooth Optimization In this paper, we are interested in the following
structured convex optimization problem

min
x∈H

{
F (x) +R(x) : x ∈ V

}
, (1)

where the following assumptions are imposed
(A.1) R belongs to Γ0(H).
(A.2) F : H → R is convex continuously differentiable with ∇F being

(1/β)-Lipschitz continuous.
(A.3) The constraint set V is a closed vector subspace of H.
(A.4) ArgminV (F +R) is non-empty and 0 ∈ sri(dom(R)− V ).

Typical examples of (1) can be found in the numerical experiment section.
These assumptions entail that F +R+ ιV ∈ Γ0(H), and moreover, that

zer(∇F + ∂R+NV ) = zer(∂(F +R+ ιV )) = ArgminV (F +R) 6= ∅,

using [1, Theorem 16.37(i)] and Fermat’s rule.

Forward–Douglas–Rachford Splitting When V = H, problem (1) can be han-
dled by the classical Forward–Backward splitting method [4], whose iteration,
in its relaxed form, reads

xk+1 = (1− λk)xk + λkproxγR
(
xk − γ∇F (xk)

)
, (2)

where γ ∈]0, 2β[ is the step-size and λk ∈]0, 4β−γ2β [ is the relaxation parameter.
The term proxγR is called the proximity operator of γR and is defined by

proxγR(x):=argminu∈H γR(u) + 1
2
||u− x||2. (3)
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When V is merely a subspace ofH, in principle we still can apply FB splitting
method to solve (1). However, even if proxγR is very easy to compute, the
proximity operator of R + ιV in general may be rather difficult to calculate.
Therefore, new splitting algorithms are needed, and one possible choice is
the Forward–Douglas–Rachford splitting method [2] which will be presented
shortly. Let us first define PV as the orthogonal projector onto the subspace
V , and the function G:=F ◦ PV . Then (1) is, obviously, equivalent to

min
x∈H

{
ΦV (x):=G(x) +R(x) + ιV (x)

}
. (4)

In turn, owing to assumptions (A.1)-(A.4), we have

∅ 6= ArgminV (F +R) = Argmin(ΦV ) = zer(∇G+ ∂R+NV ).

Remark 3.1 From the assumption on F , we have that also G is convex and
continuously differentiable with ∇G = PV ◦ ∇F ◦ PV being (1/βV )-Lipschitz
continuous (notice that βV ≥ β). The observation of using G instead of F to
achieve a better Lipschitz condition was first considered in [7].

The iteration of FDR method for solving (4) reads

uk+1 = proxγR
(
2xk − zk − γ∇G(xk)

)
,

zk+1 = zk + λk(uk+1 − xk),

xk+1 = PV (zk+1),

(5)

where γ is step-size and λk is relaxation parameter. Recall that, under the
conditions that γ ∈]0, 2βV [, λk ∈]0, 4βV −γ2βV

[ and
∑
k∈N λk

(
4βV −γ
2βV

− λk
)

= +∞,

the sequences {uk}k∈N, {xk}k∈N converge to a solution; see [2, Theorem 4.2].
In this paper, we consider a non-stationary version of (5), namely γ may

change along the iterations. The method is described below in Algorithm 1.

Algorithm 1: Non-stationary Forward–Douglas–Rachford

Initial: k = 0, z0 ∈ H, x0 = PV (z0).
repeat

uk+1 = proxγkR
(
2xk − zk − γk∇G(xk)

)
, γk ∈]0, 2βV [,

zk+1 = zk + λk(uk+1 − xk), λk ∈]0, 4βV − γ
2βV

[,

xk+1 = PV (zk+1).

(6)

until convergence;

Remark 3.2 For global convergence, one can also consider an inexact version
of (6) by incorporating additive errors in the computation of uk and xk, though
we do not elaborate more on this for the sake of local convergence analysis.
One can consult [8] for more details on this aspect.

In the next, we suppose the following main assumption on the parameters:
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(A.5) The sequence of the step-sizes {γk}k∈N and the one of the relaxation
parameters {λk}k∈N verify:
• 0 < γ ≤ γk ≤ γ < 2βV and γk → γ for some γ ∈ [γ, γ];

• λk ∈]0, 4βV −γk2βV
[ such that

∑
k∈N λk( 4βV −γk

2βV
− λk) = +∞;

•
∑
k∈N λk|γk − γ| < +∞.

Notice that, for the stationary case (i.e. for γk constant), assumption (A.5) is
equivalent to the conditions required in [2, Theorem 4.2] for the convergence
of iteration (5). Moreover, to satisfy (A.5) in absence of relaxation (i.e. when
the relaxation parameter is fixed to λk ≡ 1), the sequence of the step-sizes
has just to verify γk ∈]γ, γ[ with

∑
k∈N |γk − γ| < +∞. On the other hand, in

general, the summability assumption of {λk|γk−γ|}k∈N in (A.5) is weaker than
imposing it without λk. Indeed, following the discussion in [30, Remark 5.7],
take q ∈]0, 1], let θ = 4βV −γ

4βV
> 1

2 and

λk = θ −
√
θ − 1/(2k) and |γk − γ| = (θ +

√
θ − 1/(2k))/kq.

Then, it can be verified that∑
k∈N|γk − γ| = +∞,

∑
k∈Nλk|γk − γ| =

1
2k1+q

< +∞ and∑
k∈Nλk

(
4βV −γk

2βV
− λk

)
≥
∑

k∈Nλk(2θ − λk) =
∑

k∈N
1
2k

= +∞.

As previously mentioned, FDR recovers DR [3] when F = 0, and FB [4]
when V = H. We briefly introduce below two other closely related operator
splitting methods: the generalized Forward–Backward splitting (GFB) [6] and
the three-operator splitting (TOS) [7].

Generalized Forward–Backward Splitting Let m > 0 be a positive integer. Now
for problem (1), let V = H and suppose we have m non-smooth functionals.
The problem then becomes: let Ri ∈ Γ0(H) for each i = 1, ...,m

min
x∈H

{
F (x) +

∑m

i=1
Ri (x)

}
, (7)

Similar to the situation of FDR algorithm, even if the proximity operator
of each Ri can be solved easily, the proximity of the sum of them can be
intractable. In [6], the authors propose the GFB algorithm, which achieves
the full splitting of the evaluation of the proximity operator of each Ri . Let
(ωi )i ∈]0, 1[m such that

∑m
i=1 ωi = 1, choose γ ∈]0, 2β[ and λk ∈]0, 4β−γ2β [:

from i = 1 to m :⌊
ui,k+1 = prox γ

ωi
Ri

(
2xk − zi,k − γ∇F (xk)

)
zi,k+1 = zi,k + λk(ui,k+1 − xk)

xk+1 =
∑m

i=1ωizi,k+1.

(8)

We refer to [6] for more details of the GFB algorithm. Now define the product
space H:=H × ... × H, equipped with proper inner product and norm, the
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subspace S:={x = (xi )i=1,...,m ∈ H : x1 = ... = xm} ⊂ H and let the weights
be ωi = 1

m , i = 1, ...,m . Then it can be shown that GFB algorithm is equivalent
to applying FDR to the following problem:

min
x∈H

F
(
1
m
∑m

i=1 xi
)

+
∑m

i=1Ri (xi ) + ιS(x).

We refer to [2,5] for more connections between FDR and GFB.

Three-Operator Splitting Let m = 2 in problem (7), then it becomes

min
x∈H

F (x) +R1(x) +R2(x). (9)

Notice that (9) can be handled by GFB as it is only a special case of (7). In [7]
the author proposed a splitting scheme which resembles FDR yet different:
given γ ∈]0, 2β[ and λk ∈]0, 4β−γ2β [, the iteration of TOS reads as follows:

uk+1 = proxγR1

(
2xk − zk − γ∇F (xk)

)
zk+1 = zk + λk(uk+1 − xk),

xk+1 = proxγR2
(zk+1).

(10)

It can be observed that the projection operator PV of FDR is replaced by the
proximity operator proxγR2

. Though the difference is only for the update of
xk+1, their fixed-point operators are quite different; see in Section 5.4.

4 Global Convergence

In this section, we deliver the global convergence analysis of the non-stationary
FDR (6) in a general real Hilbert space setting, including convergence rate.

4.1 Global Convergence of the Non-Stationary FDR

Define the reflection operators of γR and ιV respectively as RγR:=2proxγR−Id
and RV :=2PV − Id. Moreover, define the following operators:

Fγ :=1
2
(Id + RγR ◦ RV )(Id− γ∇G) and Fγ,λk :=(1− λk)Id + λkFγ . (11)

Then the (stationary) FDR iteration (5) can be written into a fixed-point
iteration in terms of zk [2, Theorem 4.2], namely

zk+1 = Fγ,λk(zk). (12)

The next lemma shows the property of the fixed-point operator of FDR.

Lemma 4.1 For the FDR algorithm (6), let γ ∈]0, 2βV [ and λk ∈]0, 4βV −γ2βV
[.

Then, we have that Fγ is 2βV
4βV −γ -averaged and Fγ,λk is 2βV λk

4βV −γ -averaged.
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Proof The property of Fγ is a combination of Lemma 2.4 and [2, Proposition
4.1]. For Fγ,λk , it is sufficient to apply the definition of averaged operators. ut

Owing to [2, Theorem 4.2], under
∑
k∈N λk( 4βV −γ

2βV
− λk) = +∞ and con-

ditions (A.1)-(A.4), {zk}k∈N converges weakly to some z? ∈ fix(Fγ), and
{xk}k∈N converges weakly to x?:=PV (z?), where PV (z?) ∈ ArgminV (F +R).
On the other hand, the non-stationary FDR iteration (6) can be written as

zk+1 = Fγk,λk(zk) =
(
(1− λk)zk + λkFγ(zk)

)
+ λk

(
Fγk(zk)−Fγ(zk)

)
.

