N

N

Nonlinear optical response of a gold surface in the
visible range: A study by two-color sum-frequency
generation spectroscopy. II. Model for metal nonlinear
susceptibility

Bertrand Busson, Laetitia Dalstein

» To cite this version:

Bertrand Busson, Laetitia Dalstein. Nonlinear optical response of a gold surface in the visible range: A
study by two-color sum-frequency generation spectroscopy. II. Model for metal nonlinear susceptibility.
Journal of Chemical Physics, 2018, 149 (3), pp.034701. 10.1063/1.5027154 . hal-02111039

HAL Id: hal-02111039
https://hal.science/hal-02111039

Submitted on 14 May 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02111039
https://hal.archives-ouvertes.fr

Nonlinear Optical Response of a Gold Surface in the Visible Range:

A Study by Two-Color Sum-Frequency Generation Spectroscopy.

Part Il: Model for Metal Nonlinear Susceptibility

B. Busson™, L. Dalstein(*2?)

(1) Laboratoire de Chimie Physique, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Batiment 201 P2,
91405 Orsay, France

(2) Department of Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of
Technology, SE-100 44 Stockholm, Sweden

(3) Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, Republic of China

Abstract

We present a modeling of the nonlinear optical response of a metal surface in order to account for
recent experimental results from two-color Sum-Frequency Generation experiments on gold. The
model allows calculating the surface and bulk contributions, and explicitly separates free and bound
electron terms. Contrary to the other contributions, the perpendicular surface component is strongly
model-dependent through the surface electron density profiles. We consider three electron density
schemes at the surface, with free and bound electrons overlapping or spilling out of the bulk, for its
calculation. The calculated SFG signals from the metal rely only on bulk quantities and do not need an
explicit definition of the density profiles. In the particular case of gold, when the free electrons overlap
with the bound ones or spill out of the bulk, the free electron response completely dominates through
the perpendicular surface terms. When the bound electrons spill out, the situation is more balanced,
still in favor of the free electrons, with lower amplitudes and different dispersion lineshapes. As for
silver, the free electron contributions dominate, and the calculated slow amplitude growth from blue
to red follows the experimental trends.

I. Introduction

In a previous paper!, we have measured the experimental effective nonlinear susceptibility of a
polycrystalline gold film in an infrared-visible Sum-Frequency Generation (SFG) experiment while
tuning the visible wavelength over the visible range (435-705nm) (two-color Sum-Frequency
Generation, 2C-SFG). Using the vibrationnally resonant response of an adsorbed thiol monolayer, we
could extract the absolute phase and amplitude lineshape of gold in these conditions. In this paper,
we propose to model the nonlinear response of metals, while explicitly accounting for free and bound
electron contributions, as the base for a simulation of the experimental data.

Such models have been extensively develop ped for second-harmonic generation (SHG), and far less
for SFG. They consist of two parts: the first one phenomenologically describes the generation process
itself, determining the sources of nonlinear polarization and deriving the expressions of the generated
electromagnetic waves, both at the interface and in the far field, they give birth to. The second part
establishes the link between a solid state physics description of a metal bulk and surface, and the
nonlinear coefficients introduced in the phenomenological part.



Phenomenological models describing the nonlinear optical response at the interface between two
materials appeared soon after the discovery of nonlinear optics®. The formulations for the SHG
nonlinear polarization produced in reflection by a surface and for the electric fields radiated in the far
field were derived by several authors®>™?, and the essentials are summarized below. The nonlinear
sources decompose into bulk and surface terms, even if part of the bulk response also formally
contributes to an equivalent surface dipolar source, making it difficult to experimentally separate

intrinsic bulk and surface contributions®'%!

. Over time, several refinements have improved the
description of the nonlinear processes at the surface of a centrosymmetric bulk: an unambiguous
definition of the quantities involved (polarization sources, nonlinear susceptibilities) has been
derived*!; a rigorous separation between surface and bulk contributions, each assigned to a different
Green function formalism for the generation of the second harmonic electric field® has been
established; symmetry rules have been applied to both surface and bulk contributions, reducing the
number of independent susceptibility coefficients, in particular for isotropic and cubic bulks®'>13,

As for SFG, emphasis has early been put on its specificity in the infrared-visible configuration, namely
the molecular response!* adsorbed on a substrate. The substrate contribution is often reduced to a
vibrationnally constant term, either used as a support for the interference with the molecular

contribution for phase analysis'>'®

, or on the contrary suppressed by pulse shaping and time-delay
methods?’. The phenomenological description of SFG of the surface and bulk from a material has
therefore been given much less attention than in SHG, except in specific cases for which the bulk
contribution is important like chiral liquids'®, quadrupolar SFG response!® or for a clear separation
between the bulk and surface contribution®. It has anyway benefitted from all the knowledge gained
for the SHG case. For an isotropic system, the basic equations may be found in Ref. 2 and 21. We note

that the form of the bulk contribution is much more complicated than for SHG.

For the analysis of experiments performed with fixed incoming wavelengths, or far from resonant
phenomena, the phenomenological model may be sufficient provided that constant values are
assigned to the various x'? components, extracted from the data recorded as a function of an external
parameter (for example the polarization states of light'%??, angles of incidence??, and azimuth angle??).

For a spectroscopic study® %

, one must take dispersion into account as the various nonlinear
susceptibility tensor components will vary with the incoming wavelengths, whereas simple rules (e.g.
Miller’s rule) do not apply in resonant conditions. Such studies require modeling the sources of the
SHG and SFG as a function of the wavelengths and material properties. For metals, the source of
nonlinearity is the electrons, separated in conduction (free) and valence (bound) electrons as a
consequence of the band structure. For SHG, nonlinear coefficients stem from electronic properties

through the so-called Rudnick-Stern coefficients'%2>-?

, which reduce the formalism to three dispersive
numbers a, b and d (standing for surface perpendicular, surface parallel and bulk components,
respectively)*?%. Most of such analyzes of the origin of x!? devote to the free electron response only,
for which the R-S coefficients were originally estimated close to unity. This is well suited for some
metals (e.g. aluminum and silver?®) but of limited use for gold in the visible range as bound electrons
contribute to the optical properties of gold above 2eV through interband transitions. A simple free
electron model has been shown inadequate to describe the nonlinear response of gold in the visible
range®. Even for the free electron gas, some resonances as a function of the frequency are expected,
mostly in the high energy range towards the plasma frequency of the metal?®?°. Some authors have
analyzed separately the interband contributions®?”3%3! but there is no consensus on whether they
participate to SHG through an additional contribution to x'? or only by modifying the linear dielectric

28,34

function?”2%3233 QOther groups use density functional theory %3* or a generalized Thomas Fermi model
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3 in order to circumvent the problem of a priori definition of the electron density profile. Taking into
account at the same time both free and bound electron contributions and their interaction in nonlinear
optics still remains a challenge. Using a long history in modeling first the electromagnetic fields at

surfaces®*%’, then the nonlinear SHG and SFG responses of electrons in metals’-383°

, one group
proposed a way to implement the complex electronic structure of transition metals in the interband

transition regime into the Rudnick-Stern coefficients®.

