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Automatic control of convertible fixed-wing drones with vectorized thrust

André Anglade, Jean-Marie Kai, Tarek Hamel and Claude Samson

Abstract— This paper proposes a control design strategy,
encompassing trajectory tracking and path following, for a
category of convertible aircraft with fixed wings and vectorized
thrust, as exemplified by the Harrier jet aircraft and the V-22
Osprey. The approach relies on, and extends, previous works on
the control of hovering vehicles (helicopters, quadrotors,...), ax-
isymmetric devices (rockets, missiles,...), and fixed-wing aircraft
(airplanes). In particular it exploits a common nonlinear model
of aerodynamic forces exerted on the vehicle, both simple and
representative of the underlying physics. Besides the unifying
property of this approach, the proposed solution addresses
the delicate transition problem between hovering and cruising
flight, and thus the concomitant thrust tilting issue, in a novel
manner with the possibility of continuously minimizing the
thrust intensity, and thus energy expenditure.

I. INTRODUCTION

Convertible aircraft endowed with wings are vehicles
that can hover, like helicopters, and also take advantage of
airspeed-induced lift forces to cruise at high speeds with
reduced energy expenditure, and thus good flight autonomy.
They can be classified into three main categories: tail-sitters
with fixed wings and fixed thrust direction (of which the
Convair XFY-1 and Snecma Coléoptère are historical proto-
types), tilt rotor-and-wing aircraft with thrust direction and
wings pivoting jointly (Hiller X-18, LTV XC-142, Canadair
CL-84), and fixed-wing aircraft with vectorized thrust (Bell-
Boeing V-22 Osprey, Bell XV-15 and V-280 Valor). Nowa-
days, all three categories are well represented in the rapidly
expanding market of small drones. While encompassing the
cases of classical fixed-wing aircraft and multirotor VTOLs,
the present paper addresses more specifically the control of
convertible aircraft belonging to the third category.
Large convertible aircraft have been built and flown for
decades, even though only a few of them passed the proto-
typing stage. Control design studies for Tilt-Rotor Unmanned
Aerial Vehicles (TRUAVs), belonging to the aforementioned
second and third categories, are more recent and constitute to
this day a small portion of the specialized literature devoted
to the control of UAVs (see [1], [2] for a review of these
techniques up to the year 2015).
The flight of aircraft with vectorized thrust is commonly
decomposed into three distinct modes, namely i) hovering
(helicopter), ii) transitioning, and iii) cruising (airplane). In
the first mode the rotor axes are oriented perpendicularly
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to the aircraft body, whereas in the third mode they are
aligned with the aircraft body. Most of the control literature
about aerial vehicles is devoted to these two classical modes
[2]. The transition between them, involving thrust direction
modification, has been little studied on a theoretical ground
[3]. This transition is typically performed by implement-
ing an ad hoc scheduling policy, when the aircraft moves
horizontally and reaches a certain airspeed, either during
an acceleration phase (hovering to cruising) or during a
deceleration (cruising to hovering). A common practice is
to modify the thrust tilt angle in relation to the airspeed
[1], [4]–[6]. Taking advantage of the thrust tilting degree of
freedom to minimize the thrust intensity is evoked in [7] as
a perspective worth to be investigated. This possibility, and
a generalized scheduling policy, are addressed in the present
paper within a unified control approach that encompasses our
previous work on trajectory tracking [8] and path following
[9], [10] for conventional fixed-wing aircraft. The proposed
control design exploits a generic nonlinear model of aero-
dynamical forces applied to the aircraft whose main asset is
to be representative of the physics underlying the creation
of the environmental forces, and enough simple to allow for
a nonlinear control design lending itself to convergence and
stability analyses.

The paper is organized as follows. Section II recalls the
equations of motion of an aircraft, and presents the model
of applied aerodynamic forces subsequently used for control
design. Section III describes the three stages of the proposed
control design, with its adaptation to either trajectory track-
ing or path following objectives. For the sake of genericity,
and in order to be as much independent as possible of specific
means of actuation, the thrust’s intensity and tilting angle,
and the aircraft angular velocity are used as intermediary
control inputs. Lyapunov convergence and stability of the
proposed feedback control laws can be proved by adapting
the analyses reported in [8] and [10]. This analysis is
not reported here due to space limitations. Application to
a particular class of convertible aircraft is worked out in
Section IV by considering the case of a quad tilt-rotor fixed-
wing aircraft and by specifying the control allocation for the
production of the required thrust and torques. Hardware-in-
the-loop simulation results are reported in Section V, and
concluding remarks are given in the last Section VI.

