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displacement signal retrieval from InSAR

displacement measurement time series for

decorrelating targets
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Abstract—In this paper, a data-adaptive method, namely
Principal Modes (PM) method, based on the spatially averaged
temporal covariance of a time series of InSAR displacement
measurement obtained from consecutive SAR acquisitions is
proposed to retrieve the displacement signal for decorrelating
targets. On wrapped interferogram time series, the PM method
can highlight and restore coherent fringe patterns where they
are more or less significantly hindered by decorrelation noise,
while on unwrapped interferogram time series, the PM method
provides a satisfactory separation of the displacement signal from
the spatially correlated perturbations. A two stage application of
the PM method to both wrapped and unwrapped interferogram
time series can significantly improve the retrieval of the dis-
placement signal. Synthetic simulations are first performed to
investigate the impact of the choice of the appropriate number
of modes to retain in the EOF decomposition and of the time
series size on the performance of the PM method, as well as to
highlight the efficiency of the PM method. Then, the PM method
is applied to time series of wrapped and unwrapped Sentinel 1
A/B interferograms over the Gorner glacier between October
2016 and April 2017. The main characteristics of the PM method,
such as realistic assumptions, ease of implementation and high
efficiency, are highlighted.

Index Terms—EOF, time series, SAR, interferogram, decorre-
lating targets

I. INTRODUCTION

IN displacement measurement by SAR imagery, with the

arrival of Sentinel 1 A/B images acquired every 6 days over

Europe and every 12 days elsewhere, especially with the near

real time free access to public, the time series of SAR images

has become a unprecedented living subject. A yearly analysis

of displacement constitutes the subject of numerous studies of

landslide, subsidence, volcano deformation, glacier flow, etc.

[1]–[4]. The main contributions of the time series to displace-

ment measurement lie on the follow-up of the temporal dis-

placement evolution and the improvement of the displacement

estimation precision. For the former, the time series provides

continuous displacement information over time, thus allows

for long term monitoring, which is particularly important for

natural hazards prediction. For the latter, with advanced multi-

temporal techniques (e.g. Permanent Scatterer Interferometry

[5]–[8], Small BAseline Subset [9], [10] CAESAR [11], etc),
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the precision of the displacement rate estimation has been

improved significantly, e.g. on the order of 1 mm/yr based

on a time series with more than 60 images [12].

Actually, the multi-temporal methods have most been devel-

oped for time series of SAR images and focused mainly on

targets that stay coherent in all the acquisitions [8], [11]–[17].

In general, these methods use a time series of SAR images to

construct a redundant interferometric network. The main idea

consists of making use of the redundancy of the interferometric

network at the level of wrapped data to filter the interferogram

stack. A more or less averaged displacement rate during the

time span covered by the time series is estimated after the

so called phase linking or phase triangulation [14], [16],

[18]. For decorrelating targets, due to rapid surface changes,

displacement signal can only be obtained from SAR image

pairs with small temporal baselines (i.e. several days or even

less). Moreover, low signal to noise ratio (SNR) and data gaps

are frequently observed in the displacement measurement,

which makes the application of the aforementioned multi-

temporal methods impossible for decorrelating targets. Thus,

few methods have been documented to deal with time series

of displacement measurements for decorrelating targets. A

substantial lack of multi-temporal approaches to deal with

decorrelating targets becomes obvious, which constitutes the

main motivation of this paper.

The Empirical Orthogonal Function (EOF) based analysis

[19] is one of the most widely and extensively used methods

for time series analysis in atmosphere-ocean science [20], [21].

This family of methods (known also as PCA or Karhunen-

Loève decomposition) is mainly a data-adaptive and non-

parametric tool, since it does not need an a priori parameter

dependent model of the process that generated the time series

under analysis. They are primarily designed for the reduction

of the dimensionality of a given data set and the compression

of a maximum of variance into a minimal number of robust

components. The principle of the EOF based methods lies

on the construction of the spatial and/or temporal covariance

matrix of the time series and the analysis of the latter by

eigenvalue decomposition (ED) [19] or singular value de-

composition (SVD) [22] in terms of data-based orthogonal

functions. It turns out that these orthogonal functions can

be classified essentially into trends, oscillatory patterns and

noise [23]. Given any space-time geophysical field, EOF based

methods find a set of orthogonal spatial (temporal) patterns
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along with a set of associated uncorrelated time (space)