In this paper, we evaluate the nonlinear responses of gold and silver in a 2C-SFG experiment in their

theoretical frame3®%°

in order to compare them to the experimental data in a forthcoming step. The
metal is described by its free and bound electron densities and contributions to the total dielectric
function. We investigate three schemes for the nonlinear optical response, which differ by the relative
positions of their electron density profiles as a function of depth and the associated coupling between
free and bound contributions. We show that the free electrons dominate the total SFG response, but
that the amplitude and dispersion of the effective nonlinear susceptibility of gold, and the weight of

the bound electron terms, strongly depend on the profile chosen.

II. Origin and calculation of the surface and bulk contributions to SFG

The phenomenological description is reviewed in Appendix A. In order to apply it, we must evaluate
the bulk polarization, and the surface parameter s after an additional integration step over z. This
requires to explicitly model the electron density of the metal (i.e. its material properties) and link it to
its optical response. We consider the metal as a continuous assembly of dipoles described by the
classical model for the displacement of an electron, bound to its rest position by a harmonic force and
a submitted to both a resisting force and the time-dependent electromagnetic field of light3¥4°, This
harmonic oscillator approximation has been shown consistent with more accurate descriptions of SHG’
and allows a calculation of the contribution to the material nonlinear response. Such a description may
constitute a good approximation for a bound electron, for which a full quantum mechanical calculation
would however rigorously be more appropriate, or a free electron when the restoring force vanishes.
Solving the equations for the displacements in a Taylor expansion at second order in the electric fields
and keeping only the ws; term gives the expression of the nonlinear polarization Pg(r,ws). The free
electron case may also be recovered by considering the hydrodynamic equations for the velocity field
of the free electron gas, while neglecting the pressure term®?1:*8, Refined theories exist which explicitly
take this extra term into account**4!, Few examples exist of a theory comprising both free and bound
electron contributions with no ad hoc or unknown parameter included®3%31,
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Figure 1: (a) Sketch of the experimental configuration. (b,c,d) Schemes of the distributions of the electron densities
n/(z) (resp. n’(z)) of free (resp. bound) electrons as a function of depth inside the metal for schemes 1 (b), 2 (c),
and 3 (d).

The metal is described as the superimposition of two electron populations, a free electron gas (density
no’) and a bound electron density (ne®), with no’ + ne® = no. The gold interband contribution from the
bound electrons shall not be neglected when considering that, for a threshold around 2eV*?, the SFG
beam in our experiments is always able to excite them. For silver, the energies involved do not allow
to directly excite the interband transitions, but the bound electrons still contribute to the total
dielectric function. This implies that the off-resonance approximation sometimes made in the presence
of interband transitions cannot apply here, at least for gold?’-*. Starting from here, all the quantities
defined in the phenomenological model have to be split between free and bound electron terms when
appropriate, with the corresponding superscripts. The bulk dielectric function of the metal is therefore
written as*:

g, =¢(0,)=1+4na/ng +4no’ng (1)

where af (resp. ai®) represent the electronic polarizabilities of the free (resp. bound) electrons at
frequency w;, and separated into the two components by € - 1 = (g-1) + (€°-1), where € - 1 represents
the resonant part of the dielectric functions. The polarizabilities quantify the amplitude of the
electronic response to the excitation by light, and the second order nonlinear response is therefore
proportional to a product of two electronic polarizabilities. As the free and bound electronic
polarizabilities differ, their contributions to the SFG signal must be evaluated separately, then summed
up, immersed in a medium which dielectric function encompasses free and bound parts together.

The bulk polarization is obtained by plugging the electric fields, considered as plane waves with
wavevectors k; and k; propagating inside medium 2, into the nonlinear polarization:

Ei(r)zE(r,@i)ine”‘l-r,iz(l,z) (2)

The complex wavevectors are evaluated by continuity of the component parallel to the surface and
with the help of the dispersion relation of the metal (ki)?=g; wi?/c? for the perpendicular one. The field
gradients in the bulk arise from the propagation of the plane waves through their phases. This leads
to:

P (r o, ) =g e [D{“’kl (E,.E,)+Al" (k,.E,)E,

+D}"°k, (E,E, ) +A}" (k,.E, )E, | el
2 2 1"—2 2 2°—1 2

with PB(r,m3)=Pé(r,m3)+P§(l’,0)3) (3b)

where coefficients Di”® and Af® are given by equations (45) to (47) of Ref. 38 for which the electron
density and dielectric functions refer respectively to free and bound electrons. We recall their
expressions in Appendix B. When working with a single crystal, additional terms, which depend on the
crystal orientation at the surface, should be added to account for the bulk anisotropic contribution®*3,
We note that D; and D, have a purely dipolar origin, as well as A, when the approximation w,<<ws is
valid. The electric field generated by this bulk polarization follows a complex expression recalled in Ref.
38, equation (A9). This equation may be tracked back through Ref. 21 to the original work of

Bloembergen and Pershan?.



The electric field gradients giving birth to the surface terms have a completely different origin. They
arise in the z direction from the rapid variations of the electron densities when crossing the interface.
The long wavelength approximation ensures continuity of the parallel components of the electric fields
and the perpendicular ones of the displacement fields along the electron density gradients*, and
validates the dropping of the terms related to field curls in the dipolar term of the nonlinear
polarization in the selvedge region®. In order to evaluate the surface terms, the local nonlinear
polarization is calculated from equation (A1) as a function of z, while both the electron densities and
the dielectric functions

g,(2) =1+ 4na/n" (2) + 4rna’n’(2) (4)

become z-dependent in the interface region***, then integrated between external medium and bulk
as usual®* to calculate the surface nonlinear susceptibility components. Equation (A1) becomes:

f/b
P! (2)=n""(@2)a"E, - e(Z) o'’ (a/E,-VE, + o!’E, -VE,)

+Zieoc{“’oc;“’v-n”b(z)(ElE2 +E,E,) (5)

1 0, —®
-0y —2—2Vxn""(z)E, xE
2 1 2 1 2
e 0,

where the first term is the depolarization part of the SFG field. Each line in equation (5) relates to the
dipolar, quadrupolar and magnetic contributions, respectively, and the gradients now only relate to
the z-direction. As a consequence, the dipolar (resp. magnetic) contribution does not appear in the
parallel (resp. perpendicular) component of the nonlinear polarization.

The origin of the dipolar term is different from the quadrupolar and magnetic contributions. For the
former, direct coupling of one incoming electric field and one electric field gradient generates a
polarization at the SFG frequency proportional to the SFG polarizability as. For the latter, the coupling
of the incoming electric fields generates local quadrupoles and magnetic dipoles, which gradients take
part of the total polarization. This accounts for their proportionalities to polarizabilities at the incoming
frequencies only. This has major consequences in the IR-visible SFG case applied to metals like gold
and silver, which may be qualitatively described by w,<<(w1,ws) and |a,°|<<|asf|. As will be checked
below, we therefore expect that the magnetic and quadrupolar contributions to the bound electron
polarization should be negligible compared to free electron terms. This implies that, for bound
electrons, the total parallel surface contribution is also small, whereas the bulk and perpendicular
terms are from dipolar origin only. As for the free electron contributions, it has already been noticed
by Petukhov?! that the A; and A, terms almost vanish for a free electron gas, leaving D1=D; as leading
terms. As a consequence, it appears that the full bulk contribution (i.e. for free and bound electrons)
is purely dipolar under reasonable approximations. This contributes to simplify the modelling of the
IR-visible SFG bulk processes in metals.