II. CONTROL MODEL

A. Notation

• E3 denotes the 3D Euclidean vector space associated
with the inertial frame I = {O; ı0, 0,k0}, with k0

pointing vertically and downward.



• Vectors in E3 are written with bold letters. Inner and
cross products in E3 are denoted by the symbols · and
× respectively. Ordinary letters are used for real vectors
of coordinates, and the ith. component of a real vector
x is denoted as xi.

• When x ∈ Rn (resp. x ∈ E3), |x| (resp. |x|) denotes
the Euclidean norm of x (resp. x). Of course, |x| = |x|.

• Πu denotes the operator of projection on the plane
orthogonal to u.

• G denotes the aircraft center of mass (CoM).
• B = {G; ı, ,k} is the chosen aircraft-fixed frame, with
ı and  parallel to the so-called zero-lift plane of the
aircraft. We assume that this latter plane is not affected
by thrust direction changes. This implies in particular
that the aircraft is designed so as to minimize aero-
dynamic interference between the propulsion system
and the main wing. The vector ı (resp. ) is along the
longitudinal (resp. lateral) axis of the aircraft (see Fig.
1).

• l = sin(θ)ı− cos(θ)k is the unitary vector characteriz-
ing the thrust direction, with θ the tilting thrust angle.

• ω is the angular velocity of B w.r.t. I, i.e.

d

dt
(ı, ,k) = ω × (ı, ,k) (1)

The vector of coordinates of ω in the body-fixed frame
B is denoted as ω.

• m is the body mass.
• p is the CoM position w.r.t. the inertial frame.
• v is the CoM velocity w.r.t. the inertial frame, i.e.

ṗ = v (2)

The vector of coordinates of v in the body-fixed frame
B is denoted as v.

• v̇ is the CoM acceleration w.r.t. the inertial frame;
• g = g0 k0 is the gravitational acceleration;
• vw is the ambient wind velocity w.r.t. I, which we

assume bounded with first and second time-derivatives
also bounded;

• va = v − vw is the aircraft air-velocity. The vector of
coordinates of va in the body fixed-frame B is denoted
as va.

• The direction of va in the aircraft-fixed frame is char-
acterized by two angles α and β such that

va = |va|(cosα(cosβ ı+ sinβ ) + sinαk) (3)

α = arcsin(va,3/|va|) and β = arctan(va,2/va,1)
denote the angle of attack and the sideslip angle re-
spectively.

B. Control inputs and model equations

We assume that the control inputs consist of a thrust force
T = T l, typically produced by propellers or jet turbines,
and a torque vector Γ. This torque is used to modify the
vehicle’s orientation at will. It can be produced in various
ways by using tilting control surfaces (standard airplanes),
differential multi-rotors speeds (classical multirotor drones),

Fig. 1. Frames and forces

cyclic blade control (helicopters), a combination of tilting
control surfaces with cyclic blade control (V-22 Osprey, Bell
V-280 Valor), or a combination of tilting control surfaces
with differential multi-rotors speeds (the quad tilt rotor
aircraft represented in Fig. 1), etc. Due to the large number
of possible configurations, and for the sake of genericity, the
actuation system producing this torque is not specified in
the first control design stages. More specifically, we assume
the pre-existence of low level feedback loops that control
the production of a torque vector ensuring the asymptotic
stabilization of any desired angular velocity for the vehicle’s
body. This is a standard backstepping assumption. Under
this assumption the body angular velocity ω becomes an
intermediate control variable. For the same reason, the
controlled actuation in charge of stabilizing the thrust tilt
angle at a desired value is not specified either. Under these
assumptions and approximations, the control inputs here
considered are the thrust intensity T , the thrust tilt angle θ,
and the body angular velocity ω. The corresponding aircraft
model equations are then reduced to the kinematic equations
(1) and (2) complemented with Newton’s equation

mv̇ = mg + Fa + T (sin(θ)ı− cos(θ)k) (4)

with Fa denoting the resultant of the aerodynamic forces
exerted on the vehicle. Prior to exploiting this latter equation
for control design, a model of Fa is needed.