(13)
We are now ready to state our result on global convergence of Algorithm 1.

Theorem 4.1 Consider the non-stationary FDR iteration (6). Suppose that

Assumptions (A.1)-(A.5) hold. Then,
∑
k∈N ||zk − zk−1||

2
< +∞. Moreover,

{zk}k∈N converges weakly to a point z? ∈ fix(Fγ), and {xk}k∈N converges
weakly to x?:=PV (z?) ∈ ArgminV (F +R). If, in addition, either infk∈N λk > 0
or H is finite-dimensional, then {uk}k∈N converges weakly to x?.

The main idea of the proof of the theorem (see below) is to treat the
non-stationarity as a perturbation error of the stationary iteration.

Remark 4.1
• As mentioned in the introduction, Theorem 4.1 remains true if the iteration

is carried out inexactly, i.e. if Fγk(zk) is computed approximately, provided
that the errors are summable; see [8, Section 6] for more details.

• With more assumptions on how fast {γk}k∈N converges to γ, we can also
derive the convergence rate of the residuals {||zk − zk−1||}k∈N. However, as
we will study in Section 5 local linear convergence behaviour of {zk}k∈N,
we shall forgo the discussion here. Interested readers can consult [8] for
more details about the rate of residuals.

Proof According to [8, Theorem 4], the following conditions are needed to
ensure the convergence of the non-stationary iteration:

(1) The set of fixed point of fix(Fγ) is non-empty;
(2) ∀k ∈ N, Fγk is 1-Lipschitz, i.e. non-expansive;

(3) λk ∈]0, 4βV −γk2βV
[ such that infk∈N λk( 4βV −γk

2βV
− λk) > 0;

(4) ∀ρ ∈ [0,+∞[ and ∆k,ρ := sup||z||≤ρ ||Rγk(z)−Rγ(z)|| with Rγk ,Rγ being
some non-expansive operators, there holds

∑
k λk∆k,ρ < +∞.

Owing to Lemma 4.1, given γk ∈ [0, 2βV ], we have that Fγk is αk-averaged

with αk = 2βV
4βV −γk . This means that there exists a non-expansive operator

Rγk such that Fγk = αkRγk + (1− αk)Id. Similarly, for γ ∈ [0, 2βV ], we have

that Fγ is α-averaged with α = 2βV
4βV −γ and so that there exists a non-expansive

operator Rγ such that Fγ = αRγ + (1 − α)Id. Provided zk, define the error
term ek = (Fγk −Fγ)(zk). Then iteration (13) can be written as

zk+1 = (1− λ)zk + λkFγk(zk) = (1− λ)zk + λk
(
Fγ(zk) + ek

)
. (14)

From the assumptions (A.1)-(A.5), we can derive the following results:
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• We have ArgminV (F +R) = zer(∇G+∂R+NV ) = PV (fix(Fγ)) from the
discussion of Assumptions (A.1)-(A.4). It then follows that fix(Fγ) 6= ∅.
• Owing to Lemma 4.1, we have Fγk,λk is (αkλk)-averaged non-expansive.
• Owing to the averageness of Fγ and Fγk , we have

Rγ = Id + 1
α (Fγ − Id) and Rγk = Id + 1

αk
(Fγk − Id).

Let ρ > 0 be a positive number. Then, ∀z ∈ H such that ||z|| ≤ ρ,

||Rγk(z)− Rγ(z)|| = || 1αk (Fγk − Id)(z)− 1
α (Fγ − Id)(z)||

≤ |γk−γ|2βV

(
2ρ+ ||Fγ(0)||

)
+ 1

αk
||Fγk(z)−Fγ(z)||.

(15)

Given γ ∈]0, 2βV [, define the two operators F1,γ = 1
2 (Id +RγR ◦RV ) and

F2,γ = Id− γ∇G. Then F1,γ is firmly expansive (Lemma 2.2) and F2,γ is
γ

2βV
-averaged (Lemma 2.3). Now we have

||Fγk(z)−Fγ(z)|| ≤ ||F2,γk(z)−F2,γ(z)||+ ||F1,γkF2,γ(z)−F1,γF2,γ(z)||.
(16)

For the first term of (16),

||F2,γk(z)−F2,γ(z)|| = |γk − γ|||∇G(z)||
(Triangle inequality and ∇G is β

−1
V -Lip.) ≤ |γk − γ|(β−1V ρ+ ||∇G(0)||),

(17)

where ∇G(0) is obviously bounded. Now for the second term of (16),

denote zV = PV (z) and zV
⊥

= z − zV , it can be derived that

v = F1,γF2,γ(z)⇐⇒ v = zV
⊥

+ proxγR(zV − zV
⊥
− γ∇G(zV )).

Denote y = zV − zV ⊥ − γ∇G(zV ). Then we have

F1,γkF2,γ(z)−F1,γF2,γ(z) = proxγkR(y)− proxγR(y).

Denote wk = proxγkR(y) and w = proxγR(y). Using the resolvent equa-
tion [31] and firm non-expansiveness of the proximity operator yields

||wk − w|| = ||proxγkR(γkγ y + (1− γk
γ )w)− proxγkR(y)||

≤ ||(1− γk
γ )(y − w)|| = |γk−γ|

γ ||y − w||

≤ |γk−γ|γ ||(Id− proxγR)y|| ≤ |γk−γ|γ (||y||+ ||proxγR(0)||).

(18)

Using the triangle inequality and non-expansiveness of βV∇G, we obtain

||y|| ≤ ||zV − zV
⊥
||+ γ||∇G(zV )|| ≤ ρ+ γ||∇G(zV )−∇G(0)||+ γ||∇G(0)||

≤ ρ+ γβ−1V ||z||+ γ||∇G(0)|| ≤ ρ+ γβ−1V ρ+ γ||∇G(0)||.
(19)
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Define ∆k,ρ:= sup||z||≤ρ ||Rγk(z) − Rγ(z)||. Then, putting together (15),
(17), (18) and (19), we get that ∀ρ ∈ [0,+∞[∑

k∈Nλkαk∆k,ρ =
∑
k∈Nλkαk sup

||z||≤ρ
||Rγk(z)− Rγ(z)||

≤ C ∑k∈N λk|γk − γ| < +∞,

where C =
2ρ+||Fγ(0)||

4βV −γ + ρ
βV

(1+ βV
γ + γ

γ )+(1+ γ
γ )||∇G(0)||+ 1

γ ||proxγR(0)||
is finite valued.

To this point, we verified that all the conditions of [8, Theorem 4] are met for
the non-stationary FDR. Weak convergence of the sequence {zk}k∈N then fol-
lows. In turn, since PV is linear, weak convergence of {xk}k∈N is also obtained.

For the sequence {uk}k∈N, observe from the second equation in (6) that
uk+1 = (zk+1 − zk)/λk + xk, hence ||uk+1 − xk|| ≤ ||zk+1 − zk||/λk. It fol-
lows from ||zk+1 − zk|| → 0 and the condition infk∈N λk > 0 that uk+1 − xk
converges strongly to 0. We thus obtain weak convergence of uk. If H is finite-
dimensional, using (30) and the same argument as for inequality (18), we get

||uk+1−x?|| ≤ |γk−γ|γ ((2+γβV )||xk−x?||+ ||zk−z?||+ ||proxγR(0)||)→ 0 which

concludes the proof. ut

4.2 Convergence Rate of the Bregman Divergence

In this part, we discuss the convergence rate of a specifically designed Breg-
man divergence associated to the objective value. As we have seen from the
FDR iteration (5), there are three different points zk and uk, xk generated
along the iteration, which makes very difficult to establish a convergence rate
on the objective value directly, unless the constraint subspace V is the whole
space. For instance, in [18] the author obtained an o(1/

√
k) convergence rate

on (R(uk) +G(xk))− (R(x?) +G(x?)), which in general is not a non-negative
quantity. Moreover, the functions R and G in the criterion are not evaluated
at the same point. So the latter convergence rate is not only pessimistic (when
specialized to V = H it gives a convergence rate as slow as subgradient de-
scent), but is also of a limited interest given the lack of non-negativity. Our
result in this part successfully avoids such drawbacks.

As in Theorem 4.1, let z? ∈ fix(Fγ) and x?:=PV (z?) ∈ Argmin(ΦV ). Thus
(A.4) and Fermat’s rule allow to deduce that there exists a normal vector
v? ∈ V ⊥ = NV (x?) such that v? ∈ ∇G(x?) + ∂R(x?). Now denote Φ:=R+G.
Recalling Definition 2.1, for y ∈ Rn, define the following Bregman divergence
to the solution x?

Dv
?

Φ (y):=Dv
?

Φ (y, x?)=Φ(y)− Φ(x?)− 〈v?, y − x?〉=Φ(y)− Φ(x?)− 〈v?, yV
⊥
〉,

(20)

where yV
⊥

:=PV ⊥(y) is the projection of y onto V ⊥. In the last equality, we
used the trivial fact that 〈v?, x?〉 = 0.
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The motivation of choosing the above function to quantify the convergence
rate of FDR algorithm is due to the fact that it measures both the discrepancy
of the objective to the optimal value and violation of the constraint onV .

Lemma 4.2 hereafter will provide us a key estimate on Dv?Φ (uk) which will

be used to derive the convergence rate of {Dv?Φ (uk)}k∈N. Denote zV
⊥

k :=PV ⊥(zk)

the projection of zk onto V ⊥, φk:= 1
2γk

(||zV ⊥k + γkv
?||2 + ||xk − x?||2) and two

auxiliary quantities ξk:=
|γ−βV |
2γβV

||zk − zk−1||2, ζk:= |γk−γk−1|
2γ2 ||zk − x?||2.