The free (resp. bound) electron component of the polarization parallel to the surface Pé,x (2) (resp.

P (2) ) becomes:

fof _ f _ f
Pé X(z) — m 1— W, — O, i n (Z) 82E1XE22 + 1+ W, —O, i n (Z) SlEleZX (6)
' 2e ®, 0z ¢,(z) ®, 0z &,(z)
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The difference between w; and w; induces a partial amplitude transfer from xzx to xxz terms, as a
consequence of the interference between magnetic and quadrupolar contributions. Integration
according to equation (A2) is straightforward, and the xxz and xzx components therefore do not
depend on the electron density profiles across the interface®. Integral leads to the following
expressions for the xxz and xzx components of s :

f/b f/b

-1 -12
N L L i RIS (7a)

’ 2n,"’e  4n 4t o,

1 f/b 18f/b 120)

f/b 2 2 Wi/b

= b , 0 7b
As xzx 2n0f/be Ar in o (0,,0,) (7b)

1 g -1¢,-12m,
b(w,, o,
2n,e 4mn 4n o,

©,) (7¢c)

— b _
XS,xxz - XS,xxz + XS,xxz -

1 ¢g-1¢,-120, b(o,,

® (7d)
2n,e 4mn 47: o, )

_ b _
XS,xzx - Xs,xzx + XS,xzx -

with the simple values b”*(w1,wz)= b7°(w,, w1) = -1. The last two equations define the overall s
components by adding the free and bound electron contributions. Care must be taken as global
parameters b(wi,w;) and b(w,w1) now differ from -1.

On the contrary, because of the dipolar contribution, integration of the perpendicular component (zzz)
has to be explicitly performed. No term in the selvedge nonlinear polarization arises from two electric
fields parallel to the surface, leading as usual to a vanishing zxx contribution to xs2*3. For the zzz term,
the z-components of the selvedge nonlinear polarizations induced by the free (resp. bound) electrons
Pfs.(z) (resp. PPs.(z)), evaluated inside the metal, are

€,8,8, f f( a 0 1 a, o 1 j
(2 )= | " D% — + —
ee,(2) 6,(2) 02 5,(2)  £,(2) 02 5,(2)

(8)

+o, A, _( (z )81(2)8 (Z)J E.E,,

where the quantities not explicitly depending on z are the bulk ones, and one has to integrate them as
in equation (A2). Following equation (4), the integrand becomes a function of n(z) and n°(z) only, which
are supposed continuous in the following. In order to actually calculate these zzz terms, we therefore
must make some assumptions on these quantities.

We consider the three extreme cases for the electron distributions: two split electron distributions
(Figure 1(b),(d)) and an overlapping electron model (Figure 1(c)). In the first scheme (s1, Figure 1(b)),
the free electrons spill out from the bulk whereas bound electrons don’t, so their respective electron
density gradients do not overlap as a function of depth. It is known that, for a free metallic surface,
the free electrons may spill out of the bulk (over a depth far below one nanometer)®**3, thus enhancing
their contribution to the surface terms. We thus consider that the free electron density as a function
of depth varies from zero to its bulk value no' (reached for z=z) while n®(z)=0, then remains constant
for z<zo while the interband electron density raises from zero to its bulk value ne® (Figure 1(b)). For a
complete analysis, we may consider two additional configurations: in scheme 2 (s2, Figure 1(c)), the
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free and bound electron distributions overlap as a function of depth, whereas in scheme 3 (s3, Figure
1(d)), the bound electrons spill out more than the free electrons symmetrically to scheme 1. As stated
above, the model chosen for the electron density profiles has no influence on the bulk and parallel
surface terms. Consequently, equations (3) and (7) remain unchanged for schemes 1, 2 and 3 and we
concentrate in the evaluation of the perpendicular zzz term.

Integration of the z-component of the nonlinear polarization in scheme 1 leads to a sum of three
contributions: a pure free electron (af) one arising from the surface above zg; a free electron
contribution induced by the variation in the bound electron density across the interface (a®f); a pure
bound electron contribution (a®) screened by the bulk free electron density:

1 & -1el -1
sLf 1 2 f bf

= 888[3 (o, ®,)+2a, (o m)] (9a)
f f f “1%2%3 sl 11572 sl 11272
2n.e 4ng, 4me,

S,zzz

1 e —-1g -1
S = b : b : b 818283351(031:(’32) (9b)
2n,e 4ne, 4ne,

S,zzz —

1 g -1¢g,-1
and XSl :Xsl,f +Xsl,b — 1 2 c.a ((D O ) (9C)
S,zz2z S,zz2z S,zzz 2noe 41_[ 41_[ 37sl 1 2
defines the global parameter as;, with

£ f f

f (1_83)8182 f €
ay (o, 0,) =-2| 1+ —— VAT g In| — (10a)

(8 _82)(82 _83)(53 _51){31,!;}; th

{23

where c.p. denotes circular permutation of {1,2,3},

2| efelef 3 gl —1eP-1 (eP-1
all (o, @) = —— | 222 14 Y TS | 2 (10b)
€| €,8,€, =& —1 g

b
ag (0, 0,) =——+% - (10c)

2ee) | &, ehel . Sep -1 (s,b —lJ
€18283 | €883 a1 § !

The technical details of the integration steps, along with definitions and properties of Ip and |, integrals
can be found in the Appendix C. The result is identical to Ref. 40, while we correct here some original
confusion in the attribution of each term. For scheme 3, the results are identical provided that
superscripts b and f are exchanged in equations (9) and (10).

In scheme 2, the integration is performed in the same way as above, leading to the new values for the
free electron and interband contributions to parameter as,.

1 ¢ —1¢€)-1
s2,f 1 2 f

oy = €,€,€,| a,, (0, ®,) (11a)
Sz ZnBe 4ns{ 4758f2 g 3[ R ]




R _ f) ff f
€, 8585 (1 €3)818; ¢ In &
i f
€18,83 (81_82)(82_83)(83_81){i,j,k}f= €y
€.p.0
2,3}

312(@11 ,) =2

(11b)

For the interband contribution, one may simply exchange & and & in equations (11). We also may
check that formula (11b) turns down to (10a) when the bound electron contribution vanishes (g = 1
and & = gff).

We immediately see that the zzz contribution (as well as the parallel one for obvious reasons) depends
neither on the spatial evolution of the electron density distributions (i.e. n/?(z) are arbitrary continuous
functions) nor on any intrinsic length characteristic of the interface, related for example to the
thickness of the interface layer or to the spatial extent of the electron density gradients. For that
respect, the present model allows by its simplicity to avoid the delicate definition of the density

profiles, which has been shown to raise severe issues in the hydrodynamic model %

. On the contrary,
it only depends on the scale-free relative positions of the electron densities, and of course on their
bulk values. This means that, in this modeling, the magnitudes of the gradients (of the electric fields
and electron densities) are compensated by their spatial extents after integration into the surface
nonlinear polarization. However, as we will see below, integration leads to huge differences between
the various schemes, in particular as a consequence of self- and cross-screening between free and

bound contributions.

In order toillustrate the results of the modelling of the nonlinear response of metals, we briefly present
the results for the simple case of silver, then we focus on the more complex case of gold, for which a
detailed analysis will be performed in the third part of this article.