series. For many geophysical records, a few leading EOF

modes correspond to the record’s dominant oscillatory and/or

trend modes [20], [23]. They are thus necessary to optimally

reconstruct the initial signal. The efficiency of the EOF based

methods has been proven in a large number of studies, which

helped its widespread use in atmosphere-ocean community. In

displacement measurement by SAR imagery, similar analysis

has also been adopted in multi-temporal processing chains and

in geophysical model inversions. For example, [8] performed

a filtering of the interferogram stack by a PCA of the full

covariance matrix of the SAR image time series, while in

[11], the same analysis was realised to identify the dominant

scattering mechanism. In [17], the PCA was used for data

compression. [24] and the references therein adopted the PCA

in geophysical model inversions. To our knowledge, EOF

based analyses have not been applied to InSAR displacement

measurement time series.

In this paper, a data-adaptive EOF based method, namely

Principal Modes (PM) method, is proposed to retrieve coherent

displacement signal from an interferogram time series obtained

from consecutive SAR acquisitions for decorrelating targets.

The displacement retrieval is performed at two levels: on both

unwrapped interferograms (real signal) and wrapped interfero-

grams (complex signal). The PM method is used, in the former

case, to separate the displacement signal from the spatially

correlated perturbations such as atmospheric residuals; while

in the latter case, to restore coherent displacement patterns

hindered by decorrelation noise. Synthetic simulations are

performed to investigate the appropriate number of modes

to retain in the EOF analysis and to highlight the impact of

the time series size on the performance of the PM method,

as well as to show the efficiency of the PM method. Then,

the PM method is applied to a time series of interferograms

constructed from consecutive Sentinel-1 A/B acquisitions be-

tween October 2016 and April 2017 over the Gorner glacier.

The efficiency of the PM method is evaluated by comparisons

between the original interferograms and the reconstructions by

the PM method.

This paper is organised as follows: in Section II, the prin-

ciple of the PM method is described in detail. In Section III,

synthetic simulations of both unwrapped and wrapped inter-

ferogram time series are performed in order to investigate the

choice of the appropriate number of modes and the impact of

the time series size on the performance of the PM method, also

to highlight the efficiency of the PM method. Section IV gives

the results of the application of the PM method to time series

of Sentinel 1 A/B interferograms over the Gorner glacier.

Finally, conclusions and perspectives are given in Section VI.

II. METHODOLOGIES

SAR images are subject to noise of divers origins. Thus, the

observed displacement on differential interferograms includes

2 terms: the true displacement signal and different sources of

perturbations. The separation between these 2 terms constitutes

a major issue in order to obtain the true displacement signal. In

case of a time series, this separation can be performed based on

different temporal behaviours between the displacement signal

and the perturbations, because in most cases, the displacement

is temporally and spatially coherent, while the perturbations

are not. The use of the EOF based analysis is appropriate

to analyse a combination of spatial and temporal trend in

a time series in order to find the groups of points (i.e. a

spatial pattern) that vary together following a specific time

function. In the following, how an EOF based method, the

PM method, separates the displacement signal and other

perturbations through an analysis of the temporal covariance of

a displacement measurement time series is explained in detail.

A. Mathematical modelling

In case of both wrapped and unwrapped interferograms,

each interferogram (i.e. 2D image of interferometric phase)

can be represented by a matrix of size Nl × Nc. In order

to reduce the dimension of the problem and facilitate the

processing later, each interferogram matrix is ordered into a

vector, φ, hereafter. Thus,

φ = (φi)0≤i<Nl×Nc ∈ MNl×Nc,1 (R) (1)

On each interferogram, the total signal includes the dis-

placement signal and perturbations. Decorrelation noise and

atmospheric perturbations are considered as main error sources

on wrapped and unwrapped interferograms respectively [14],

[17]. Therefore, in case of unwrapped interferograms, spatially

correlated perturbations (atmospheric-like) and random noise

are considered; while in case of wrapped interferograms,

decorrelation noise is mainly considered (equation 2).

φ =

{

φd + φa + φb φ ∈ R

φd + φb φ ∈ [0, 2π)
(2)

where d denotes displacement, a spatially correlated perturba-

tions and b random noise.