Lemma 4.2 Considering the non-stationary FDR iteration in (6). Suppose
that Assumptions (A.1)-(A.5) hold with λk ≡ 1. Then,

(i) We have that Dv?Φ (y) ≥ 0 for every y in H. Moreover, if y is a solution
then Dv?Φ (y) = 0 (in particular, Dv?Φ (x?) = 0). On the other hand, if y is
feasible (y ∈ V ) and Dv?Φ (y) = 0, then y is solution.

(ii) For the sequence {uk}k∈N, if v? is bounded we have

Dv
?

Φ (uk+1) + φk+1 ≤ φk +
γk+1 − γk

2
||v?||2 + ξk+1 + ζk+1 < +∞. (21)

Remark 4.2 If we restrict γk ∈]0, βV ], then the term ξk in (21) can be dis-
carded. If we assume {γk}k∈N is monotonic, then the term ζk also disappears.

Proof The non-negativity of Dv?Φ (uk) is rather obvious, as Φ is convex. There-

fore, next we focus on the second claim. Define yV
⊥

:=PV ⊥(y), uV
⊥

k :=PV ⊥(uk),

zV
⊥

k :=PV ⊥(zk) the projections of y, uk, zk onto V ⊥ respectively.
The update of uk in (6) and definition of proximity operator imply that

(2xk − zk − uk+1)/γk −∇G(xk) ∈ ∂R(uk+1).

For the convexity of R, we obtain that, for every y ∈ H,

R(y) ≥ R(uk+1) + 〈(2xk − zk − uk+1)/γk −∇G(xk), y − uk+1〉
= R(uk+1) + 1

γk
〈2xk − zk − uk+1, y − uk+1〉 − 〈∇G(xk), y − uk+1〉.

(22)
Notice that uk+1 = xk + zk+1 − zk. Then, the first inner product of the last
line of (22) can be re-written as

〈2xk − zk − uk+1, y − uk+1〉

= 〈xk − zk, y − xk〉+ 〈y − zk, zk − zk+1〉+ ||zk+1 − zk||2

= −〈zV
⊥

k , y〉+ 1
2

(
||zk+1 − zk||2 + ||zk+1 − y||2 − ||zk − y||2

)
,

(23)

where 2〈c2 − c1, c1 − c3〉 = ||c2 − c3||2 − ||c1 − c2||2 − ||c1 − c3||2 is applied to
〈y − zk, zk − zk+1〉. Combining (23) with (22),

R(uk+1)−R(y) ≤ 〈∇G(xk), y − uk+1〉+ 1
γk
〈zV

⊥

k , y〉

+ 1
2γk

(
||zk − y||2 − ||zk+1 − y||2 − ||zk+1 − zk||2

)
.

(24)
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Since G is convex, given any xk and y ∈ H, we have

G(xk)−G(y) ≤ 〈∇G(xk), xk − y〉. (25)

Recall Φ = R+G. Summing up (24) and (25) and rearranging the terms, then(
R(uk+1) +G(xk)

)
− Φ(y) + 1

2γk

(
||zk+1 − y||2 − ||zk − y||2

)
− 1

γk
〈zV

⊥

k , y〉

≤ − 1
2γk
||zk+1 − zk||2 + 〈∇G(xk), xk − uk+1〉.

Since G has Lipschitz continuous gradient, applying Lemma 2.1 yields

G(uk+1)−G(xk) ≤ 〈∇G(xk), uk+1 − xk〉+ 1
2βV
||uk+1 − xk||2.

Sum up the above two inequalities and recall ξk+1:=
|γ−βV |
2γβV

||zk+1 − zk||2, then

Φ(uk+1)− Φ(y) + 1
2γk

(
||zk+1 − y||2 − ||zk − y||2

)
− 1

γk
〈zV

⊥

k , y〉

≤ − 1
2γk
||zk+1 − zk||2 + 1

2βV
||uk+1 − xk||2

= γk−βV
2γkβV

||zk+1 − zk||2 ≤ |γk−βV |2γkβV
||zk+1 − zk||2 ≤ ξk+1.

(26)

Note that we applied again the equivalence uk+1 = xk+zk+1−zk. Furthermore,

define ζyk+1:= |γk+1−γk|
2γ2 ||zk+1 − y||2. Then, from (26), we have

Φ(uk+1) + 1
2γk+1

||zk+1 − y||2

= Φ(uk+1) + 1
2γk
||zk+1 − y||2 +

(
1

2γk+1
− 1

2γk

)
||zk+1 − y||2

≤ Φ(y) + 1
γk
〈zV

⊥

k , yV
⊥
〉+ 1

2γk
||zk − y||2 + ξk+1 + ζyk+1.

(27)

Recall that xk ∈ V . Hence, PV ⊥(xk) = 0. Then, using (27), we have the
following estimate for the Bregman divergence (defined in (20)):

Dv
?

Φ (uk+1)−Dv
?

Φ (y) = Φ(uk+1)− Φ(x?)− 〈v?, uV
⊥

k+1 − y
V⊥ 〉

≤ 1
γk
〈zV
⊥

k , yV
⊥
〉 − 〈v?, uV

⊥
k+1 − y

V⊥ 〉+ 1
2γk
||zk − y||2 − 1

2γk+1
||zk+1 − y||2 + ξk+1 + ζyk+1

= 1
2γk

(
||yV

⊥
+ γkv

?||2 − 2||γkv?||2 + ||zV
⊥

k + γkv
?||2 + ||zVk − y

V ||2
)

+ ξk+1 + ζyk+1

+ 1
2γk+1

(
−||zV

⊥
k+1 + γk+1v

?||2 + ||zV
⊥

k+1||
2 + ||γk+1v

?||2 − ||zV
⊥

k+1 − y
V⊥ ||2 − ||zVk+1 − y

V ||2
)
,

where yV :=PV (y), zVk :=PV (zk) are the projections of y, zk onto V respectively.
From the above inequality, we deduce the following result

Dv
?

Φ (uk+1)−Dv
?

Φ (y) + φk+1 − φk − (ξk+1 + ζyk+1)

≤ 1
2γk

(
||yV

⊥
− γkv?||2 − 2||γkv?||2

)
+ 1

2γk+1

(
||zV

⊥
k+1||

2 + ||γk+1v
?||2 − ||zV

⊥
k+1 − y

V⊥ ||2
)

= 1
2γk

(
||yV

⊥
||2 − 2γk〈yV

⊥
, v?〉 − ||γkv?||2

)
+ 1

2γk+1

(
||γk+1v

?||2 − ||yV
⊥
||2 + 2〈zV

⊥
k+1, y

V⊥ 〉
)

=
γk+1−γk
2γkγk+1

||yV
⊥
||2 +

γk+1−γk
2

||v?||2 + 1
γk+1

〈zV
⊥

k+1 − γk+1v
?, yV

⊥
〉.

In particular, taking y = x? ∈ V in the last inequality and using the fact that
PV ⊥(x?) = 0, we obtain the desired result. ut
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With the above property of Dv?Φ (uk), we are able to present the main result
on the convergence rate of the Bregman divergence.

Theorem 4.2 Consider the non-stationary FDR iteration (6). Suppose that
Assumptions (A.1)-(A.5) hold with λk ≡ 1. If moreover v? is bounded, then
for any k ≥ 0,

inf
0≤i≤k

Dv
?

Φ (ui) = o
(

1
k+1

)
and D(ūk) = O

(
1
k+1

)
, where ūk = 1

k + 1

∑k

i=0
ui.

Remark 4.3
• A typical situation that ensures the boundedness of v? is when ∂R(x?) is

bounded. Such requirement can be removed if we choose more carefully
the element v?. For instance, one can easily show from Theorem 4.1 that
the subgradient vk:=(xk − zk)/γk = −PV ⊥(zk)/γk converges weakly to
v?:=(x? − z?)/γ ∈ V ⊥ ∩ (∇G(x?) + ∂R(x?)).

• The main difficulty in establishing the convergence rate directly on Dv?Φ (uk)
(rather that on the best iterate) is that, for V ( H, we have no theoretical
guarantee that Dv?Φ (uk) is decreasing, i.e. no descent property on Dv?Φ (uk).

Proof Define θk:= min0≤i≤k Dv
?

Φ (ui) ≤ Dv
?

Φ (uk). Summing inequality (21) up
to some k ∈ N yields

(k + 1)θk ≤
∑k

i=0
Dv

?

Φ (ui) ≤ φ0 + γ∞−γ0
2 ||v?||2 +

∑
k∈Nξk +

∑
k∈Nζk.

Since v? is bounded, so is φ0. Then, owing to Theorem 4.1, we have∑
k∈Nξk =

|γ−βV |
2γβV

∑
k∈N ||zk − zk−1||

2
< +∞.

Lastly, as {zk}k∈N is bounded, so is {||zk − x?||}k∈N. Recall that, by as-
sumptions, {γk}k∈N converges to some γ ∈]0, 2βV [ with {|γk − γ|}k∈N being
summable. Then∑

k∈Nζk ≤
1

2γ2 sup
k∈N
||zk − x?||2

∑
k∈N |γk+1 − γk|

≤ 1
2γ2 sup

k∈N
||zk − x?||2

∑
k∈N (|γk+1 − γ|+ |γk − γ|) < +∞.

Summing up the above results, we have that (k + 1)θk ≤ C < +∞ holds for
all k ∈ N, which means θk = O(1/(k+ 1)). Now, owing to the definition of θk,∑

k∈Nθk ≤
∑

k∈ND
v?

Φ (uk) ≤ φ0 + γ∞−γ0
2 ||v?||2 +

∑
k∈N(ξk + ζk) < +∞.

Moreover, it is immediate that, for every k ≥ 1,

θk = min(Dv
?