Ill. The nonlinear SFG response of silver

The dielectric function of silver is tabulated from Yang et al.*® (sample C, corrected for Kramers-Kronig
consistency). In order to separate the free and bound electron parts, we use their fits of the free
electron behavior by a Drude model in the near infrared range, with parameters wp=8.90eV and
=36.57meV.

2
fogo— @ 12
° o; (o, +i) (12

In the visible range, the bound electron dielectric function follows: &° = 1+¢; - for i=(1,3). It
encompasses a contribution from €., which we suggest to correct to 4 instead of the tabulated value
of 5, in order to comply with the original data of Ref. . For the infrared beam, the remaining bound
electron contribution is supposed real but unknown, we therefore performed our simulations with
£,P=2 %0,

The various contributions to the effective x? for silver are displayed on Figure 2. As may be anticipated,
the effect of the interband terms is rather weak, especially at low energy, except marginally for scheme
3. The free electron contribution dominates, for scheme 1 and 2 through the zzz term, and for scheme



3 through the surface parallel and bulk terms. All contributions share a common phase within a 30°
range, except for a sign change for the bound and cross terms in scheme 3.
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Figure 2: Amplitudes (a,c) and phases (b,d) of the various components of surface parallel (xzx+xxz), bulk (a,b) and
surface perpendicular zzz (c,d) contributions to the effective nonlinear susceptibilities of silver. On the left, red
color stands for surface parallel term and blue for bulk. Squares: free electrons, dashed lines: bound electrons. On
the right, red, black and green stand for schemes 1, 2 and 3, respectively. Squares: free electrons, dashed lines:
bound electrons, open circles: cross term (bf). Infrared wavenumber is fixed at 2900cm™ and €,°=2.

Figure 3 shows the total effective nonlinear susceptibility of silver in the visible range, for two infrared
wavenumbers: 2900cm™ (representative of studies in the CH stretch region) and 1000cm™ (for the
phenyl ring collective modes), under the hypothesis ny® = no’. Schemes 1 and 2 compare very well,
showing the expected free electron behavior, with a regular increase in amplitude from blue to red.
Scheme 3 differs as a consequence of the more pronounced interference between the three free
electron terms, which compensate each other to exhibit a rather flat total contribution. The relative
amplitude between schemes 1 and 2 on one side and 3 on the other side varies from 2 to 5 from blue
to red. The phases for the three schemes are the same. These curves do not change for a ratio
Rer=no'/no® varying from 0.1 to 1 (dominant free electron character). For the low energy infrared case,
the amplitudes increase (for schemes 1 and 2) by up to 20 percent as a consequence of a higher
infrared free electron polarizability, whereas the phases decrease by a low 8 to 13°.
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Figure 3: Total effective susceptibility of silver in amplitude (a) and in phase (b) for schemes 1, 2 and 3. Red, black
and green stand for schemes 1, 2 and 3, respectively. Infrared wavenumber is fixed at 2900cm™ (plain lines) or
1000cm™ (dashed lines). Constant numerical factors are dropped, €;°=2. and n/=no’=1.

Comparing these curves to experimental data remains difficult because recording the absolute SFG
response of a silver bare surface requires an accurate absolute calibration of the SFG spectrometer %
and does not provide with the phase parameter. To our knowledge, there is no such study available in
the literature. After adsorption of a molecular monolayer, data analysis allows to extract a phase
parameter of the silver response and an amplitude ratio at a fixed or tunable visible wavelength. As
for the amplitudes of the silver SFG signals, only a few SFG experiments tune the visible wavelength
on such systems #’>! and even fewer provide with useful parameters *°. Using the same data analysis
as in Ref. 1, i.e. by comparing molecular and metal SFG responses, the published data which explicitly
quantify the amplitude of the silver contribution are then compatible with the present model under
schemes 1 and 2 (i.e. with a dominant free electron zzz response), with a silver SFG contribution slowly
growing in amplitude from blue to red as compared to the molecular one.

However, comparison to the present results remains difficult in a straightforward manner because the
behavior shown in Figure 3 is then modulated by the molecular SFG response . The latter strongly
depends on the nature of the molecule adsorbed at the silver surface: its symmetries dictates on the
nonvanishing molecular hyperpolarizabilities, and its orientation (tilt and azimuth angles) impact on
the relationships between molecular hyperpolarizability and nonlinear susceptibility contributions 2.
In addition, these are modulated by their own Fresnel factors, which introduce dispersion in the visible
range both in amplitude and in phase, and by wavelength-dependent Raman polarizabilities, which
may become resonant on the high energy side %%, Finally, care must be taken that i) the silver surfaces
under study are often chosen as single crystals (for which additional terms for the nonlinear
susceptibility are required); ii) the results may vary between co-propagating and counter-propagating
SFG geometries °**4, and iii) several studies are performed under electrochemical control, in which
case the electrochemical potential modulates the amplitude and phase of the silver signals, in
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particular the free electron part 2>°>°¢, Experimentally, the silver SFG response remains weak (contrary
to gold), although experimental evidence may vary on this point 8578 _Consequently, the uncertainties
on the amplitude, and even more on the phase, extracted from curve fitting of the silver response
become rather big (considering that the interference pattern between molecular and weak metal
nonlinear contributions is less pronounced). It has also been shown, using the example of a thiophenol
monolayer on silver %7, that curve fitting may not lead to unique set of parameters >°. We can indeed
check in the literature that the fitted silver phase varies over rather wide ranges &°0.53:57.60-62
without a full molecular analysis predicting the phase of the vibrational peaks !, this parameter alone
is not a useful probe of the present theory. In addition, many experiments involve molecules which are
doubly resonant, or either electronically ® or vibrationally 8 modified by adsorption on metal, which
dismisses them as reliable molecular probes. There definitely lacks a dedicated study of an adapted
molecule (e.g. long chain alkanethiol) adsorbed on polycrystalline silver, for which SFG spectra would
be recorded and fully analyzed at enough wavelengths covering the visible and near infrared ranges.

IV. The nonlinear SFG response of gold

We now focus on the more interesting case of gold since there is a strong interference between free
and bound electron contributions in the visible range. The dielectric function is tabulated from Olmon
et al.%® (template-stripped sample). In order to separate the free and bound electron parts, we fit the
free electron behavior by a Drude model in the near infrared range and find parameters wp=8.80eV
and r'=49.4meV. The bound electron dielectric function is evaluated as for silver, with £,°=2.

For the three schemes, the bound electron contribution is considered as a whole, even if the valence
electrons fall into two families: two electrons in the band closest to the Fermi level (upper d-band)
experience interband transitions in the visible and near-UV, while the eight other electrons lie in bands
with lower energies®® (lower d-bands). We could therefore split the bound electron contributions in
two parts by considering the upper and lower d-bands as two distinct and interacting dipolium
contributions. A refined model explicitly separating both contributions is currently under investigation.
At this stage, for the simulations below, we follow the choice of Ref. 40 and use the arbitrary values
no® = ng' in order to illustrate the balance between free and bound electron terms.