C. Aerodynamic forces

The resultant aerodynamic force Fa applied to a rigid body
moving with air-velocity va is traditionally decomposed into
the sum of a drag force FD along the direction of va and a
lift force FL perpendicular to this direction, i.e.

Fa = FD + FL (5)

The intensities of drag and lift forces are essentially pro-
portional to |va|2 modulo variations characterized by two
dimensionless functions CD and CL, which depend in the
first place on the orientation of va w.r.t. the body, but also
on the Reynolds number Re and Mach number M . These
dimensionless functions are called the aerodynamic charac-
teristics of the body, or drag coefficient and lift coefficient



respectively. More precisely

FD = −ηa|va|CD va , FL = ηa|va|CL v⊥a (6)

with
• v⊥a some vector perpendicular to va and such that
|v⊥a | = |va|,

• ηa := ρΣ
2 with ρ the free stream air density, and Σ an

area germane to the body shape.
We neglect here the dependence of the aerodynamic char-

acteristics on the Reynolds and Mach numbers. This is all
the more justified for scale-model aircraft evolving at nearly
constant altitudes and at speeds much lower than the speed
of sound. The more specific model that we propose to use
is:

Fa = −
(
c0(va · ı)ı+ c̄0(va · k)k

)
|va|+ (va · )O(va) (7)

with c0 and c1 denoting positive numbers, c̄0 = c0 + 2c1,
and O(va) any Euclidean vector-valued function such that
the ratio |O(va)|

|va| is bounded. This model was previously
used in [8] and [9] for the design of control solutions in
the case of classical fixed-wing aircraft. Note that i) this
model encompasses the zero force assumption commonly
made in the case of VTOL vehicles moving slowly (c0 =
c̄0 = 0, O(va) = 0), and ii) the non-dependence of this
model upon the tilt angle θ is equivalent to assuming that
modifications of the thrust direction do not (little, in practice)
affect the aircraft aerodynamics. One easily verifies that
this model is also compatible with the general relations (5)
and (6), in particular when the lateral airspeed vanishes.
In this latter case (7) yields v⊥a = − |va|cosαk − tanαva,
CD(α) = (c0 + 2c1 sin2 α)/ηa, and CL(α) = c1 sin 2α/ηa.
For small angles of attack |α| the drag coefficient CD is
thus approximately equal to c0

ηa
and the lift coefficient CL

is approximately proportional to the angle of attack with the
coefficient of proportionality given by 2c1

ηa
. This is coherent

with experimental data performed on a variety of wing
profiles and axisymmetric bodies [11]. Note also that, by
contrast with other models, which are valid only locally
for small angles of attack, the proposed model respects
the physical property of no lift when the air-velocity is
perpendicular to the aircraft zero-lift plane, i.e. when α =
π/2. This property is of particular interest for scale-model
aircraft that are very sensitive to aerology conditions, and
for convertible aerial vehicles whose angle of attack may
vary in large proportions between hovering and cruising
flight phases. Nevertheless, this model fails to account for
the abrupt and complex stall phenomena occurring beyond
some angle of attack (typically around α = π/10). A way to
tentatively overcome this shortcoming consists in modifying
the coefficients c0 and c1 beyond the stall angle [11].

III. CONTROL

For the sake of simplification, we here assume that the
aircraft position, attitude, inertial velocity, and air velocity
are either precisely measured or well estimated.

A. Design methodology

The proposed control design methodology involves three
steps.

1) First step: This step consists in determining the ex-
pression of a feedback control function ξ that would achieve
the desired objective(s) if the system dynamic equation was
simply

v̇ = ξ (8)

modulo slowly varying additive perturbations (conceptually
representing modeling errors). For instance, consider the
objective of having v converge robustly to a desired ve-
locity vr(t). Let I denote an adequate bounded integral
of the velocity error ṽ ≡ (v − vr(t)). Then a possible
Proportional/Integral (PI) function ξ yielding the exponential
stabilization at zero (in the sense of Lyapunov) of the
extended state error (ṽ, I) is

ξ(v, I, t) = v̇r(t)− kv(v − vr(t))− kII,

with kv and kI denoting positive gains.