Φ (uk), θk−1) ≤ θk−1,

that is, the sequence {θk}k∈N is non-increasing. Invoking Lemma 2.5 on {θk}k∈N
concludes the proof.

For the ergodic rate, we start again from (21) and apply Jensen’s inequality
to Dv?Φ which is a convex function, and get

(k + 1)Dv
?

Φ (ūk) ≤
∑k

i=0
Dv

?

Φ (ui),

where the right-hand side is bounded by arguing as above. ut
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4.3 Application to Forward–Backward Splitting

Assume now that V = H, in which case problem (4) simplifies to

min
x∈H

{
Φ(x):=F (x) +R(x)

}
.

In this case, the FDR iteration (6) is nothing but the FB splitting scheme (2).
The non-relaxed and non-stationary version of it reads as

xk+1 = proxγkR
(
xk − γk∇F (xk)

)
. (28)

We get Dv?Φ (y) = Φ(y)−Φ(x?) by specializing the Bregman divergence (20) to
Φ, which is simply the objective value error. We have the following result.

Corollary 4.1 Consider the Forward–Backward iteration (28). Suppose that
conditions (A.1)-(A.5) hold with V = H and λk ≡ 1. Then

Φ(xk)− Φ(x?) = o(1/k).

Remark 4.4
• The o(1/k) convergence rate for the large choice γk ∈]0, 2β[ appears to

be new for the FB splitting algorithm. The rate O(1/k) is known in the
literature for several choices of the step-size; see e.g., [12, Theorem 3.1] for
γk ∈]0, β] or with backtracking, and [11, Proposition 2] for γk ∈]0, 2β[.

• For the global convergence of the sequence {xk}k∈N generated by the non-
stationary FB iteration, neither convergence of γk to γ nor summability of
{|γk − γ|}k∈N is required. See [32, Theorem 3.4].

Proof First, weak convergence of the non-stationary FB iteration follows from
Theorem 4.1. On the one hand, specializing (21) to the case of FB, we get

Φ(xk+1)− Φ(x?) ≤ 1
2γk
||xk − x?||2 − 1

2γk+1
||xk+1 − x?||2

+
|γ−β|
2γβ ||xk − xk−1||

2
+ |γk+1−γk|

2γ2 ||xk+1 − x?||2,
(29)

which means that∑
k∈N(Φ(xk)− Φ(x?)) ≤ 1

2γ0
||x0 − x?||2 +

|γ−β|
2γβ

∑
k∈N ||xk − xk−1||

2

+ 1
γ2 sup

k∈N
||xk − x?||2

∑
k∈N |γk − γ| < +∞.

On the other hand, owing to inequality (26) in the proof of Lemma 4.2, ∀y ∈ H,

Φ(xk+1) + 1
2γk
||xk+1 − y||2 ≤ Φ(y) + 1

2γk
||xk − y||2 +

(
1
2β −

1
2γk

)
||xk+1 − xk||2.

Choosing y = xk, we obtain(
Φ(xk+1)− Φ(x?)

)
−
(
Φ(xk)− Φ(x?)

)
≤
(

1
2β −

1
γk

)
||xk+1 − xk||2

≤ −δ||xk+1 − xk||2,

where δ = 1
γ −

1
2β > 0 since γ < 2β. This implies that the sequence {Φ(xk)−

Φ(x?)}k∈N is positive and non-increasing. Summing up both sides of the above
inequality and applying Lemma 2.5 leads to the claimed result. ut
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5 Local Linear Convergence

From now on, we turn to the local convergence analysis of FDR. Given that
partial smoothness is so far available only in finite dimension, in this section,
we consider a finite-dimensional setting, i.e. H = Rn. In the sequel, we denote
z? ∈ fix(Fγ) a fixed point of iteration (6) and x? = PV (z?) ∈ Argmin(ΦV ) a
global minimizer of problem (4). For simplicity, we also fix λk ≡ 1.

5.1 Finite Activity Identification

We start with the finite activity identification, which means that in a finite
number of iterations the iterates identify the manifold in which the solution
x? lives. Under the condition of Theorem 4.1, we know that γk → γ, zk → z?

and uk, xk → x?. Moreover, we have the following optimality conditions

(x? − z?)/γ ∈ ∇G(x?) + ∂R(x?) and (z? − x?)/γ ∈ V ⊥, x? ∈ V. (30)

The condition needed for identification result is built upon these monotone
inclusions. Since xk is the projection of zk onto V , we have xk ∈ V for all
k ≥ 0. Therefore, we only need to discuss the identification property ofuk.

Theorem 5.1 For the non-stationary FDR (6). Suppose that Assumptions
(A.1)-(A.5) hold, so that (uk, xk, zk) → (x?, x?, z?) where z? ∈ fix(Fγ) and
x? = PV (z?) ∈ Argmin(ΦV ). Moreover, suppose that R ∈ PSFx?(MR

x?) and
that the following non-degeneracy condition holds

(x? − z?)/γ −∇G(x?) ∈ ri
(
∂R(x?)

)
. (31)

Then,
(i) there exists K ∈ N such that, for all k ≥ K, we have uk ∈MR

x? .
(ii) Moreover, for every k ≥ K,

(a) if MR
x? = x? + TRx? , then TRuk = TRx? .

(b) If R is locally polyhedral around x?, then xk ∈ MR
x? = x? + TRx? ,

TRuk = TRx? , ∇MR
x?
R(uk) = ∇MR

x?
R(x?), and ∇2

MR
x?
R(uk) = 0.

Remark 5.1 As we mentioned before, for global convergence, approximation
errors can be allowed, i.e. proxγR and ∇G can be computed approximately.
However, for the finite activity, we have no identification guarantees for (uk, xk)
if such an approximation is allowed. For example, if we have xk = PV (zk)+εk
where εk ∈ Rn is the error of approximating PV (zk). Then, unless εk ∈ V , we
can no longer guarantee that xk ∈ V .

Proof From the update of uk+1 and the definition of proximity operator, we
have (2xk − zk − uk+1)/γk − ∇G(xk) ∈ ∂R(uk+1). At convergence, we have
(x? − z?)/γ −∇G(x?) ∈ ∂R(x?). Therefore, one can show that

dist
(
(x? − z?)/γ −∇G(x?), ∂R(uk+1)

)
≤ 1

γ (2||xk − x?||+||uk+1 − x?||+||zk − z?||) + |γk−γ|
γ2 ||PV ⊥(z?)||+ 1

βV
||xk − x?||.
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Theorem 4.1 allows to infer that the right hand side of the inequality converges
to 0. In addition, since R ∈ Γ0(Rn), R is sub-differentially continuous at
every point in its domain [33, Example 13.30], and in particular at x?. It then
follows that R(uk) → R(x?). Altogether, this shows that the conditions of
[34, Theorem 5.3] are fulfilled for R: 1) convergence of sequence; 2) distance
dist((x?−z?)/γ−∇G(x?), ∂R(uk+1))→ 0; 3) convergence of objective function
value. The finite identification claim follows.

(a) In this case, MR
x? is an affine subspace, i.e. MR

x? = x? + TRx? . Since R
is partly smooth at x? relative to MR

x? , the sharpness property holds at
all nearby points inMR

x? [29, Proposition 2.10]. Thus for k large enough,
i.e. uk sufficiently close to x? on MR

x? , we have Tuk(MR
x?) = TRx? = TRuk .

(b) It is immediate to verify that a locally polyhedral function around x? is
indeed partly smooth relative to the affine subspace x? + TRx? . Thus, the
first claim follows from (ii)(a). For the rest, it is sufficient to observe that
by polyhedrality, for any x ∈MR

x? near x?, ∂R(x) = ∂R(x?). Therefore,
combining local normal sharpness [29, Proposition 2.10] and [15, Lemma
4.3] yields the second conclusion. ut

A Bound on the Number of Iterations to Identification In Theorem 5.1, we
only assert the existence of some K ≥ 0 beyond which finite identification
occurs. There are situations where a bound of K can be established.

Proposition 5.1 Suppose that the assumptions of Theorem 5.1 hold. If the
iterates are such that ∂R(uk) ⊂ rbd(∂R(x?)) whenever uk /∈ Mx? , then we

have uk ∈Mx? for some k obeying k ≥ ||z0−z?||2+O(
∑
k∈N |γk−γ|)

γ2dist(−∇G(x?),V ⊥+rbd(∂R(x?)))2
.

Remark 5.2 When V = Rn, we recover the result of [15, Proposition 3.6(i)]
established for the Forward–Backward splitting method. For F = 0, our result
also encompasses that of Douglas–Rachford splitting [16, Proposition 5.1].

Proof Recall from the proof of Theorem 4.1 that Fγ :=F1,γ◦F2,γ , where F1,γ =
1
2 (Id+RγR◦RV ) and F2,γ = (Id−γ∇G). From (14), we have zk+1 = Fγ(zk)+ek
where {||ek||}k∈N = {|γk − γ|}k∈N is a summable sequence. Thus arguing as in
[35, Theorem 3.1], and using firm non-expansiveness of F1,γ (Lemma 2.2) and
non-expansiveness of F2,γ (Lemma 2.3), we get

||zk − z?||2 = ||Fγk(zk−1)−Fγk(z?)||2 ≤ ||Fγ(zk−1)−Fγ(z?)||2 +O(||ek−1||)

= ||zk−1 − z?||2 − ||gk + vk−1 + γ∇G(x?)||2 +O(||ek−1||),
(32)

where gk:=2xk−1 − zk−1 − uk − γ∇G(xk−1) which verifies gk ∈ γ∂R(uk) and
vk−1:=zk−1 − xk−1 ∈ V ⊥. Assume that identification has not occurred yet,
i.e. uk /∈Mx? which implies gk + vk−1 ∈ V ⊥ + ∂R(uk) ⊂ V ⊥ + rbd(∂R(x?)).
Thus, continuing (32), we get

||zk − z?||2

≤ ||zk−1 − z?||2 − γ2dist(−∇G(x?), V ⊥ + rbd(∂R(x?)))2 +O(|γk−1 − γ|)

≤ ||z0 − z?||2 − γ2kdist(−∇G(x?), V ⊥ + rbd(∂R(x?)))2 +O(
∑
k|γk−1 − γ|).
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Note dist(−∇G(x?), V ⊥+rbd(∂R(x?))) > 0 since−∇G(x?) ∈ ri(V ⊥+∂R(x?))
by (31). Taking k as the largest integer such that the right hand is positive,
we deduce that the number of iterations where identification has not occurred
does not exceed the claimed bound. Thus finite identification necessarily occurs
at some k larger than this bound. ut

5.2 Locally Linearized Iteration

With the finite identification result, in the next we show that the globally non-
linear fixed-point iteration (13) can be locally linearized along the identified
manifold MR

x? . Define the function R(u):=γR(u) − 〈u, x? − z? − γ∇G(x?)〉.
We have the following key property of R.