We now consider a time series of interferograms obtained

from consecutive SAR acquisitions, e.g. unwrapped interfer-

ogram time series. Assume that we have interferograms at

time instants t1, t2, ..., tN and each interferogram includes

φ1, φ2, ..., φP values corresponding to P locations (an ordered

set of values from a 2D image). We can order these interfer-

ograms in (position, time) way and store them in a matrix, X
(hereafter namely data matrix), as shown in equation 3. Thus, a

time series of interferograms is represented by a matrix of size

P ×N . In this way, we can interpret each of the N columns

of X as a map for a given time instant and each of the P lines

of X as a time series for a given location.

X =







φ1
1 · · · φN

1
...

...

φ1
P · · · φN

P






∈ MP,N (R) (3)

In case of wrapped interferogram time series, the data

matrix, X , is adapted as follows in order to take the phase

circularity into account:
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X =







eφ
1

1 · · · eφ
N
1

...
...

eφ
1

P · · · eφ
N
P






∈ MP,N (U) (4)

Indeed, this (position, time) way corresponds to the T-

mode (time mode) data organisation in PCA analysis. There

exists the S-mode (space mode) that arranges the data in

(time, position) way and the corresponding data matrix is the

transpose of X presented in equation 3 or 4. The selection of

T-mode or S-mode depends on the objective of the analysis,

more precisely, whether the temporal covariance or the spatial

covariance to analyse. The selection of S-mode treats the time

series (N times) at each of the P locations as variables in the

analysis; the domain is the position, thus the spatial covariance

of size P × P of the time series is analysed. Conversely, the

selection of T-mode treats the spatial field, defined by all the

P locations at each of the N times as variables; the domain

is the time, thus the temporal covariance of size N×N of the

time series is analysed. The spatial covariance characterises the

correlation between different positions, thus it is not sensitive

to temporal variations. The temporal covariance characterises

the correlation between different times, is thus suitable for

analysis focused on the temporal evolution of coherent spatial

structures. Therefore, T-mode data organisation is adopted in

the PM method.

B. Covariance matrix construction and analysis

The temporal covariance of the time series is constructed

from the data matrix. We can mention that when working on

EOF or covariance, some a priori background field or trend

is subtracted from the time series. We remove the mean of

all P locations for each time, i.e. the spatial mean, from the

data matrix (equation 5). (Note that if the data are organised

in S-mode, we remove the mean of each of the N time series

for each location, i.e. the temporal mean.) We then obtain the

so called data anomaly matrix, X ′.

X ′ = X − InX̄ (5)

where In is a column identity vector with size P × 1.

With

X̄ = (X̄1, X̄2, ..., X̄N ) (6)

and

X̄j =
1

P

P
∑

i=1

xi,j (7)

with i, j corresponding respectively to the line and column

indices.

Then, the temporal covariance, R, is formed from the data

anomaly matrix as follows:

R = X ′tX ′ ∈ MN,N (C) (8)

where t denotes the transpose operator of a matrix. In case

of wrapped interferogram time series, it is replaced by the

trans-conjugate operator in order to obtain a positive hermitian

matrix.

To give detailed insight into the temporal covariance matrix,

we represent the temporal covariance R in the following way:

R = E[φ′
m

t
φ′
n] (9)

where φn′ is a column of the data anomaly matrix, and m
and n correspond to two different times (columns). E is the

mathematical expectation.

Taken into account different contributions in φ (equation 2),

in case of unwrapped interferograms, R becomes

R =E[(φ′d
m + φ′a

m + φ′b
m)t(φ′d

n + φ′a
n + φ′b

n )] (10)

=E[φ′d
m

t
φ′d
n + φ′a

m
t
φ′d
n + φ′b

m

t
φ′d
n + φ′d

m

t
φ′a
n (11)

+ φ′a
m

t
φ′a
n + φ′b

m

t
φ′a
n + φ′d

m

t
φ′b
n + φ′a

m
t
φ′b
n + φ′b

m

t
φ′b
n ]

The displacement can be assumed independent of other

perturbations, thus E[φ′a
m

t
φ′d
n ] = 0 and E[φ′b

m

t
φ′d
n ] = 0. For

atmospheric-like spatially correlated perturbations, in general,

they do not present temporal correlation. However, in the

case of displacement measurement from consecutive SAR

acquisitions, a common image is shared by the consecutive

displacement measurements, therefore, there is a correlation

between consecutive times. In what follows,

R =

{

E[φ′d
m

t
φ′d
n ] |m− n| > 1

E[φ′d
m

t
φ′d
n + φ′a

m
t
φ′a
n ] |m− n| = 1

(12)