In the case of the trajectory tracking problem, the
objective is to have the position p converge robustly to a
desired position pr(t). Let I denote an adequate bounded
integral of the position error p̃ ≡ p−pr(t). Then a possible
Proportional/Integral/Derivative (PID) function ξ yielding
the exponential stabilization at zero of the extended state
error (p̃, ṽ, I) is

ξ(p,v, I, t) = v̇r(t)−kp(p−pr(t))−kv(v−vr(t))−kII,

with kp, kv and kI denoting positive gainss adequately
chosen. Of course, the above mentioned functions ξ can
be adapted to satisfy complementary constraints (uniform
boundedness of the aircraft speed, for instance [8]).

In the case of the path following problem, objectives
are dual: i) convergence of the aircraft speed |v| (or |va|,
or |va,1|) to a desired speed value v∗, and ii) convergence
to zero of the distance between the aircraft position and
a pre-defined geometric path. Let ξv denote a function
such that the equality ˙|v| = ξv(|v|, v∗, Iv, t) yields the
realization of the first objective. The second objective
involves the aircraft heading vector h = v

|v| , its angular
velocity ωh = h × ḣ, and the determination of a desired
heading vector h∗ such that the equality h = h∗(p, |v|, t)
yields the exponential stabilization at zero of the distance
between the aircraft and the chosen path, provided that the
aircraft speed is always larger than some positive value.
This latter sub-problem is commonly referred to as the
guidance problem in the specialized literature. Then, let
ω̄h denote a function of the orientation error h × h∗ (and
possibly other variables) such that the equality ωh = Πhω̄h
yields the convergence of h to h∗ and, subsequently the
realization of the second objective. Examples of functions
ξv and ω̄h endowed with the above mentioned properties



are given in [9]. Then a function ξ yielding the achievement
of both objectives, when v̇ = ξ, is

ξ = ξvh+ |v|(ω̄h × h).

Indeed, v = |v|h so that v̇ = ˙|v|h+ |v|(ωh×h). Using the
expression of ξ in the equality v̇ = ξ then yields ˙|v| = ξv
and ωh = Πhω̄h.

2) Second step: This step consists in determining the
thrust T , the tilt angle θ, and the aircraft frame B =
{G; ı, ,k}, such that

mξ = mg + Fa + T (sin(θ)ı− cos(θ)k) (9)

The reason is that, in view of (4), the realization of this
equality yields v̇ = ξ. Let us define

a := m(ξ − g)
d := a+ c0|va|va
e := a+ c̄0|va|va

(10)

Regrouping (9) and (7) then yields(
d · ı− T sin(θ)

)
ı+

(
e · k + T cos(θ)

)
k

+(a · )− (va · )O(va) = 0
(11)

To satisfy this equality it is sufficient to define

 =
va × a
|va × a|

(12)

and impose
d · ı = T sin(θ)
e · k = −T cos(θ)

(13)

Note that this choice of  corresponds to adopting a so-
called “balanced flight” without “sideslip”, i.e. for which
va ·  = 0. This choice also explains the non-necessity of
better modeling in (7) the component of aerodynamic forces
acting sideways on the aircraft. Now, the two equalities in
(13) are equivalent to

T = sin(θ)(d · ı)− cos(θ)(e · k) (14)

and
tan(θ) = − d · ı

e · k
(15)

Therefore, with  given by (12), the thrust is calculated
according to (14), while the tilt angle θ and the vectors
ı and k must satisfy (15). This latter constraint can be
exploited in essentially two ways, namely either by imposing
the tilt angle value (as a function of time, for instance)
and working out unitary vectors ı and k that satisfy the
constraint, or by calculating the tilt angle according to (15)
and using a complementary criterion to determine these
unitary vectors. The criterion that we propose to consider is
the minimization of the thrust |T | which is the main source
of energy expenditure. These two possibilities are explored
next.