Lemma 5.1 Let x? ∈ Argmin(ΦV ), and suppose that R ∈ PSFx?(MR
x?). Then

the Riemannian Hessian of R at x? reads as

HR:=PTR
x?
∇2
MR

x?
R(x?)PTR

x?
, (33)

which is symmetric positive semi-definite under either of the two conditions:
(i) condition (31) holds.
(ii) MR

x? is an affine subspace.
In turn, the matrix WR:=(Id +HR)−1 is firmly non-expansive.

Proof See [15, Lemma 4.3] and [1, Corollary 4.3(ii)]. ut

From now on, we assume that F (hence G) is locally C2-smooth around x?.
Define HG:=PV∇2F (x?)PV , MR:=PTR

x?
WRPTR

x?
and RMR

:=2MR − Id and

Mγ = Id + 2MRPV −MR − PV − γMRHG = 1
2

(
RMR

RV + Id
)
(Id− γHG),

and Mγ,λ = (1−λ)Id+λMγ . We have the following theorem for the linearized
fixed-point formulation of (6).

Theorem 5.2 Consider the non-stationary FDR iteration (6) and suppose
that (A.1)-(A.5) hold. If moreover, λk → λ ∈]0, 4βV −γ2βV

[ and F is locally C2

around x?, then for all k large enough we have

zk+1 − z? = Mγ,λ(zk − z?) + ψk + χk, (34)

where ψk:=o(||zk−z?||) and χk:=O(λk|γk−γ|). Both ψk and χk vanish when R
is locally polyhedral around x?, F is quadratic and (γk, λk) ∈]0, 2βV [×]0, 4βV −γ2βV

[
are chosen constants.

Proof From (6), since V is a subspace, then we have

xk = PV (zk), x? = PV (z?) ⇐⇒ zk − xk ∈ NV (xk), z? − x? ∈ NV (x?).

Projecting onto V leads to xk − x? = PV (zk − z?). Under the assumptions
of Theorem 5.1, there exists K ∈ N large enough such that for all k ≥ K,
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uk ∈ MR
x? . Denote TRuk and TRx? the tangent spaces corresponding to uk and

x? ∈ MR
x? . Denote τRk : TRuk → TRx? the parallel translation along the unique

geodesic on MR
x? joining uk to x?. Owing to [19, Lemma 5.1], we have for uk

after identification that uk − x? = PTR
x?

(uk − x?) + o(||uk − x?||). The update

of uk+1 in (6) and its convergence are respectively equivalent to

2xk − zk − uk+1 − γk∇G(xk) ∈ γk∂R(uk+1)

2x? − z? − x? − γ∇G(x?) ∈ γ∂R(x?).

Upon projecting onto the corresponding tangent spaces and applying the par-
allel translation τk+1 from uk+1 to x?, we get

γkτk+1∇MR
x?
R(uk+1) = PTR

x?

(
2xk − zk − uk+1 − γk∇G(xk)

)
+
(
τk+1PTRuk+1

− PTR
x?

)(
2xk − zk − uk+1 − γk∇G(xk)

)
,

γ∇MR
x?
R(x?) = PTR

x?

(
2x? − z? − x? − γ∇G(x?)

)
.

Subtracting both equations, we obtain

γkτk+1∇MR
x?
R(uk+1)− γ∇MR

x?
R(x?)

= PTR
x?

(
(2xk − zk − uk+1 − γk∇G(xk))− (2x? − z? − x? − γ∇G(x?))

)
+ Term 1 + Term 2,

(35)
where we have Term 1 = (τk+1PTRuk+1

− PTR
x?

)(x? − z? − γ∇G(x?)) and

Term 2 = (τk+1PTRuk+1
− PTR

x?
)((2xk − zk − uk+1 − γk∇G(xk)) − (2x? −

z? − x? − γ∇G(x?))). For the term (γk − γ)τk+1∇MR
x?
R(uk+1), since the

Riemannian gradient ∇MR
x?
R(uk+1) is bounded on a bounded set, we have

(γk − γ)τk+1∇MR
x?
R(uk+1) = O(|γk − γ|). For Term 2, owing to [15, Lemma

B.1] and the boundedness of ∇G, we have

Term 2 = o(||(2xk − zk − uk+1 − γk∇G(xk))− (2x? − z? − x? − γ∇G(x?))||)
= o(||zk − z?||) +O(|γk − γ|).

Now move Term 1 to the other side of (35) and combine the definition of R
and the Riemannian Taylor expansion [15, Lemma B.2], to obtain

γτk+1∇MR
x?
R(uk+1)−γ∇MR

x?
R(x?)−

(
τk+1PTRuk+1

−PTR
x?

)
(x?− z?− γ∇G(x?))

= PTR
x?
∇2
MR

x?
R(x?)PTR

x?
(uk+1 − x?) + o(||zk − x?||).

Owing to [15, Lemma 4.3], that the Riemannian Hessian PTR
x?
∇2
MR

x?
R(x?)PTR

x?

is symmetric positive definite. For the term PTR
x?

(γk∇G(xk)−γ∇G(x?)), since

we assume that F is locally C2 around x?, we can apply the Taylor expansion:

γk∇G(xk)− γ∇G(x?) = γ(∇G(xk)−∇G(x?)) + (γk − γ)∇G(xk)

= PV
(
∇F (xk)−∇F (x?)

)
+O(|γk − γ|)

= PV∇2FPV (zk − z?) + o(||zk − z?||) +O(|γk − γ|).
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Recall that HR:=PTR
x?
∇2
MR

x?
R(x?)PTR

x?
and HG:=PV∇2FPV . Then, for (35),

HR(uk+1 − x?) = 2PTR
x?

(xk − x?)− PTR
x?

(zk − z?)− PTR
x?

(uk+1 − x?)

− γHG(zk − z?) + o(||zk − z?||) +O(|γk − γ|)
=⇒ (Id +HR)PTR

x?
(uk+1 − x?) = 2PTR

x?
(xk − x?)− PTR

x?
(zk − z?)

− γHG(zk − z?) + o(||zk − z?||) +O(|γk − γ|)
=⇒PTR

x?
(uk+1 − x?) = 2MRPV (zk − z?)−MR(zk − z?)− γMRHG(zk − z?)

+ o(||zk − z?||) +O(|γk − γ|)
=⇒uk+1 − x? = 2MRPV (zk − z?)−MR(zk − z?)− γMRHG(zk − z?)

+ o(||zk − z?||) +O(|γk − γ|),
(36)

where we used several times the relation uk−x? = PTR
x?

(uk−x?)+o(||uk−x?||).
Summing up (36) and xk − x? = PV (zk − z?) yields

(zk + uk+1 − xk)− z? = (zk − z?) + (uk+1 − x?)− (xk − x?)
= Mγ(zk − z?) + o(||zk − z?||) +O(|γk − γ|).

Hence for the non-stationary FDR iteration, we have

zk+1 − z? = (1− λk)(zk − z?) + λk
(
(zk + uk+1 − xk)− (z? + x? − x?)

)
= (1− λk)(zk − z?) + λkMγ(zk − z?) + o(||zk − z?||) + χk

= Mγ,λ(zk − z?)− (λk − λ)(Id−Mγ)(zk − z?) + o(||zk − z?||) + χk.

Since limk→+∞
||(λk−λ)(Id−Mγ)(zk−z?)||

||zk−z?|| ≤ limk→+∞
|λk−λ|||Id−Mγ ||||zk−z?||

||zk−z?|| = 0,

then we get zk+1 − z? = Mγ,λ(zk − z?) +ψk + χk and conclude the proof. ut

Before presenting the local linear convergence result, we need to study the
spectral properties of Mγ,λ, which is presented in the lemma below.

Lemma 5.2 Given γ ∈]0, 2βV [ and λ ∈]0, 4βV −γ2βV
[, we have that Mγ is 2βV

4βV −γ -

averaged and Mγ,λ is 2βV λ
4βV −γ -averaged. Moreover, for all k large enough

(i) Mγ,λ converges to some matrix M∞
γ and,

Mk
γ,λ −M∞

γ = (Mγ,λ −M∞
γ )k and ρ(Mγ,λ −M∞

γ ) < 1.

(ii) Given any ρ ∈]ρ(Mγ,λ −M∞
γ ), 1[, ||Mk

γ,λ −M∞
γ || = O(ρk).