A. Fresnel factors

The evolution of the amplitudes and phases of the Fresnel factors for zzz, xxz, xzx and bulk terms is
presented on Figure 4. The absolute value for zzz is around a hundred times smaller than for xzx, and
ten times smaller than for xxz. This stems from the fact that the ratio Fy(wi)/F.(wi) is roughly
proportional to the index of refraction of gold (n;). A second consequence of this is seen on the phase
curves: at the low energy end of the visible spectrum, the influence of interband transitions becomes
smaller and the refractive index of gold is roughly imaginary for the three beams. All Fresnel factors
share at this point a common phase, except for a sign difference between Fy. and Fx.x on one side, and
Fzz and Fuyuik on the other side. From the low value of F,;, one may thus be tempted to neglect the
contribution from the a term in the following. However, it has been shown by SHG that the weakness
of the Fresnel contribution to zzz may be counterbalanced by the high value of the a source term
itself'%! thus producing perpendicular and parallel contributions comparable in intensity?’. The
situation is analogous in SFG, although Fresnel factors for xxz and xzx additionally differ as a
consequence of the intense screening of the infrared field inside gold through its high dielectric
function.

11



20x10"

(a)

" e
-".Io .

Amplitude (a.u)
>
|

5-{ ® xxz(x10)
— xzx
W zzz (x100)
«+++++ bulk (x100)
0 T T T T T
200
150_}.......0... ( )
o
100 4
> 50
g lI-l-l---....."
£ ‘m,
o 0 I_.‘
"-.-‘
-50 - “l_.
‘-
‘.'l.._.‘
-100 T T T T T e

400 450 500 550 600 650 700

2‘\{! (nm)

Figure 4: Amplitudes (a) and phases (b) of the xxz (dots), xzx (plain lines), zzz (squares) and bulk (dashed lines)
Fresnel factors of gold versus the visible wavelength (A,s). Infrared wavenumber is fixed at 2900cm™. Phases of
the bulk and zzz factors are equal. Several amplitudes are multiplied for clarity by a factor 10 (xxz) or 100 (zzz,
bulk).

It is interesting to note that the amplitudes, especially for zzz, show two maxima in the middle of the
visible range, related to the excitation of the interband transitions of gold by the visible and SFG beams,
respectively. More precisely, considering the formulas (A6) for x and z Fresnel factors, and taking into
account the fact that cos(8?) is a complex number close to 1 with a small imaginary part, x and z
contributions are maximum when 1+n; cos8;! (resp. n; (1+n; cosBi)) is roughly minimum, that is when
the modulus of the index of refraction (or the dielectric function) is minimum. This happens around
w;i=500nm, the effect being more peaked for z because of the additional n; factor. This has already
been noticed by Ref. 28 for SHG, but in our case this leads to a double peak corresponding to the two
beams involved in the visible range. The behavior of the zzz contribution alone may account for the
existence of the experimental maximum seen in Ref. 1. At this stage, taking into account the Fresnel
effects, which was not done in Ref. 67, could cast some doubt on the influence of surface electronic
states as postulated therein, and attribute the experimental maxima to a simple linear optical effect.
However, only the full SFG response in the far field (i.e. the effective nonlinear susceptibilities) is
measured, and we need to evaluate both the intrinsic x® amplitudes and their Fresnel screening
factors. In addition, the phase parameter gives an additional track to estimate the accuracy of the
modeling.
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B. Surface and bulk contributions
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Figure 5: Amplitudes (a,c) and phases (b,d) of the various components of xxz, xzx (a,b) and bulk (c,d) contributions
to the effective nonlinear susceptibilities of gold. Red color stands for xxz term, black for xzx and blue for bulk.
Squares: free electrons, dashed lines: bound electrons, plain lines: total contributions. Infrared wavenumber is
fixed at 2900cm™ and €,°=2. Amplitude for the interband part of xxz and xzx contributions is multiplied by 100 for
clarity. Constant numerical factors are dropped and ny=ns=1 is used to calculate the full contribution.

The surface xxz and xzx, as well as the bulk contribution, do not depend on the scheme. Figure 5
displays the dispersion of the corresponding effective second order susceptibilities in amplitude and
phase for g,°=2. Components xxz and xzx roughly share the same amplitudes and, as expected from
the above analysis, they solely originate from the free electrons. As for the bulk, free and bound
electrons equally contribute at high energy, whereas free electrons dominate at the other end of the
spectrum. Nevertheless, the bulk free electron contribution (growth from blue to red) is strongly
influenced by the interband part of the dielectric function, as shown by the presence of two broad
maxima corresponding roughly to the excitation of the interband transitions by the visible and SFG
photons, with a prominent peak around 600nm. The same behavior is visible to a lower extent for
surface parallel terms. The bulk interband contribution closely follows the interband dielectric
function, with a profile showing a decrease towards higher wavelengths and a maximum in the 500nm
region. This confirms the analysis of Ref. 30, which have shown that the bound electron contribution
to the bulk SHG response is negligible except when the incoming photon energy matches that of the
interband transition, as it happens in Figure 5 (c). In addition, they remark that, apart from this
resonance case, their effect appears only through their modification of the dielectric function (i.e. in
the free electron contribution). All phases share a close to common value at 700nm (between 62 and
90°) and a similar raise from red to blue, with a slope increasing from the xxz case (phase span around
70°) to the bulk bound electron terms (phase span around 210°).
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The free electron terms do not depend on the value chosen for €,°, whereas the interband contribution
to xxz and xzx is negligible. In addition, it can be checked that the interband contribution to the bulk
term does not depend either on €,°. The leading terms for the bulk interband contribution (D; and A,)
arise from the strong gradients of the infrared electric field and do not depend on the infrared bound
electron polarizability. As a whole, the full surface parallel and bulk terms are therefore independent
of the choice of the infrared dielectric function for bound electrons.
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Figure 6: Lineshapes of the amplitudes (a,b) and phases (c) of the various contributions to the effective x... of gold
according to schemes 1 (red) and 2 (black) in (a,c) and 3 (green) in (b,c). Squares: free electrons, dashed lines:
bound electrons, open circles: cross-terms (bf), plain lines: total contributions. In the inset of panel (a), a
logarithmic scale allows to visualize the smallest contributions. Infrared wavenumber is fixed at 2900cm™ and
&,°=2. Constant numerical factors are dropped and nyf=no’=1 is used to calculate the full contribution.

We now turn to the zzz contribution to the surface response, the only model-dependent one. Figure 6
shows the dispersion in amplitude and phase of the various contributions to effective nonlinear
susceptibilities in the three schemes. The behaviors of the three models are dramatically different:
schemes 1 and 2 show no substantial difference, contrary to scheme 3. In schemes 1 and 2, the inner
contribution involving bound electrons (x*f and x°) is negligible (by at least a factor 10? and 10%
respectively) as compared to x'. This is due to the huge difference in field gradients in the infrared
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between free and bound electrons, in favor of the free electron response. The zzz part of the surface
term therefore turns down to a nearly pure free electron response, with a characteristic increase
towards the low energy region comparable to a Drude dielectric function. On the contrary, in scheme
3, the high infrared field gradients of the free electrons are screened by the bound electron
background. The total response is more of the bound electron type, which accounts for the smaller
overall amplitude due to its smaller field gradients. In addition, the bound electron contribution is
rather flat, as is the modulus of the bound dielectric function. The phases of the dominant terms (thus
also of the total contributions) stay rather constant as a function of the wavelength for the three
schemes, leading to schemes 1,2 on one side and 3 on the other being almost opposite in sign. We
again acknowledge the analogy with the dielectric functions, which also show a phase difference
around 180° between free and bound electrons.