In case of wrapped interferograms time series, R becomes

R = E[ej(φ
′d
n −φ′d

m+φ′b
n−φ′b

m)] (13)

= E[ej(φ
′d
n −φ′d

m)]E[ej(φ
′b
n−φ′b

m)] (14)

If m and n are consecutive, similarly, as there is a com-

mon image in the formation of the interferogram, strong

temporal correlation can exist in the decorrelation noise;

otherwise, the decorrelation noise follows the temporal decor-

relating mechanism of the phenomenon under observation and

E[ej(φ
′b
n−φ′b

m)] = γmγn with γm the interferometric coherence

at time m and γn the interferometric coherence at time n.

Thus,

R =

{

γmγnE[e
j(φ′d

n −φ′d
m)] |m− n| > 1

E[ej(φ
′d
n −φ′d

m)]E[ej(φ
′b
n−φ′b

m)] |m− n| = 1
(15)

According to equations 12 and 15, in the temporal covari-

ance R, after the spatial average, the remaining information is

only about the temporal covariance between displacements at

times n and m and that of spatially correlated perturbations

in case of unwrapped interferograms or that of decorrelation

noise in case of wrapped interferograms between consecutive

times. The temporal covariance between displacements is con-

tinuous (i.e. between all times), while that of the perturbations

is not (i.e. only between consecutive times). Since the temporal

variation of the displacement and that of the perturbations do

not have the same correlation length (i.e. frequency in spectral

analysis), it is possible to separate them through a spectral

analysis of the temporal covariance [13].



IEEE TRANSACTIONS ON GEOSCIENCES AND REMOTE SENSING, VOL. XX, NO. X, XXXX 4

C. Decomposition of the covariance matrix into variation

modes

We apply a SVD1 to the temporal covariance R and obtain

R = UDV t (16)

where U is the left singular vectors of R (N × N unitary

matrix) and its columns ui are called left singular vectors

that form an orthonormal base. D = diag(λ1, λ2, ..., λN )
is a diagonal matrix of singular values in descending order.

V is the right singular vectors (N × N unitary matrix) and

its columns vi are called right singular vectors that form an

orthonormal base. Note that in the present case, U and V are

identical2.

Since R is symmetric, it follows3 that the singular values

and the singular vectors (EOFs) decompose R in the following

way:

R = λ1u1u
t
1 + λ2u2u

t
2 + ...+ λNuNut

N (17)

In equation 17, each term represents an EOF mode. To

each EOF mode, correspond two pieces of information: the

EOF mode and its importance (how well an EOF mode

represents the signal). Each singular vector, ui, corresponds

to a temporal EOF. The EOFs are uncorrelated over time,

since ui are orthogonal to each other, hence the name EOF. Its

importance is indicated by the corresponding singular value,

λi, that provides a measure of the fraction of the total variance

in R explained by the EOF mode i. This fraction is obtained

by dividing λi by the sum of all singular values. Often, the

first few of the λi dominate the others, from which an optimal

reconstruction of the signal can be achieved.

The spatial pattern obtained when an EOF mode is plotted

on a map (over P locations) corresponds to the spatial pattern

exhibiting a standing variability over time. To see this spatial

structure, we calculate

ai = X ′ui (18)

with i = 1, 2, ..., N .

The components in the vector ai are the projections of

the EOF modes contained in X ′ on the orthonormal space

engendered by ui and the vector is a map of EOFi. For each

EOF mode EOFi, we can find a corresponding ai. These ai are

called principal components (PCs) or expansion coefficients of

the EOF which are uncorrelated in space.

D. Reconstruction with selected modes

We can reconstruct the data anomaly matrix, X ′, from the

singular vectors and the PCs as follows:

X̂ ′ =

N
∑

i=1

aiu
t
i (19)

In equation 19, the singular vectors (ui) can be considered

as functions of time, while the PCs (ai) functions of space.

1a ED can also be applied.
2The columns of U are a set of orthonormal eigenvectors of RRt and the

columns of V are a set of orthonormal eigenvectors of RtR. RtR = RRt,
thus U = V .