Proof Since WR is firmly non-expansive by Lemma 5.1, it follows from [1,
Example 4.7] that MR is firmly non-expansive and hence RMR

:=2MR − Id
is non-expansive. Similarly, as PV is firmly non-expansive, RV :=2PV − Id is
non-expansive. As a result, 1

2 (RMR
RV + Id) is firmly non-expansive [1, Propo-

sition 4.21(i)-(ii)]. Then, given γ ∈ [0, 2βV ], Id− γHG is 2βV
4βV −γ -averaged non-

expansive. Therefore, owing to Lemma 4.1, we have the averaged property of
Mγ and Mγ,λ. We deduce from [1, Proposition 5.15] that Mγ and Mγ,λ are
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convergent, i.e. the limit of Mk
γ,λ exists as k approaches +∞. It is denoted as

M∞
γ . Moreover, Mk

γ,λ−M∞
γ = (Mγ,λ−M∞

γ )k, ∀k ∈ N, and ρ(Mγ,λ−M∞
γ ) < 1

by [36, Theorem 2.12]. The second claim of the lemma is classical using the
spectral radius formula; See e.g. [36, Theorem 2.12(i)]. ut

Owing to Lemma 5.2, we can further simplify the linearized iteration (34).

Corollary 5.1 Consider the non-stationary FDR iteration (6) and suppose
that it is run under the assumptions of Theorem 5.2. Then the following holds:

(i) Iteration (34) is equivalent to

(Id−M∞
γ )(zk+1 − z?)

= (Mγ,λ −M∞
γ )(Id−M∞

γ )(zk − z?) + (Id−M∞
γ )ψk + χk.

(37)

(ii) If moreover R is locally polyhedral around x? and F is quadratic, then
zk+1 − z? = (Mγ,λ −M∞

γ )(zk − z?).

Proof For the first claim. Let K ∈ N sufficiently large such that the locally
linearized iteration (34) holds, then we have for all k ≥ K

zk+1 − z? = Mγ,λ(zk − z?) + ψk + χk

= Mγ,λ

(
Mγ,λ(zk−1 − z?) + ψk−1 + χk−1

)
+ ψk + χk

= Mk+1−K
γ,λ (zK − z?) +

∑k

j=K
Mk−j
γ,λ (ψj + χj).

(38)

Since zk → z? and Mγ,λ is convergent to M∞
γ by Lemma 5.2, taking the limit

as k → +∞, we have for all finite p ≥ K,

lim
k→+∞

∑k

j=p
Mk−j
γ,λ (ψj + χj) = −M∞

γ (zp − z?). (39)

Using (39) in (38), we get

zk+1 − z? = (Mγ,λ −M∞
γ )(zk − z?) + (Id−M∞

γ )(ψj + χj) + M∞
γ (zk+1 − z?).

It is also immediate to see from Lemma 5.2 that ||Id −M∞
γ || ≤ 1 and that

(Mγ,λ −M∞
γ )(Id −M∞

γ ) = Mγ,λ −M∞
γ . Rearranging the terms yields the

claimed equivalence.
Under polyhedrality and constant parameters, we have from Theorem 5.2

that o(||zk − z?||) and O(λk|γk − γ|) vanish, and the result follows. ut

5.3 Local Linear Convergence

We are now in position to claim local linear convergence of the FDR iterates.

Theorem 5.3 Consider the non-stationary FDR iteration (6) and suppose it
is run under the conditions of Theorem 5.2. Let be ρ ∈]ρ(Mγ,λ −M∞

γ ), 1[ and

K ∈ N such that, for all k ≥ K, ||Mk
γ,λ −M∞

γ || = O(ρk) (see Lemma 5.2).
Then the following holds:
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(i) If there exists η ∈]0, ρ[ such that λk|γk − γ| = O(ηk−K), then

||(Id−M∞
γ )(zk − z?)|| = O(ρk−K). (40)

(ii) If moreover R is locally polyhedral around x?, F is quadratic, and that
(γk, λk) ≡ (γ, λ) ∈]0, 2βV [×]0, 4βV − γ

2βV
[, then we have

||zk − z?|| ≤ ρk−K ||zK − z?||. (41)

Remark 5.3
• For the first case of Theorem 5.3, if M∞

γ = 0 then we obtain the convergence
rate directly on ||zk−z?||. Moreover, we can further derive the convergence
rate of ||xk − x?|| and ||uk − x?||.

• The condition on λk|γk−γ| in Theorem 5.3(i) implies that {γk}k∈N should
converge fast enough to γ. Otherwise, the local convergence rate would be
dominated by that of λk|γk − γ|. Especially, if λk|γk − γ| converges sub-
linearly to 0, then the local convergence rate will eventually become sub-
linear. See Figure 2 in the experiments section for a numerical illustration.

• The above result can be easily extended to the case of GFB method, for
the sake of simplicity we shall skip the details here. Nevertheless, numerical
illustrations will be provided in Section 6.

Proof For the first claim, let K ∈ N be sufficiently large such that (37) holds.
We then have from Corollary 5.1(i)

(Id−M∞
γ )(zk+1 − z?) = (Mγ,λ −M∞

γ )k+1−K(Id−M∞
γ )(zK − z?)

+
∑k

j=K
(Mγ,λ −M∞

γ )k−j
(
(Id−M∞

γ )ψj + χj
)
.

Since ρ(Mγ,λ−M∞
γ ) < 1 by Lemma 5.2, from the spectral radius formula, we

know that for every ρ ∈]ρ(Mγ,λ −M∞
γ ), 1[, there is a constant C such that

||(Mγ,λ −M∞
γ )j || ≤ Cρj holds for all integers j. We thus get

||(Id−M∞
γ )(zk+1 − z?)||

≤ C
(
ρk+1−K ||zK − z?||+

∑k

j=K
ρk−jχj +

∑k

j=K
ρk−j ||(Id−Mγ,λ)ψj ||

)
= C

(
ρk+1−K(||zK − z?||+ ρK−1

∑k

j=K
χj
ρj

)
+
∑k

j=K
ρk−j ||(Id−Mγ,λ)ψj ||

)
.

By assumption, χj = C ′ηj for some constant C ′ ≥ 0 and η < ρ. Then we have

ρK−1
∑k

j=K
χj
ρj ≤ C

′ρK−1
∑∞

j=K
(η/ρ)j = C′ηK

ρ−η < +∞.

Setting C
′′

= C(||zK − z?||+ C′ηK

ρ−η ) < +∞, we obtain

||(Id−M∞
γ )(zk+1 − z?)|| ≤ C

′′
ρk+1−K + C

∑k

j=K
ρk−j ||(Id−M∞

γ )ψj ||.

This, together with the fact that ||(Id−M∞
γ )ψj || = o(||(Id−M∞

γ )(zj − z?)||)
yields the claimed result. The second claim follows from Corollary 5.1 that
zk − z? = (Mγ,λ −M∞

γ )k+1−K(zK − z?) and we conclude the proof. ut
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5.4 Extension to Three-Operator Splitting

So far, we have presented the global and local convergence analysis of the
FDR algorithm. As we recalled in the introduction, FDR is closely related
with the three-operator splitting method (TOS) [7]. Therefore, it would be
interesting to extend the obtained result to TOS. However, extending the
global convergence result to TOS is far from straightforward. Hence, in the
following, we mainly focus on the local aspect.

For the sake of notational simplicity, we rewrite problem (9) as

min
x∈Rn

{
Ψ(x) = F (x) +R(x) + J(x)

}
, (42)

where we suppose the following assumptions:

(B.1) J,R ∈ Γ0(Rn).
(B.2) F : Rn → R is convex continuously differentiable with ∇F being

(1/β)-Lipschitz continuous.
(B.3) Argmin(Ψ) 6= ∅, i.e. the set of minimizers is not empty.

Correspondingly, the TOS iteration (10) becomes

uk+1 = proxγR
(
2xk − zk − γ∇F (xk)

)
zk+1 = zk + λk(uk+1 − xk),

xk+1 = proxγJ(zk+1).

(43)

We suppose the following assumption on the algorithm parameters:

(B.4) The (constant) step-size verifies γ ∈]0, 2β[ and the sequence of relax-
ation parameters {λk}k∈N is such that

∑
k∈N λk( 4β−γ

2β − λk) = +∞.

The fixed-point operator of TOS reads as

Tγ = Id− proxγR + proxγJ(2proxγR − Id− γ∇F ◦ proxγJ), (44)

and Tγ,λk = (1 − λk)Id + λkTγ . Differently from Fγ (see (11)), Tγ cannot be
simplified into a compact form.

Lemma 5.3 ([7, Proposition 2.1 and Theorem 2.1]) Consider the TOS
iteration (43) and the fixed-point operator (44). Suppose that Assumptions
(B.1)-(B.4) hold. Then,

(i) the operator Tγ is 2β
4β−γ -averaged non-expansive.

(ii) {zk}k∈N converges to some z? in fix(Tγ); moreover, both {uk}k∈N and
{xk}k∈N converge to x?:=proxγJ(z?), which is a global minimizer of Ψ .

Similar to (30), under Lemma 5.3, we have the optimality condition

(x? − z?)/γ ∈ ∇F (x?) + ∂R(x?) and (z? − x?)/γ ∈ ∂J(x?).

Following Section 5.1-5.3, we present the local convergence of TOS.
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Finite Activity Identification We start with the finite identification result, for
both uk, xk as J is no longer the indicator function of a subspace.

Corollary 5.2 For the TOS iteration (43). Suppose it is run under the As-
sumptions (B.1)-(B.4), so that (uk, xk, zk) → (x?, x?, z?) where z? ∈ fix(Tγ)
and x?:=proxγJ(z?) ∈ Argmin(Ψ). Moreover, suppose R ∈ PSFx?(MR

x?),

J ∈ PSFx?(MJ
x?), and the following non-degeneracy condition holds

(x? − z?)/γ −∇F (x?) ∈ ri
(
∂R(x?)

)
and (z? − x?)/γ ∈ ri

(
∂J(x?)

)
. (45)

Then, there exists K ∈ N such that (uk, xk) ∈MR
x? ×MJ

x? for every k ≥ K.