As for the phases of all terms in Figures 5 and 6, their evolutions are either rather flat or experience a
change in their values around 500nm and/or 600nm. This corresponds to the wavelengths for which
the Fresnel contributions show a maximum (and the total dielectric function a dip) as explained above,
and also to the turning point where the free electron dielectric function becomes greater than the
interband one. Finally, as was noticed for the Fresnel factors, all surface and bulk terms share an almost
universal phase at 700nm, except for a sign difference for the zzz contribution in scheme 3. We
therefore expect the phase to remain constant for the total effective susceptibility of gold at this
wavelength.

Figure 6 therefore evidences a dramatic evolution from scheme 1 to scheme 3, with an effective total
zzz term evolving from a pure free electron to a nearly pure bound electron contribution (with a lower
amplitude). In other words, the (unscreened) external electron density mainly drives the overall
behavior, with a natural higher amplitude for the free electron part. In addition, both amplitudes
lineshapes and relative phases of the total contributions follow the trends of the dielectric function of
their leading terms.

Tuning parameter &,° does not influence much the zzz contribution under schemes 1 and 2. As only
the terms involving the interband polarizabilities depend on it, their weaknesses compared to the free
electron contributions makes the effect of this parameter negligible. With a closer look, it may be
checked that x*f (scheme 1) and x° (scheme 2) do not vary with &,°. Only x° in scheme 1 is influenced
by this parameter, but its amplitude is hundred times less than that of x*". We may therefore expect
that €,° has no influence at all on the total nonlinear susceptibilities in schemes 1 and 2. As for scheme
3, the X° term increases whereas the X' term decreases with €,°, with very close phases. As a
consequence, their sum slowly grows but in limited amounts.
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Figure 7: Total effective susceptibility of gold in amplitude (a) and in phase (b) for schemes 1, 2 and 3. Open circles:
scheme 1, plain line: scheme 2, dashed line: scheme 3. Infrared wavenumber is fixed at 2900cm™ and &,°=2.
Constant numerical factors are dropped and no=n¢°=1.

Comparing Figure 5 and 6, in schemes 1 and 2 the zzz absolute amplitudes prevail over the surface
parallel and bulk contributions, whereas in scheme 3 the latter will dominate the full response, except
at high energy. The total effective susceptibility of gold for the three schemes appears on Figure 7
under the hypothesis of equal contributions from free and bound electrons. The amplitude lineshapes
in schemes 1 and 2 look very similar indeed to the zzz contribution (i.e. of pure free electron type), but
the overall amplitude is higher and the resonances around 500 and 600nm change from dips to humps,
showing that the effect of surface parallel and bulk contributions is small but not negligible. This is
confirmed by the phase curves in Figure 7(b), which show a raise in the average phase with
distinguishable resonant structures. As a whole, for these schemes, the SFG response of gold is
essentially of free electron origin, except a small contribution from the bulk term. As for scheme 3, as
expected the total effective susceptibility follows the trends of the surface parallel and bulk terms,
with a clear effect of the two resonances on the amplitude, whereas the phase exhibits the same raise
from red to blue, with intermediate values between xxz/xzx and bulk ones. Again, the total effective
susceptibility is mainly of the free electron type, but the influence of the bound electron contributions
from zzz and bulk terms should this time not be neglected. In addition, it may be enhanced depending
on the actual value of no'/ne®, which will be done in a future step.

V. Discussion

These results show that, for schemes 1 and 2 with no'=n,’, the nonlinear susceptibility of gold originates
almost completely in the free electrons, as is often assumed3?. The interband contribution may
however not be omitted in the frame of scheme 3. For silver, the three schemes favor the free electron
response, even if the dispersion curves differ between them. For both metals, the influence of bound

electrons mostly shows up through the dielectric functions. The three schemes considered here
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represent extreme and schematic configurations for which the zzz component is analytically calculable
without knowledge of the actual functions describing the electron density profiles. Of course, the
actual profiles may be more accurately described by an intermediate configuration between two of
these extreme schemes, leading to an intermediate behavior of the simulated zzz contribution (Figure
6) and total effective susceptibility (Figure 7). We plan to refine our simulations in this way in the
future. However, it is not possible to consider a model for which the screening of the bound electron
terms would be lower than for scheme 3.

Itis interesting to compare the absolute SFG intensities radiated by a silver (Figure 3) and a gold (Figure
7) surface. The present simulations predict that their effective susceptibilities, for example for
experiments with a 532nm visible laser, should compare, and, as they share common bulk free electron
and valence d electron densities, so should the experimental intensities. We know that this is not the
case, and this may be due to an underestimation of the actual contribution of the bound electrons of
gold. In addition, as will be studied in details in the next part of this article, the excitation of surface

7

states ® may lead to a resonant enhancement of the surface gold response, accounting for the

difference between gold and silver.

We use the bulk polarizabilities all over the calculations, including in the selvedge. It may be considered
that, in this region, the polarizabilities differ from the bulk as a consequence of the change in the
atomic coordination in the topmost layer. In particular, we could expect a raise in the bound electron
polarizability due to lower constraints towards the air side than towards the bulk metal side. This could
impact on the balance between free and bound electron terms in the total nonlinear surface
susceptibility.

The bound electron spill out explored in scheme 3 is rather unusual. Matranga et al.2®> have shown that
the SHG response of a metal surface with an adsorbed alkanethiol layer corresponds to an electron
deficient interface as a consequence of the electronegativity of sulfur. As the on-top Au-S or Ag-S bond
mostly involves the electrons from the 6s (resp. 5s) band®®, one may consider that these s electrons do
not contribute to the free electron dielectric function anymore, because their polarizabilities are much
reduced?. This is equivalently described by a decrease in the free electron density close to the
interface, whereas the bound electron density is unchanged. Scheme 3 therefore takes into account
the fact that the metal-S bonding creates a vacancy in free electrons leading to the situation symmetric
to scheme 1, with the free electron density spilling less out than the bound electron one. The present
case of sulfur covalently bound to gold and silver should not be confused with the situation of alkali
adatoms or overlayers on top of transition metals, which lead to an enhancement of SHG as a
consequence of the extreme polarizability of alkali metals®. We note that the situation should be
different for an adsorbate-free metal surface, for which a true free electron spill out is expected.
However, in this case, the method used in Ref. 1 would not be usable for the internal calibration of the
evolution of the SFG intensities as a function of the visible wavelength.

We evaluate the free and bound electron polarizabilities from their respective dielectric functions,
separated from the full tabulated dielectric function of silver and gold. Such a split is always somehow
arbitrary, and alternate choices may alter the balance between free and bound contributions to the
effective nonlinear susceptibility. The present modeling is self-consistent in the frame of classical
mechanics and has proven its efficiency’, but may still remain too coarse, for example when modeling
the bound electrons as a continuous dipolium. In addition, the local Drude model, although widely
used for such simulations, leads to a rapid growth of the dielectric function in the infrared, having a
strong impact on the value of af(wi,w;) under the long wavelength approximation. A more realistic
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, including a hydrodynamic pressure term*3*#!, or even more

f 40

model, either nonlocal'%37%°

sophisticated*, and the limitation of the rise of a'*, could help refine the definition of silver and gold

properties and improve the accuracy of the modeled free electron response.