3This follows from a famous theorem by Hilbert, that is commonly referred
to as the spectral representation theorem.

The former represents the variability modes of all the positions

over time, and the latter is there to modulate this variability

according to the position in space. By truncating the sum in

equation 19 at some i ≪ N , we only keep the modes of

the first (largest) few singular values. The rationale to do so

is that the first modes capture the main temporal dynamical

behaviours of the signal in the time series and other modes

mainly correspond to different sources of perturbations.

The fraction of the total variance is often the basis for decid-

ing the number of EOFs to retain in a given decomposition. A

typical choice is to retain those modes that, when summed up,

explain 95% of the signal. In case of known data uncertainty,

the number of modes to retain can be determined such that the

misfits between the reconstruction and the noisy data are, on

average, of the order of magnitude of the data uncertainty as

proposed in [24]. Moreover, when the statistical characteristics

of the noise present in the data are known, a Monte Carlo

method that generates random matrices of noise having the

same statistical characteristics can help decide when pure noise

is likely to be interpreted as a displacement signal if a mode

is kept [25].

To reconstruct the data matrix, the spatial average for each

time is added back to the reconstructed data anomaly matrix.

X̂ = InX̄ + X̂ ′ (20)

E. Perturbations by low SNR

Low SNR always happens to part of or the whole inter-

ferogram time series for decorrelating targets. A question,

whether the reconstruction is credible, arises when dealing

with time series with low or even very low SNR that hinders

the structure of the displacement pattern. Of course, if all the

interferograms in a time series present low or very low SNR,

the PM method cannot learn about the underlying processes

that control the evolution of the displacement, then the re-

construction by the PM method cannot be considered reliable.

Here, we consider the case where displacement patterns are

partially or completely hampered by perturbations on only

part of interferograms in a time series and the perturbations

do not excessively mask the underlying signal, the remaining

interferograms still carry enough information to reconstruct a

reasonable version of the time series.

The first question is about the critical number of interfero-

grams with low SNR from which the reconstruction cannot be

considered reliable any more. For this, the differences between

the reconstructions and the original interferograms of good

quality, in other words, the residuals of interferograms of good

quality, can provide useful information. If the interferograms

of good quality are not degraded by the reconstructions,

it implies that even with the presence of an amount of

interferograms with low SNR in the time series, the spatial

pattern whose magnitude varies over time (observed from the

interferograms of high SNR) can be captured and the PM

method works.

In case when the PM method works, suppose that φ′
m and

φ′
n, two columns of the data anomaly matrix X ′, correspond to

two interferograms with low and high SNR respectively. From
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equations 18 and 19 and assume that only one mode is kept

in the reconstruction for sake of simplicity, the reconstructed

φ′
m and φ′

n can be expressed respectively as:

φ̂′
m =









(φ′
1,1U1,1 + . . .+ φ′

1,NUN,1)Um,1

(φ′
2,1U1,1 + . . .+ φ′

2,NUN,1)Um,1

. . .
(φ′

P,1U1,1 + . . .+ φ′
P,NUN,1)Um,1









(21)

φ̂′
n =









(φ′
1,1U1,1 + . . .+ φ′

1,NUN,1)Un,1

(φ′
2,1U1,1 + . . .+ φ′

2,NUN,1)Un,1

. . .
(φ′

P,1U1,1 + . . .+ φ′
P,NUN,1)Un,1









(22)

A common structure is observed for both φ̂′
m and φ̂′

n. The

only difference lies in the singular vector components Um,1

and Un,1. Since Um,1 and Un,1 are different components of

U , they are thus consistent, i.e. if Un,1 is erroneous, so is

Um,1. Therefore, if φ̂′
n is a low-pass filtered version of φ′

n

and no bias is detected, it implies that the PM method learned

successfully about the underlying displacement signal and the

singular vectors U that represent the main variation directions

approximate as closely as possible those obtained in case of

high SNR. Therefore, the reconstructions of interferograms of

low SNR, φ̂′
m, can also be considered as a low-pass filtered

version of φ′
m, thus credible.

F. Summary of the PM method

To summarise, the PM method calls for the determination

of a mathematical model that captures the essential physical

or statistical properties of a displacement measurement time

series by considering the signal included in the time series as

the sum of a stable average and a series of variation modes

(trend, oscillation or random noise) that are orthogonal to each

other (equation 23). These modes have a temporal trend and

a space varying function.