Local Linearized Iteration Define R̃(u):=γR(u)−〈u, x?− z?− γ∇F (x?)〉 and

J̃(x):=γJ(x)− 〈x, z? − x?〉. We have the following corollary from Lemma 5.1.

Corollary 5.3 Suppose that J ∈ PSFx?(MJ
x?) and R ∈ PSFx?(MR

x?). Then
their Riemannian Hessians at x? read

HJ̃ :=PTJ
x?
∇2
MJ

x?
J̃(x?)PTJ

x?
and HR̃:=PTR

x?
∇2
MR

x?
R̃(x?)PTR

x?
,

which are symmetric positive semi-definite under either of the two conditions:

(i) condition (45) holds.
(ii) MJ

x? and MR
x? are affine subspaces.

In turn, the matrices WJ̃ :=(Id+HJ̃)−1 and WR̃:=(Id+HR̃)−1 are both firmly
non-expansive.

Now assume F is locally C2-smooth around x?, and define HF :=∇2F (x?).
Define also MJ̃ :=PTJ

x?
WJ̃PTJ

x?
and MR̃:=PTR

x?
WR̃PTR

x?
, and the matrices

Lγ = Id + 2MR̃MJ̃ −MR̃ −MJ̃ − γMR̃HFMJ̃ and Lγ,λ = (1− λ)Id + λLγ .

Lemma 5.4 ([7, Proposition 2.1]) Lγ is 2β
4β−γ -averaged non-expansive.

The above lemma entails that Lγ ,Lγ,λ are convergent, hence the spectral
properties result in Lemma 5.2 applies to them. Denote L∞γ := limk→+∞Lk

γ,λ.

Corollary 5.4 Consider the TOS iteration (43). Suppose it is run under As-
sumptions (B.1)-(B.4), that λk → λ ∈]0, 4β−γ2β [, and that F is locally C2

around x?. Then we have zk+1−z? = Lγ,λ(zk−z?)+o(||zk−z?||). If moreover

J,R are locally polyhedral around x?, F is quadratic and λk ≡ λ ∈]0, 4β−γ2β [ is

chosen constant, then the term o(||zk − z?||) vanishes.

We can also specialize Corollary 5.1 to this context, however we choose to
skip it owing to its obviousness.
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Local Linear Convergence Finally, we are able to to present the local linear
convergence for (43).

Corollary 5.5 For the TOS iteration (43). Suppose Assumptions (B.1)-(B.4)
hold, and that λk → λ ∈]0, 4β−γ2β [, and that F is locally C2 around x?. Then

(i) Given any ρ ∈]ρ(Lγ,λ −L∞γ ), 1[, there exists K ∈ N large enough such

that ||(Id−L∞γ )(zk − z?)|| = O(ρk−K) ∀k ≥ K.
(ii) If moreover J,R are locally polyhedral around x?, F is quadratic and

λk ≡ λ ∈]0, 4β−γ2β [ is chosen constant, then there exists K ∈ N such that

||zk − z?|| ≤ ρk−K ||zK − z?|| ∀k ≥ K.

6 Numerical Experiments

In this section, we illustrate our theoretical results on problems arising from
statistics, and signal/image processing applications3.

6.1 Examples of Partly Smooth Functions

Table 1 provides some examples of popular partly smooth functions. More
details about them can be found in [15, Section 5] and references therein.

Table 1: Examples of partly smooth functions. For x ∈ Rn and some subset
of indices b ⊂ {1, . . . , n}, xb is the restriction of x to the entries indexed in b.
For `∞-norm, Ix =

{
i : |xi| = ||x||∞

}
. D

DIF
stands for the finite differences

operator [37], ID
DIF

x = {i : (DDIFx)i 6= 0}. sign(xIx) is the sign vector of xIx ,
and Rsign(xIx) is the span of sign(xIx). σ(x) denotes the singular values of x.

Function Expression Partial smooth manifold

`1-norm ||x||1 =
∑n
i=1 |xi| M =

{
z ∈ Rn : Iz ⊆ Ix

}
, Ix =

{
i : xi 6= 0

}
`1,2-norm

∑m
i=1 ||xbi || M =

{
z ∈ Rn : Iz ⊆ Ix

}
, Ix =

{
i : xbi 6= 0

}
`∞-norm maxi={1,...,n} |xi| M =

{
z ∈ Rn : zIx ∈ Rsign(xIx )

}
TV semi-norm ||x||TV = ||DDIFx||1 M =

{
z ∈ Rn : ID

DIF
z ⊆ ID

DIF
x

}
Nuclear norm ||x||∗ =

∑r
i=1 σ(x) M =

{
z ∈ Rn1×n2 : rank(z) = rank(x) = r

}

The `1, `∞-norms and the anisotropic TV semi-norm are all polyhedral
functions, hence the corresponding Riemannian Hessians are simply 0. The
`1,2-norm is not polyhedral yet partly smooth relative to a subspace; the nu-
clear norm is partly smooth relative to the manifold of fixed-rank matrices,
which is no longer a subspace. The Riemannian Hessian of these two functions
are non-trivial and can be computed following [38].

3 MATLAB source for reproducing the numerical result can be found at https://github.
com/jliang993/Rate-FDR.

https://github.com/jliang993/Rate-FDR
https://github.com/jliang993/Rate-FDR
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6.2 Numerical Experiments

Global Convergence Rate of the Bregman Distance We first demonstrate, nu-
merically, the global o(1/k) convergence rate of the Bregman divergence of
Section 4. Towards this goal, we consider the fused LASSO problem [39]

min
x∈Rn

µ1||x||1 + µ2||DDIF
x||1 + 1

2
||Kx− f ||2, (46)

where µ1, µ2 > 0 are trade-off weights. Note that all assumptions (A.1)-(A.4)
hold (in particular the set of minimizers is a non-empty compact set by coer-
civity of || · ||1). The problem can be solved using the GFB instance of FDR
in (8). In the test, we consider n = 128 and K ∈ R36×128 is a random Gaussian
matrix. The step-size is chosen as γk ≡ 1

4||K||2 such that we can observe the

o(1/k) convergence behaviour for enough number of iterations.

100 101 102
10-1

100

101

102

500 1000 1500 2000

10-10

10-5

100
theoretical
practical

(a) (b)

Fig. 1: Results of applying (8) to solve the fused LASSO problem (46). (a):
convergence profile of the Bregman distance inf0≤i≤k Dv

?

Φ (ui). (b): convergence
profile of ||zk − z?||.

The convergence profile of min0≤i≤k Dv
?

Φ (ui) is shown in Figure 1(a). The
plot is in log-log scale, where the red line corresponds to the sub-linear O(1/k)
rate and the black line is min0≤i≤k Dv

?

Φ (ui). One can then confirm numerically
the prediction of Theorem 4.2.

However, it can be observed that beyond some iteration, e.g. 102 for the
consider example, the convergence rate changes to linear. We argue in the
next section that this is likely to be due to finite activity identification since
`1-norm and total variation are partly smooth (in fact even polyhedral) and
that, for all k large enough, GFB enters into a local linear convergence regime.

Local Linear Convergence of GFB/FDR Following the above discussion, in
Figure 1(b) we present the local linear convergence of FDR in terms of ||zk−z?||
as we are in the scope of Theorem 5.3(ii). We use the same parameters setting
as in Figure 1(a). The red line stands for the estimated rate (see Theorem 5.3),



28 C. Molinari, J. Liang and J. Fadili

while the black line is numerical observation. The starting point of the red
line is the number of iteration where uk identifies the manifolds. As shown
in the figure, we indeed have local linear convergence behaviour of ||zk − z?||.
Moreover, since F = 1

2 ||Kx− f ||
2

is quadratic, `1-norm and total variation are
polyhedral, our theoretical rate estimation is tight, i.e. the red line has the
same slope as the black line.

Non-Stationary FDR We now investigate the convergence behaviour of the
non-stationary version of FDR and compare it to the stationary one. We fix
λk ≡ 1, i.e. the iteration is unrelaxed. The stationary FDR algorithm is run
with γ = β. For the non-stationary ones, four choices of γk are considered:

Case 1: γk = (1 + 1
k1.1 )β, Case 2: γk = (1 + 1

k2 )β,

Case 3: γk = (1 + 0.999k)β, Case 4: γk = (1 + 0.5k)β.

Obviously, we have γk → γ = β and
∑
k∈N |γk − γ| < +∞ for all cases. Prob-

lem (46) is considered. The comparison results are displayed in Figure 2(a).

200 400 600 800 1000
10-10

10-5

100 S-FDR
NS-FDR 1
NS-FDR 2
NS-FDR 3
NS-FDR 4

20 40 60 80 100
10-10

10-5

100
GFB
TOS: practical
TOS: theoretical

(a) (b)

Fig. 2: (a): comparison of ||zk − z?|| between stationary (“S-FDR”) and non-
stationary FDR (“NS-FDR X”, X stands for Case X). (b): comparison of
||zk − z?|| between GFB and TOS for problem (47).

We can make the following observations from the comparison:

• In agreement with our analysis, the local convergence behaviour of the non-
stationary iteration is no better than the stationary one. This contrasts
with the global behaviour where non-stationarity could be beneficial (see
last comment hereafter);

• As argued in Remark 5.3(ii), the convergence rate is eventually controlled
by the error |γk−γ|, except for “Case 4”, Indeed, 0.5 is strictly smaller than
the local linear rate of the stationary version (i.e. |γk − γ| = o(||zk − z?||));

• The non-stationary FDR seems to lead to faster identification, typically
for “Case 3”. This is the effect of bigger step-size at the early stage.