Case 1: imposed tilt angle θ(t)
Conventional fixed-wing aircraft, for which θ is constant and
close to π/2, are covered by this case. This case also covers

ad hoc tilt-angle monitoring strategies for the transition
between hovering and cruising flight, consisting in switching
rapidly between zero (hovering) and π/2 (cruising).
Let us determine ı and k that satisfy (15). Along a balanced
flight the vector ı is related to the air-velocity via the relation

ı = rot(α)
va
|va|

(16)

with α denoting the angle of attack, and rot(α)u the
rotation of vector α applied to the unitary vector u. From
Rodrigues formula and the orthogonality of va and 

ı = cos(α)
va
|va|

+ sin(α)(× va
|va|

) (17)

Therefore, using the definition of d (relation (10))

d · ı = (a+ c0|va|va) ·
(

cos(α)
va
|va|

+ sin(α)(× va
|va|

)
)

This relation may also be written as

d · ı = cos(α)w1 + sin(α)w2

w1 := a · va
|va| + c0|va|2

w2 := a · ×va|va| = |va×a|
|va|

(18)

The last frame vector k is the the cross product of the other
two frame vectors

k = ı× 
=

(
cos(α) va

|va| + sin(α)(× va
|va| )

)
× 

= cos(α)va×
|va| + sin(α) va

|va|

(19)

Using the definition of e (relation (10))

e · k = (a+ c̄0|va|va) · k

and using the expression (19) of k

e · k = cos(α)w3 + sin(α)w4

w3 := a · va×|va| = −w2

w4 := a · va
|va| + c̄0|va|2 = w1 + 2c1|va|2

(20)

Replacing d ·ı and e ·k by their expressions (18) and (20) in
(15), which may also be written as cos(θ)d ·ı+sin(θ)e ·k =
0, yields

cos(θ)
(

cos(α)w1 + sin(α)w2

)
+ sin(θ)

(
cos(α)w3 + sin(α)w4

)
= 0

or, equivalently

tan(α) = sin(θ)w2−cos(θ)w1

cos(θ)w2+sin(θ)w4

= sin(θ)|va×a|−cos(θ)(a·va+c0|va|3)
cos(θ)|va×a|+sin(θ)(a·va+c̄0|va|3)

(21)

The vectors ı and k are thus given by (17) and (19) with
the angle of attack α given by (21). They are uniquely
defined provided that i) |va| and |va × a| are different
from zero, ii) the numerator and denominator in the right
member of (21) are not simultaneously equal to zero, i.e.
|va × a|2 + (d · va)(e · va) 6= 0, and iii) neither θ nor ξ
depends on the aircraft attitude (to ensure that the previous
expressions defining the frame vectors ı, , k are explicit).
In the particular case of a standard fixed-wing aircraft with
the thrust direction aligned with ı, i.e. when θ = π/2,



one easily verifies that these relations yield ı = e
|e| when

|e| 6= 0. If θ = 0, then one also verifies that k = − d
|d| when

|d| 6= 0.

Case 2: thrust minimization with θ calculated according to
(15)
From (14) and (15) one deduces that

T 2 = (d · ı)2 + (e · k)2 (22)

Therefore the minimization of |T | is equivalent to the mini-
mization of (d · ı)2 + (e · k)2. In view of (18) and (20)

(d · ı)2 + (e · k)2 =
(

cos(α)w1 + sin(α)w2

)2
+
(

cos(α)w3 + sin(α)w4

)2
so that

∂
∂α

(
(d · ı)2 + (e · k)2

)
= sin(2α)(w2

2 + w2
4 − w

2
1 − w

2
3)

+2 cos(2α)(w1w2 + w3w4)
= − sin(2α)(4w1c1|va|2 + 4c21|va|

4)
+2 cos(2α)(2c1w2|va|2)

The minimizing angle of attack is obtained by zeroing the
right-hand side of this equality, i.e. when either va = 0,
in which case the angle of attack is undetermined and T is
necessarily equal to the aircraft weight mg0, or va 6= 0 and

tan(2α) = w2

w1+c1|va|2

= |va×a|
a·va+(c0+c1)|va|3

(23)

The optimal angle of attack is then given by

α = 0.5 atan2(|va × a|,a · va + (c0 + c1)|va|3) (24)

with α smaller than π/4 when (g − ξ) · va < 0, even at
low airspeeds. This latter value is noticeable because it does
not depend on the aircraft aerodynamic characteristics. It is
thus, in particular, independent of the loss of lift associated
with stall at low airspeeds in (quasi) horizontal flight. The
vectors ı and k are still given by (17) and (19) with the
angle of attack α now given by (24), and the tilt angle
calculated according to (15).