X = X̄ +

N
∑

i=1

µiΦi (23)

With

µi =
λi

∑

j λj

(24)

Φi =

{

1
µi

aiu
t
i if µi 6= 0

0 else
(25)

According to the principle of the PM method, it is partic-

ularly suitable for measurement of continuous displacement

over time (linear, with acceleration/deceleration, sinusoidal

variation, etc). In case of significantly irregular displacement

behaviour over time (e.g. intermittent displacement), there

will be no dominant variation modes in the decomposition

of the temporal covariance matrix and the performance of

the PM method will degrade significantly. With continuous

displacement over time, on one hand, it can be considered as

a temporal filter that has the ability to separate the temporally

coherent signals from perturbations that have a chaotic be-

haviour over time by keeping appropriate number of modes.

On the other hand, it can be considered as a gap filler that

is capable of reconstructing coherent displacement signal in

case of low SNR based on the temporal correlation of spatial

patterns present in the displacement time series.

The performance of the PM method also depends on the

quality of the sample temporal covariance estimation. In [8],

[11], homogeneous pixels are used to estimate the covariance

in order to improve the quality of the estimation. This idea can

also be applied in the PM method. However, in this way, an

interferogram will be divided into several homogeneous areas,

with each corresponding to an independent reconstruction

possibly with different number of modes. Discontinuities are

thus possible between different homogeneous areas. Further

investigation will be necessary to highlight the advantages of

this approach. Moreover, the number of modes retained in

the reconstruction and the number of measurements in the

time series also have an impact on the performance of the PM

method . The impact of these two factors will be discussed in

Section III through synthetic simulations.

III. SYNTHETIC SIMULATIONS

The performance of the EOF based methods in terms

of denoising effects has been proven in numerous studies.

However, the choice of the appropriate number of modes to

retain in the reconstruction still remains challenging in case

without ground truth. Synthetic simulations have thus been

performed in order, on one hand, to investigate the impact of

the number of modes to retain in the reconstruction and the

time series size on the performance of the PM method and on

the other hand, to show the efficiency of the PM method.

A. Displacement modelling

Linear displacement with constant velocity, nonlinear dis-

placement with acceleration (or deceleration) and with peri-

odic oscillations (e.g. seasonal variability) are most consid-

ered in displacement measurement. Therefore, in the present

synthetic simulations, these three types of displacement are

considered. However, remind that in the PM method, the

EOFs are classified into trend, oscillatory patterns and noise.

The linear displacement and the nonlinear displacement with

acceleration can indeed be considered as in the class of trend

EOF for the PM method. The nonlinear displacement with

periodic oscillations corresponds to the class of oscillatory

patterns EOF. Therefore, in the following, only the results of

the linear displacement (namely trend displacement hereafter)

and the nonlinear displacement with oscillations (namely oscil-

latory displacement hereafter) are illustrated in order to avoid

redundancy.

To simulate the trend displacement, an arbitrary displace-

ment model (equation 26), providing spatial and temporal

coherent displacement fields, is chosen. In the provided dis-

placement field, the displacement value decreases with the

distance from the centre of the field and the value at the centre

increases over time. Indeed, it models somehow the birth of a

volcano.

f(t, r) = (1− r/2)t (26)
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where r is the distance from the centre of the field and t is

the time from a predefined origin.

The oscillatory displacement is simulated inspiring from the

trend displacement model by involving temporal and spatial

variations at different scales (i.e. sum of three embedded sinu-

soidal behaviours, see equation 27) that correspond to complex

oscillations. Note that a particularly complex displacement

behaviour is chosen here to test the performance of the PM

method.

f(t, r) = sin(
π

2
t) cos(

π

2
r) + 0.5 cos(

3π

2
t) cos(5πr)

+ sin(
5π

2
t) cos(10πr) (27)

B. Perturbation simulation

On real unwrapped interferograms, spatially correlated per-

turbation such as the turbulent atmospheric noise is consid-

ered as the main error source that hinders the displacement

signal. This kind of perturbation is characterised by a spatial

correlation, but a random behaviour over time. To generate

the spatially correlated noise, an auto-correlation function in

power form c(r) = r−β with β = 1.2 is used to modulate

a standard normal distribution (zero mean and unit standard

deviation) in frequency domain. Finally, to tune the SNR, an

amplification factor (3, unless otherwise indicated) is multi-

plied to the thereby generated noise.