We see that the weight of the zzz contribution, with respect to the others, varies substantially between
schemes 1, 2 and 3. In the scheme 3 for example, it even becomes smaller than the bulk and surface
parallel terms above 500nm, and of the same order of magnitude below. This is not what is usually
reported in the literature, where the surface perpendicular contribution is found bigger that the

101124 35 in our schemes 1 and 2, in spite of unfavorable Fresnel coefficients (taking care of the

others
definition of the x®? tensor in terms of internal or external fields, and of the inclusion of some part of
the bulk contribution into the surface terms!?). However, as recalled in the introduction, most of the
analyses published on the metal surfaces use SHG as a technique, which mostly differs from the SFG
case by the absence of an infrared beam, characterized by a very high free electron and a very low
bound electron contribution to the dielectric function. This dramatically impacts on the balance
between the various terms, including through the modulation of Fresnel reflectivity, and prevents from
a direct comparison of dispersion data between SFG and SHG. In addition, SHG studies often
investigate bare metal surfaces, either in vacuum, air’®, water?* or under electrochemical potential
control®”!, As explained above, for such surfaces, the free electron term, and the zzz contribution,

may indeed become dominant as a consequence of spill out.
VI. Conclusion

In this paper, we applied a model for the calculation of the surface (parallel and perpendicular to the
interface) and bulk contributions to the effective nonlinear susceptibility of silver and gold in an
infrared-visible SFG experiment. The model explicitly takes into account the free and bound electron
densities, and the dispersive behavior in the visible range only requires their respective dielectric
functions as inputs. Our model is one of the few which takes into account the free and bound electrons
together 31, and we aimed at doing so using a limited amount of unknown or free parameters. For that
respect, we believe that it could be useful for a variety of applications. The perpendicular surface
contribution requires additional hypotheses on the relative distributions of the free and bound
electron density profiles across the interface. However, in the three cases considered, only their
relative overlaps as a function of the depth across the interface and their bulk values matter, and not
their actual shapes. The present study provides a general frame for the analysis of the intrinsic and
effective nonlinear susceptibilities of gold and silver by second order nonlinear optics. An extension to
the other metals is straightforward, and it should be interesting to consider the influence of the
interband transitions on the nonlinear response in the cases of silver and platinum, for which they
occur at higher and lower energy than the visible range, respectively. The three schemes describing
the characteristic electron distributions make it adaptable to a variety of experimental cases. We
believe that further improvements of this model will lead to a more sophisticated and accurate
description of such systems.

As long as the bound electrons do not spill out of the bulk more than the free electrons, the latter,
mainly through the surface perpendicular term, almost completely account for the total SFG response,
even if the interband transitions modulate it through the SFG and visible dielectric functions. When
the bound electrons are allowed to spill out of the free electron density, their contribution becomes
more significant, but still minoritary except at high energy. Again the free electron dominates, this time
through the surface parallel and bulk terms, and with a lower overall amplitude. This study proves that
the actual shapes of the electron densities at the interface (or at least their overlaps), which are
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extremely difficult to experimentally measure on any given sample, should remain the key parameter
in order to correctly analyze a gold surface by nonlinear optics.

In the next step, we plan to use this model in order to account for the experimental data detailed in
Part I, by studying the influence of the balance between free and bound contributions, and a putative
resonance with a surface state®’.

Appendix A: Quick review of the phenomenological description

Two light beams, modeled by plane waves at frequencies w; (visible, angle of incidence 8,?) and w;
(infrared, 8,') propagate in air (medium 1, €¥'=e’=1) and coincide at the metal surface (medium 2,
dielectric function €™ = g, with & = g(w;) = (n))? where n is the complex index of refraction of the
metal), supposed isotropic. This hypothesis is reasonable when a polycrystalline surface is used in the
experiments. Even if the (111) surface orientation is preferred in this case, macroscopic isotropy is
recovered as a consequence of random orientation between the microscopic crystallites. The SFG
beam (ws = w; + w,) is detected in reflection at the phase matching angle 83: wssinB's = wssinB'; +
w>sinB'; (superscripts refer to the medium, subscript to the beam). All beams are p-polarized. Across
the interface, quantities n; sinB; remain constant in media 1 and 2: sin8% = n; sinB?%. The thiol
intermediate layer, considered non-absorbing and very thin as compared to all wavelengths, is blank
for the propagation of light plane waves*.

The incoming electric fields create in the bulk a nonlinear second-order dipolar polarization P(r,ws), a
quadrupolar polarization Q(r,ws) and a magnetization M(r,ws), each one quadratic in the local electric
fields or their gradients through specific susceptibility tensors x!? 137273 The dipolar polarization may
be split into a “pure” dipolar term, proportional to the electric fields, and two terms involving also the
field gradients and the magnetic fields’3. These contributions are equivalent to a unique bulk
polarization with”*:

. .
PB(r,oa3)=P(r,oa3)—EV.Q(r,oa3)+;—CVxM(r,ws) (A1)
3

For a cubic crystal, the pure dipolar term vanishes for symmetry reasons, and the bulk polarization
involves only terms proportional to electric field gradients. Once Pg is known all over the bulk, the total
bulk contribution to the emission of SFG radiation has been calculated®?!. Additional surface terms
arise from the gradients experienced by the electric fields when crossing the interface®. They are well
described by an equivalent surface dipolar source®, decomposed in terms parallel (called x/y below)
and perpendicular (z) to the surface. This selvedge contribution is usually calculated in the long-
wavelength approximation as a consequence of the small thickness of this interface slab. If
translational symmetry is assumed in the surface plane, the local effective nonlinear polarization arises
at the interface from the integration along z of the nonlocal contributions’® and we may then define
the surface polarization as’:

P, (coa):J.I Ps (2, 0;)dz (A2)

where integration runs over the interface slab. It is parametrized by a surface nonlinear susceptibility
tensor xs (we drop superscript (2) from now on for clarity), for which the formalism usually devoted to
the emission of SFG radiation by molecular monolayers at interfaces applies’®:
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Ps (o) = x5 (05,0, 0,): E(o,)E(0,) (A3)

and the surface contribution to the SFG intensity becomes:

8 (w,)°
¢’ cos® 05

e . C
1, (o) = 2l 1 (@)1, (0,) with 1,(@,) =2—n|Ep(wi>|2 (A4)

where the electric fields are evaluated in medium 1. In this equation, the effective surface nonlinear

susceptibility tensor s

encompasses the transmittivity and reflectivity conditions for the electric
fields at the boundary, wrapped into Fresnel coefficients. We locate the sources of nonlinearity, and
the electric fields which generate it, inside the metal. This is not the most common habit for SHG: in
general, the incoming fields are evaluated inside the metal, but the nonlinear polarization
outside®?*3877 However, our convention allows the best separation between intrinsic bulk and surface
contributions in SHG!. Even if this choice has no impact on the effective and far field quantities, the

definition of xs depends on this conventional choice®!%4°,

We have, for an isotropic interface:

Tswmp = FoazXs.zzz — FroXs e + FonXis,oex — Fraxlisxon (A5a)
F,, =F (o,)F, (o,)F,(»,)sin 6} sin 6} sin 6} (A5b)
F., = F (0,)F (o,)F, (,)cos0; cos6; sin 0, (A5c)
F. =F (o,)F (o,)F, (®,)sin 6} cos 0} cos o, (A5d)
F. = F. (0,)F (0,)F, (»,)cos0;sin 0; cos 6 (A5e)