3) Third step: The aircraft orientation specified by the
unitary vectors ı, , k determined at the previous step
should be regarded as a desired orientation that the aircraft
orientation control system has to asymptotically stabilize. To
distinguish these vectors from the actual aircraft body-frame
vectors, we now denote them as ı̄, ̄, k̄. Therefore,

̄ = va×a
|va×a|

ı̄ = cos(α) va
|va| + sin(α)(̄× va

|va| )

k̄ = ı̄× ̄
(25)

with the angle of attack α given either by (21), if the tilt
angle θ(t) is imposed, or by (24), when a complementary
objective is the minimization of the thrust. In this latter case
the tilt angle is calculated according to (15).
The last control design step then consists in determining
ω that makes the actual aircraft frame B = {G; ı, ,k}
converge to the desired frame B̄ = {G; ı̄, ̄, k̄}. To this aim,
and for this latter problem to be well conditioned, it matters

to verify that the orientation of B̄ does not depend on the
aircraft attitude. In particular, and as already mentioned, the
feedback vector ξ associated with the main control objectives
should not depend on the aircraft attitude. Let us then denote
the angular velocities of ı̄ and ̄ w.r.t. the inertial frame as
ωı̄ := ı̄× ˙̄ı and ω̄ := ̄× ˙̄ respectively. Since ı̄ and ̄ do not
depend on the aircraft orientation, their time-derivatives do
not depend on the aircraft angular velocity ω. The angular
velocity of the frame B̄ is then given by ω̄ = ωı̄+(ı̄.ω̄)ı̄ =
ω̄ + (̄.ωı̄)̄, and this velocity does not depend on ω either.
An angular velocity ω that almost globally asymptotically
(locally exponentially) stabilizes B = B̄ is, for instance (see
[10])

ω = ω̄ + kω(t)
(
(ı× ı̄) + (× ̄) + (k × k̄)

)
(26)

with kω(t) > ε > 0.

B. Control at low airspeeds

When |va| = 0 the aircraft wings do not produce lift (nor
drag) and the control design reported in the previous section
does not apply due to the singularity arising for the definition
of the desired aircraft-fixed frame. This frame thus has to be
defined in a different way when |va| tends to become small,
i.e. when the aerodynamic forces acting on the aircraft tend
to vanish. Then a ≈ d ≈ e. When Fa = 0, relation (9)
simplifies to

a = T (sin(θ)ı− cos(θ)k) (27)

which in turn implies a ·  = 0,

T = sin(θ)(a · ı)− cos(θ)(a · k) (28)

and
tan(θ) = − a · ı

a · k
(29)

These relations also imply T = ±|a|. They can be satisfied
in many ways. Let us just mention two simple options for
the choice of the desired aircraft-fixed frame vectors.
Option 1: vertical aircraft body

ı̄ =
a

|a|
, θ = π/2, T = |a|.

Option 2: horizontal aircraft body

k̄ = − a
|a|
, θ = 0, T = |a|.

Both options implicitly yield a·̄ = 0 so that it is not “strictly
necessary” to further specify the vector ̄, nor the third frame
vector. Possible angular velocity control laws associated with
these options are

ω = ωk̄ + kω(t)(k × k̄) (30)

and
ω = ωı̄ + kω(t)(ı× ı̄) (31)

respectively. Since a = −mg when va = 0 and ξ = 0,
the first option corresponds to having the aircraft nose up
at low airspeeds, alike a tail-sitter, whereas the second one



Fig. 2. Example of a quad tilt rotor configuration

corresponds to maintaining the aircraft body approximately
horizontal.
To further enforce a small sideslip angle as soon as the
airspeed is different from zero, one may complement both
options with a “pseudo” frame vector ¯̄ = va×a

|va×a|+ε , with ε
denoting a small positive number added to the denominator
to avoid indetermination when |va×a| = 0. Note that using
this vector in (26) is equivalent to using the unitary vector
̄ = va×a

|va×a| multiplied by the varying gain |va×a|
|va×a|+ε . The

“pseudo” desired frame is then complemented with the vector
¯̄k = ı̄ × ¯̄ (resp. ¯̄ı = ¯̄ × k̄) in the case of the first (resp.
second) option. A possible angular velocity control law is
then given by (26). As for the thrust T and the tilt angle
θ, they continue to be calculated by using the relations (14)
and (15).
It then remains to work out a transition law, based on the
measured airspeed intensity, that smoothly mixes the attitude
control laws proposed in this section with those proposed in
Section III-A, when airspeed and aerodynamic forces are
not small. For instance, let ω1 (resp. ω2) denote the chosen
angular velocity control law when the airspeed is not (resp.
is) small, and v∗ the chosen airspeed transition value. Then
a possible angular velocity control law is