On real wrapped interferograms, the decorrelation noise is

considered as the main factor that hinders the displacement

signal. Therefore, the noise to simulate for wrapped interfero-

grams is the decorrelation noise. For this, we first generate an

arbitrary coherence matrix (spatially correlated noise whose

values are between 0 and 1) for each time. The decorrelation

noise is generated from the coherence matrix according to

equation 28 [26].

φt
x,y ∼ N

(

0,
1

2M

1− (γt
x,y)

2

(γt
x,y)

2

)

(28)

where M is the number of multi-looking, M = 2 unless

otherwise indicated. γt
x,y is the coherence at time instant t

on position (x, y).

C. Experiment setup

In the following, both unwrapped and wrapped interfer-

ogram time series have been generated from the models

of trend and oscillatory displacements mentioned previously.

Perturbations corresponding to each type of interferograms are

also generated. The spatial and temporal parameters for all

simulations are chosen in an arbitrary way, with P = 500×500
and N = 20. For each case, three time series, i.e. displacement

time series, noise time series and total signal time series, are

generated. Then, for each time series, the data matrix, X and

the temporal covariance, R, are constructed. A SVD is applied

to each temporal covariance. Detailed analyses are performed

on each decomposition and data reconstruction is carried out

by keeping an appropriate number of modes.

D. Validation metrics

To define a criterion for the selection of an appropriate

number of modes, the root mean square deviation (RMSD)

is used. It can be calculated as follows:

RMSD =
1

σ̄Φ

√

∑N
i=1 ||Φ̂i − Φi||2

NP
(29)

where σ̄Φ denotes the temporal mean standard deviation, Φ̂i

and Φi denote respectively the estimated and the observed (or

true) values at each time instant i. In case of complex data,

σ̄Φ is replaced by σ̄ejΦ , Φ̂ and Φ are replaced by ejΦ̂ and ejΦ

respectively.

The RMSD is a measure of accuracy and frequently used to

measure the difference between values predicted by a model

or an estimator and the values actually observed. The RMSD

serves to aggregate the magnitudes of the errors in estimation

for various time instants into a single measure of estimative

power. Note that the RMSD is different from the average error,

because the former mixes information concerning average

error with information concerning variation in the errors. The

effect of each error on the RMSD is proportional to the size of

the squared error thus larger errors have a disproportionately

large effect on the RMSD [27].

The number of EOF modes that minimises the RMSD is

denoted by imin with the associated RMSDmin. The RMSD

of the noisy data (or original data) is denoted by RMSDmax.

The error reduction rate, τerr, is defined as

τerr = 1−
RMSDmin

RMSDmax

(30)

The error reduction rate varies between 0 (no improvement)

and 1 (perfect reconstruction). It measures the gain of accuracy

with the application of a method, thus indicates the efficiency

of the method.

E. Choice of the appropriate number of modes

Since the fraction of the total variance explained by each

mode provides useful information for the decision of the

number of modes to retain, the representativity diagram,

indicating the percentage of the total variance explained by

each mode (expressed as λi/
∑N

i=1 λi) is first analysed. The

representativity diagrams of the trend and oscillatory displace-

ments in the case of unwrapped interferogram time series are

presented in Figure 1 and Figure 2 respectively. The first

observation in both cases is that there is no clear complete

separation criterion between the displacement signals and the

perturbations. Moreover, in both cases, the fraction of the

variance of the total signal (Figure 1 and Figure 2) explained

by the first mode is dominant and the fraction of the variance

of the noise decreases with the increase of the number of

modes. In case of trend displacement, the total displacement

signal variance can be explained by the first mode, while it

is explained by the first three modes in case of oscillatory

displacement. According to the representativity diagrams in

the present examples, 1 mode and 2 modes are appropriate

to retain in the reconstruction for the trend and oscillatory
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Fig. 1. Representativity diagram of each EOF mode of trend displacement, spatially correlated noise and total signal in case of unwrapped interferogram
time series.