With the definitions above, the Fresnel factors for the surface terms have the form:

2c0s 07 2n, cos 6! 1Y
F(o)= : and F(o,) = ! . — A6,
() cos 6’ +n, cos O} (1) cosef+nicosei1(nij Ae)

It can be shown?'38 that the corresponding Fresnel factor for the bulk contribution is
Fou = F; (@3)F, (0,)F, (o,) (A7)

In a final step, the Rudnick-Stern dimensionless coefficients'®?>’ allow to compare the models to a
pure free electron gas response. Following the definitions of*, we write:

1 g-1g,-1
= ga(o,m A8a
XS,zzz 2n0e 4TC 4TE 3 ( 1 2) ( )
1 g -1l¢,-120
XS,xxz = 2 14 24 ! b((Dl,(DZ)
noe T T (A8b)
XS,xzx = : & = S -1 20‘)2 b((DZ,(Dl) (A8C)

2ne 4n 4n o,
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where ng is the bulk electron density; e the absolute value of the electron charge; indices 1,2,3 stand
for visible, infrared and SFG, respectively. Parameters a and b refer to the incoming electric fields
evaluated inside the metal, and creating the second order polarization outside, as is, to our knowledge,
their universal convention. As we are interested in the absolute phases, the sign convention is also
important. It depends on the orientation of the z-axis (towards or away from metal surface) and
consequently on the integration in equation (A2). We adopt the convention usually used in SFG??, with
the z-axis pointing away from the interface, whereas Ref. 40, and several others’’ studying SHG, use
the opposite. This choice accounts for the differences in the signs of a and b parameters and allows a
coherent comparison of our results with the analysis of Ref. 1. Most available models show that the
surface zxx term vanishes (although an effective zxx contribution originating in the bulk term is often
included in the surface term®!!) because no gradients are experienced by the parallel components of
the incoming electric fields*. Originally in SHG, parameter b equals -1 and is therefore dispersionless,

contrary to a*?°

, whose amplitude may experiment resonant behaviors. However, all susceptibility
components show dispersion in SFG (equation A8), and, as each term is modulated by the appropriate
Fresnel coefficient, the overall effective terms all show a dependency on the incoming and generated

wavelengths.
Appendix B: Coefficients for the bulk response

The D and A coefficients appearing in equation (3) have the following expressions:

f/b fib
fib _ 1 g -lg, _1df/b df/b -1 031032
i f/b i ith f/b (Bl)
n, e 4n 47t -1 (D
1 f/b -1 8f/b o f/b 1 o
2 L5t i 510 = 21 e (52)
e 47: 4n ON -1 o,

Appendix C: Calculation of the free and bound electron contributions to the SFG response

We follow the derivation of Ref. 36 and 38. The interface is defined as the region where the electron
density varies from zero to its bulk value (and so does the dielectric function). Continuity is assumed
for the perpendicular (z) and parallel (x) components of the displacement and electric fields,
respectively. The local nonlinear polarization in this region, which sums up dipolar, quadrupolar and
magnetic contributions, is therefore z-dependent. The full surface contribution to the nonlinear
polarization at ws=wsr is obtained by integrating this z-dependent local value across the interface.
Integration of the x-component is straightforward and leads to the result presented in the main text.
In schemes 1, 2 and 3, the contributions from free and bound electrons are evaluated separately, then
added up. The z-components of the local nonlinear polarizations induced by the free (resp. bound)
electrons P3//(z) (resp. Ps,®) are given by equation (16):

()_ €,€,85 _nf(z)aaf(alf o0 1 +a2f 0 1 j

ee,(z) €,(2) 0z &,(z) €,(z) 0z &/(2)
(C1)

‘ 1
+o, a, _[ (z )81(2)8 (Z)J E.E,,

where the quantities not depending explicitly on z are the bulk ones. Integration over the interface
layer gives the surface nonlinear polarization:
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P{, = [ Pi.(2)dz (c2)

where integration may be extended to interval (-oo;+o0) for convenience.

i”bn”b(z) , the integrand is transformed into a sum of rational fractions of

Using &/'°(z) =1+ 4na
nf(z) and n®(z) only. The results of the main text may be deduced by use of the following procedures.
The integrations are split between [zg;+°°) and (-o0;z0]. For scheme 1 (and conversely scheme 3 after

swapping f and b superscripts), in the first half, n®(z) vanishes and nf(z) varies from no to 0, thus:

f
n (z
g,(z) =1+4na,'n' (z) =1+ (f ) L&l —1]=1+u(e] -1). (c3)
Ny
The integration variable is changed from z to u=nf(z)/nof, which varies from 1 to 0. In the second half,

n(z) remains equal to nof while n°(z) varies from no® to 0. Integration in this case runs over variable
u=n°(z)/no°, varying from 1 to 0, using:

b b b
n°(z) (g -1 g -1
g, (2) =€l +4na,"n"(2) =€/ | 1+ (b)w =g 1+u¥ . (C4)
N, g g
In scheme 2, both electron densities vary together and ¢,(z)=1+4na,'n"(z)+4na,’n"(2).
b b
, , n°(z) _ng ...
Integration may be performed by using the constant R = ; =—, which implies
n'(z) n,
£ f byb f f b n'(z)
g,(2) =1+ 4no,"n" (2) + 4na,"n°(2) =1+ 4nn" (2)[ o +Ro,” | =1+ (g, - —. (C5)
n

0

One may then choose u=nf(z)/nof as the integration variable, as for scheme 1. The calculations involve
integrals of the form:

dx

J0(0;,95,95) =_f: L+ 400+ .00+ 9.x) =J, , with g1#02%03 (C6)
1 2 3
oy [ dx _
19(03, 03 0) = | a0 oy~ o) (c7)
d
|1(q1'q2;q3) = j: X = |1(q3) (C8)

(1+9,x)(@+q,x)(1+0,X)?

A direct calculation is possible after partial fraction decomposition. As an example,

4, a;
J, = InQ+q,)+cp.= In(1+4q;) (C9)
’ (%‘%)(%‘qs) ' {é%:}f (qi_qj)(qi _qk)
{1',2',03}

where c.p. denotes circular permutation of g1, 92, gs.

For the calculation of formula (C1) above, in order for example to recover symmetric expressions
between 1, 2 and 3 indices, the reader may find the following relations useful:
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q; I1(qi)+|o(qi):‘]o (C10)

1
l,(a,) +15(a,) +1,(a5) =23, + )@ )00 (C11)
1 & Inl+q,)
1,(a,)+1,(a,) +1,(a3) = - ' (C12)
3+ 1{G,) +1,(%) 1+9,)1+q,)(1+0a,) {ic,j;}:(qi—q,-)(qi—qk)
5%
1
1|o 1 2|o 2 3|0 3 =1- (C13)
d, 1,(a,) + 9, 15(9,) +9; 15(as) FEAECAIETR
1
I 2|1 2 3|1 3 Z‘]o_ C14
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Knowing the expression of the surface nonlinear polarization (C2) leads to the surface x'* components
(equation (A3)), which may be expressed as functions of a”7°(w1,w,) and b”°(w1,w,) through equations
(7), (9) and (11), and plugged into equation (A5) to calculate the effective susceptibilities.
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