ω = λ(|va|)ω1 + (1− λ(|va|)ω2

with λ a non-decreasing smooth function on R+ such that
λ(x) = 0 when 0 ≤ x < v∗ − ε, and λ(x) = 1 when
x > v∗+ε, with ε denoting a small positive number. The size
of v∗ can vary in large proportions, depending typically on
the aircraft aerodynamic properties and the criterion for the
occurrence of the transition between hovering and cruising
flight.

IV. ACTUATION OF A QUAD TILT ROTOR AIRCRAFT

Let ω∗ denote the desired aircraft angular velocity (derived
according the methodology proposed in the preceding sec-
tion, for instance), and let Γ denote a control torque vector
in charge of ensuring the (near) asymptotic stabilization at
zero of the angular velocity error ω − ω∗. In view of the
classical Newton-Euler equation

Jω̇ = Jω × ω + Γ (+parasitic terms) (32)

with J denoting the aircraft inertia matrix, a simple possi-
bility consists in setting

Γ = −kγJ(ω − ω∗) + ω × Jω∗ (33)

with kγ > 0 denoting a large control gain. In the case of a
quad tilt rotor aircraft, like the one represented in Fig. 1, this
control torque can be produced either by the four propellers
(using differential multi-rotors speeds), or by the moving
(ailerons/rudder/elevator) control surfaces of the aircraft, or
by a combination of the two systems, i.e.

Γ = Γm + Γa (34)

with Γm the torque vector produced by the set of propellers,
and Γa the torque vector produced by the aircraft moving
surfaces.
Now, given a desired control torque vector Γ, an issue is
to distribute the torque production between the two systems
knowing that at low airspeeds moving control surfaces are
inefficient, and that at high airspeeds they typically produce
torques more effectively than the propellers. A possibility is
to set

Γa = λ̄(|va|)Γ , Γm =
(
1− λ̄(|va|)

)
Γ (35)

with λ̄ a non-decreasing smooth function on R+ such that
λ̄(x) = 0 when 0 ≤ x < v̄∗ − ε̄, and λ̄(x) = 1 when
x > v̄∗ + ε̄, with ε denoting a small positive number. Note
that an interest of such a distribution is to use the propellers
essentially for the sole production of thrust at high airspeeds,
thus limiting the differences and variations of the multi-rotors
speeds. This goes with less wear of the motors, and better
energy efficiency.

It remains to determine the tilting angles δj (j = 1, 2, 3)
of the moving control surfaces in charge of producing Γa,
and the propeller’s angular velocities wi (i = 1, 2, 3, 4) in
charge of producing (T,Γm).

The first of these issues is classically solved by calculating
the angle vector δ = [δ1, δ2, δ3]> via a relation of the form

δ =
1

|va|2
AΓa (36)

with the components of the matrix A depending primarily
on the size of the control surfaces, and on their placement
w.r.t. the aircraft CoM.

Concerning the second issue, for articulated quad tilt rotor
systems, like the one represented in Fig. 2, the thrust intensity
T and torque Γm are related to the propellers rotor speeds
wi (i = 1, 2, 3, 4) via a relation of the form

[
T

Γm

]
= D(θ)


µw2

1

µw2
2

µw2
3

µw2
4

 (37)

with µ denoting the positive ratio (thrust intensity over
squared rotor speed) of each propeller,

D(θ) = D1(θ)D2 , D2 =


1 1 1 1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1

 (38)



and D1(θ) depending on the tilt angle and the position of
the propellers w.r.t. the aircraft CoM. For instance, in the
particular case of the quad tilt rotor aircraft represented in
Fig. 2,