Convergence Rates of Forward–Douglas–Rachford Splitting Method 29

Local Linear Convergence of GFB/TOS To conclude the numerical experi-
ments, we demonstrate the local convergence behaviour of GFB and TOS
algorithms. Consider the non-negative low-rank matrix completion problem

min
x∈Rn×n

µ||x||∗ + ιRn×n+
(x) + 1

2
||Kx− f ||2, (47)

where we recall that || · ||∗ is the nuclear norm (sum of singular values), and
Rn×n+ is the set of matrices with non-negative entries. Again, our main assump-
tions (A.1)-(A.4) are verified thanks to continuity, convexity and coercivity.

Problem (47) is a special instance of (42) if we let F = 1
2 ||K ·−f ||

2
, R = µ|| · ||∗

and J = ιRn+(x). Hence it can be solved by the TOS scheme (43) and also by

the GFB algorithm (8).
In the test, we consider x ∈ R50×50 and K is the sub-sampling operator

(we did not consider larger problem size as computing the theoretical rate is
very time and memory consuming). Figure 2(b) shows the convergence profiles
of GFB/TOS. Similarly to the observation made in Figure 1(b), both GFB
(magenta line) and TOS (black line) converge sub-linearly from the beginning
and eventually enter a linear convergence regime. The red line is our theoretical
linear rate estimation of TOS. Moreover, for this example, the performances
of two algorithms are very close, especially for the global sub-linear regime.

7 Perspectives and Open Problems

In this paper, we address the convergence properties of FDR algorithm from
both global and local perspectives. The obtained results allow us to better
understand the optimisation problem (1) and FDR algorithm, and moreover
lay the foundation for our future research regarding several open problems.

The first open problem is the acceleration of FDR/GFB/TOS, or in gen-
eral acceleration schemes for non-descent type methods. In recent years, owing
to the success of Nesterov’s optimal scheme [9] and FISTA [12], inertial tech-
nique has been widely adopted to speed up other non-descent type operator
splitting methods [40]. However, unlike the results in [9,12], the acceleration
effects of inertial technique for these non-descent type methods are rather
limited, or even slower than the original method [40, Chapter 4]. As a con-
sequence, a proper acceleration scheme for non-descent methods, including
FDR/GFB/TOS, with guaranteed acceleration remains an open problem.

Another direction for acceleration is the incremental version of these al-
gorithms, particularly for GFB as the separable structure of

∑
iRi(x) in (7)

is ideal for designing incremental schemes. Moreover, if F also has finite sum
structure, e.g. F (x) =

∑m
i=1 fi(x), then similar to [41], we can consider incre-

mental schemes for both smooth and non-smooth components of the problem.
The third perspective would be extending the obtained results to the non-

Euclidean setting. More precisely, the proximal mapping of (3) is defined based
on the Euclidean distance between u and x. By replacing the Euclidean dis-
tance with a Bregman distance, we obtain the Bregman-type splitting algo-
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rithms which are much more general. Generalizing the obtained results to
Bregman-type splitting setting would be important and challenging.

For the local convergence analysis of FDR algorithm, we have to restrict
ourselves to finite dimensional Euclidean space, which is due to the fact that
partial smoothness is only available in finite dimension. However, recently it
is reported that finite identification also occurs for problems in infinite di-
mension, such as the off-the-grid compressive sensing [42]. As a result, proper
extension of partial smoothness to the infinite dimension is required to explain
these phenomena.

8 Conclusions

In this paper, we studied global and local convergence properties of the Forward–
Douglas–Rachford method. Globally, we established an o(1/k) convergence
rate of the best iterate and O(1/k) ergodic rate in terms of a Bregman di-
vergence criterion designed for the method. We also specialized the result to
the case of Forward–Backward splitting method, for which we showed that the
objective function of the method converges at an o(1/k) rate. Then, locally,
we proved the linear convergence of the sequence when the involved functions
are moreover partly smooth. In particular, we demonstrated that the method
identifies the active manifolds in finite time and that then it converges locally
linearly at a rate that we characterized precisely. We also extended the local
linear convergence result to the case of three-operator splitting method. Our
numerical experiments supported the theoretical findings.
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Appendix: Riemannian Geometry

Let M be a C2-smooth embedded submanifold of Rn around a point x. We denote respec-
tively TM(x) and NM(x) the tangent and normal space of M at point near x in M.

Exponential Map Geodesics generalize the concept of straight lines in Rn, preserving
the zero acceleration characteristic, to manifolds. Roughly speaking, a geodesic is locally
the shortest path between two points on M. We denote by g(t;x, h) the value at t ∈ R of

the geodesic starting at g(0;x, h) = x ∈M with velocity ġ(t;x, h) = dg
dt

(t;x, h) = h ∈ TM(x)
(which is uniquely defined). For every h ∈ TM(x), there exists an interval I around 0 and a
unique geodesic g(t;x, h) : I →M such that g(0;x, h) = x and ġ(0;x, h) = h. The mapping
Expx : TM(x)→M, h 7→ Expx(h) = g(1;x, h) is called Exponential map.

Parallel Translation Given x, x′ ∈M, let TM(x), TM(x′) be their corresponding tangent
spaces. Define τ : TM(x)→ TM(x′) the parallel translation along the unique geodesic joining
x to x′, which is isomorphism and isometry w.r.t. the Riemannian metric.
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Riemannian Gradient and Hessian For a vector v ∈ NM(x), the Weingarten map ofM
at x is the operator Wx(·, v) : TM(x)→ TM(x) defined by Wx(·, v) = −PTM(x)dV [h] where
V is any local extension of v to a normal vector field onM. The definition is independent of
the choice of the extension V , and Wx(·, v) is a symmetric linear operator which is closely
tied to the second fundamental form of M, see [43, Proposition II.2.1].

Let J be a real-valued function which is C2 along the M around x. The covariant
gradient of J at x′ ∈ M is the vector ∇MJ(x′) ∈ TM(x′) defined by 〈∇MJ(x′), h〉 =
d
dt
J
(
PM(x′ + th)

)∣∣
t=0

, ∀h ∈ TM(x′), where PM is the projection operator onto M. The

covariant Hessian of J at x′ is the symmetric linear mapping ∇2
MJ(x′) from TM(x′) to itself

which is defined as 〈∇2
MJ(x′)h, h〉 = d2

dt2
J
(
PM(x′ + th)

)∣∣
t=0

, ∀h ∈ TM(x′). This defini-
tion agrees with the usual definition using geodesics or connections [44]. Now assume that
M is a Riemannian embedded submanifold of Rn, and that a function J has a C2-smooth re-
striction onM. This can be characterized by the existence of a C2-smooth extension (repre-

sentative) of J , i.e. a C2-smooth function J̃ on Rn such that J̃ agrees with J onM. Thus, the

Riemannian gradient ∇MJ(x′) is given by ∇MJ(x′) = PTM(x′)∇J̃(x′) and ∀h ∈ TM(x′),

the Riemannian Hessian reads ∇2
MJ(x′)h = PTM(x′)∇2J̃(x′)h+ Wx′

(
h,PNM(x′)∇J̃(x′)

)
,

where the last equality comes from [45, Theorem 1]. WhenM is an affine or linear subspace

of Rn, then obviously M = x + TM(x), and Wx′ (h,PNM(x′)∇J̃(x′)) = 0, and we have

∇2
MJ(x′) = PTM(x′)∇2J̃(x′)PTM(x′).
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8. Liang, J., Fadili, J., Peyré, G.: Convergence rates with inexact non-expansive operators.
Mathematical Programming: Series A 159(1-2), 403–434 (2016)

9. Nesterov, Y.: A method for solving the convex programming problem with convergence
rate O(1/k2). Dokl. Akad. Nauk SSSR 269(3), 543–547 (1983)

10. Nesterov, Y.: Introductory lectures on convex optimization: A basic course, vol. 87.
Springer (2004)

11. Bredies, K., Lorenz, D.A.: Linear convergence of iterative soft-thresholding. Journal of
Fourier Analysis and Applications 14(5-6), 813–837 (2008)

12. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear in-
verse problems. SIAM Journal on Imaging Sciences 2(1), 183–202 (2009)

13. Chambolle, A., Dossal, C.: On the convergence of the iterates of the “fast iterative
shrinkage/thresholding algorithm”. Journal of Optimization Theory and Applications
166(3), 968–982 (2015)

14. Attouch, H., Peypouquet, J.: The rate of convergence of Nesterov’s accelerated Forward–
Backward method is actually faster than 1/k2. SIAM Journal on Optimization 26(3),
1824–1834 (2016)

15. Liang, J., Fadili, J., Peyré, G.: Activity identification and local linear convergence
of Forward–Backward-type methods. SIAM Journal on Optimization 27(1), 408–437
(2017)



32 C. Molinari, J. Liang and J. Fadili
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31. Brézis, H.: Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les

Espaces de Hilbert. North-Holland/Elsevier, New York (1973)
32. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting.

Multiscale Modeling & Simulation 4(4), 1168–1200 (2005)
33. Rockafellar, R.T., Wets, R.: Variational analysis, vol. 317. Springer Verlag (1998)
34. Hare, W.L., Lewis, A.S.: Identifying active constraints via partial smoothness and prox-

regularity. Journal of Convex Analysis 11(2), 251–266 (2004)
35. Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive aver-

aged operators. Optimization 53(5-6), 475–504 (2004)
36. Bauschke, H.H., Bello Cruz, J., Nghia, T., Phan, H.M., Wang, X.: Optimal rates of

convergence of matrices with applications. Numerical Algorithms (2016). In press
(arxiv:1407.0671)

37. Condat, L.: A direct algorithm for 1-d total variation denoising. IEEE Signal Processing
Letters 20(11), 1054–1057 (2013)

38. Vaiter, S., Deledalle, C., Fadili, J.M., Peyré, G., Dossal, C.: The degrees of freedom of
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