D1(θ) =


1 0 0 0
0 0 −r3cθ − ν

µsθ
r1cθ + r2sθ r4cθ + r5 0 0

0 0 −r3sθ
ν
µcθ


(39)

with ν denoting the positive ratio (anti-torque intensity over
squared rotor speed) of each propeller. In the preceding
relation we have used the notation cθ and sθ for cos(θ)
and sin(θ) respectively. Because the matrix D2 is invertible,
and the matrix D1(θ) is invertible in a large range of tilting
angles (comprising the interval [0, π/2]), the product matrix
D(θ) is also invertible in this range of angles. D1(θ) is in
fact invertible for all tilting angles if r5 > r4, but this is of
little practical relevance because of the physical limitations of
the tilting mechanism. Define X := [µw2

1, µw
2
2, µw

2
3, µw

2
4]>.

Relation (37) suggests to calculate the rotor speeds via the
inversion of the matrix D(θ), i.e.

X = D−1(θ)

[
T

Γm

]
A known difficulty is that it is not certain that the components
of the vector X so obtained are all positive, nor that they
are smaller than the maximal force µw2

max that a rotor can
produce.

V. HARDWARE-IN-THE-LOOP SIMULATION

The object of this section is to test the control
approach reported in the previous sections in the case
of a trajectory tracking problem. The proposed control laws
are implemented on a commercially available “Pixhawk 3
Pro” autopilot flight controller. The code implementation
is based on the open-source PX4 flight stack [12]. To
perform hardware-in-the-loop simulations, this hardware
is connected to a flight simulator. We use the Gazebo
robot simulator, along with open source plugins (based
on the RotorS Project) whose purpose is to simulate UAV
models and interface them with the controller hardware
(https://github.com/PX4/sitl gazebo). The aircraft model
used for this simulation mimics a 2.5 kg tilt-rotor fixed-wing
drone, alike the one shown in Fig 1.
The flight mode transition airspeed v∗ is set equal to 4 m/s,
and the airspeed v̄∗ for the torque production transition
(between the rotors and the control surfaces) is set equal to
7 m/s. The tilt angle θ is bound to remain in the interval
[0, π/2] and is calculated to minimize the thrust intensity, as
explained in Section III-A.2. At low airspeeds the objective
is to keep the aircraft fuselage horizontal (see Section III-B).
For this simulation there is no wind so that va = v.

The chosen reference trajectory (see Figures 3 and 4)
consists of an ascending phase, at an airspeed of 2 m/s,
followed by a horizontal flight along a straight line during
which the reference speed increases from 0 m/s to 10 m/s.

Fig. 3. Trajectories

Fig. 4. Velocities

This latter phase highlights a transition between hovering
and cruising flight. The trajectory subsequently involves a
circular turn with a 30 m radius, followed by a decelerating
horizontal flight along a straight line that illustrates a
transition from cruising flight to motionless hovering. The
trajectory then involves a descent phase at an airspeed of
1.5 m/s, before a final stop.
Figures 3 shows that the vehicle closely follows the
reference trajectory. Fig 5 shows the variation of the tilting
angle which, as expected, increases from 0 deg, when the
aircraft hovers, to 90 deg at high airspeeds. Figures 6 and
7 show the actuators command signals. Control surfaces
become active when the longitudinal airspeed exceeds v̄∗.
The rotors then produce the needed thrust and zero torque.
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Fig. 5. Rotors tilt angle
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Fig. 6. Rotors thrust command signals
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VI. CONCLUDING REMARKS

The proposed control design, and the hardware-in-the-loop
simulation reported here, rely on models of aerodynamic
forces acting on the aircraft that neglect a certain number
of parasitic aerodynamic terms associated with a vectorized
thrust mechanism: drag forces on tilted rotors and propellers,
interferences between rotors and wings, etc. Even though the
aircraft model used for simulation is more elaborate than the
one used for control design, which is already useful to credit
the control design with some robustness, it does not account
for all the phenomena involved in the flight of such a vehicle.
Future work should thus focus on the performance impact
of non-modeled terms –including actuation limitations–, on
improving the control design and robustness with respect to
these terms, and on the creation of more advanced models of
convertible aircraft for simulation. The allocation of control
forces and torques on the different actuation systems also
deserves to be more thoroughly studied. And, of course, the
proposed control methodology needs to be tested and vali-
dated via extensive experimentation on physical convertible
aircraft.
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