Fig. 2. Representativity diagram of each EOF mode of oscillatory displacement, spatially correlated noise and total signal in case of unwrapped interferogram
time series.

displacements respectively, which is further confirmed by the

RMSD with respect to the truth (Figure 3 (a) and (b)).

For wrapped interferogram time series, according to the

representativity diagrams of the trend and oscillatory dis-

placements shown in Figure 4 and Figure 5 respectively, the

displacement signal variability is spread over more modes

compared to the cases of unwrapped interferograms, especially

in case of oscillatory displacement. Moreover, the fraction of

the variance of the noise is uniform for all modes. Therefore,

in these two cases, the determination of the number of modes

to retain from the representativity diagram of the displacement

signal is difficult, and impossible from that of the total signal.

Finally, the numbers of modes to retain in these two case

are determined based on the RMSD with respect to the truth

shown in Figure 3 (c) and (d), thus 2 modes for the trend

displacement and 3 modes for the oscillatory displacement.

Note that the numbers of modes to retain aforementioned are

obtained from one simulation. In order to verify the stability

of the truncation with respect to the random simulations. 500

simulations have been performed. The mean and the standard

deviation of the number of modes minimising the RMSD

are shown in Table I. According to Table I, the choices of

the appropriate number of modes in the 4 aforementioned

cases are confirmed. In particular, note that in case of trend

displacement, the standard deviation of the imin value is 0

for both wrapped and unwrapped interferogram time series,

which implies that the first mode is always sufficient to explain

the total displacement variance in case of unwrapped data,

while the first two modes in case of wrapped data. Indeed,

this conclusion is consistent with observations in most ocean-

atmosphere applications. It can thus be used for the choice of

the number of modes in real data, given linear displacement

characteristics.

- imin σimin

unwrapped trend disp. 1.0 0.0

unwrapped oscillatory disp. 2.214 0.4101

wrapped trend disp. 2.0 0.0

wrapped oscillatory disp. 2.742 0.0083
TABLE I

MEAN AND STANDARD DEVIATION OF THE NUMBER OF MODES

MINIMISING THE RMSD WITH RESPECT TO THE TRUTH, imin, OBTAINED

FROM 500 SIMULATIONS.

In most real data case, the ways to determine the appropriate

number of modes presented above cannot work any more,
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(a) (b)

(c) (d)

Fig. 3. RMSD with respect to the truth as a function of the number of modes retained in the reconstruction and difference of squared RMSD with respect
to the data between consecutive numbers of mode (the value at the position of the number of mode i corresponds to RMSD2

i
- RMSD2

i+1
) for (a) trend

displacement (b) oscillatory displacement in case of unwrapped interferogram time series and for (c) trend displacement (d) oscillatory displacement in the
case of wrapped interferogram time series. Note that in the case of wrapped displacement, the difference of squared RMSD is multiplied by 5 in order to
facilitate the comparison.

Fig. 4. Representativity diagram of each EOF mode of trend displacement, decorrelation noise and total signal in case of wrapped interferogram time series.
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Fig. 5. Representativity diagram of each EOF mode of oscillatory displacement, decorrelation noise and total signal in case of wrapped interferogram time
series.

because of the lack of the ground truth or a priori information

on the displacement. To deal with the case without information

on the data uncertainty, we calculated the squared RMSD of

the reconstruction with respect to the noisy data and analysed

the difference of the latter between consecutive numbers of

mode. In Figure 3, the position at which the RMSDmin with

respect to the truth is obtained corresponds to the position at

which the decrease of the difference of the squared RMSD

with respect to the data begins to slow down. In other words,

the difference of the squared RMSD with respect to the data

begins to slow down when the mode imin + 1 is retained.

Indeed, when the difference of the squared RMSD with respect

to the data between consecutive modes begins to slow down,

it implies that the contribution of the additional mode can

be neglected and the reconstruction is very close to the data.

Given the fact that data uncertainty is present, we do not

want the reconstruction is so close to the data, as a result, the

appropriate number of mode to retain should be the number of

mode before the one with which the difference of the squared

RMSD tends to be stable, thus the mode imin. Regarding

the decrease (to zero) of the squared RMSD difference at the

position of the mode 19 in case of wrapped interferogram time

series (Figure 3 (c) and (d)), this is because the fraction of the

variance explained by each mode between 1 and 19 is similar,

but very small by the mode 20, thus the difference of the

squared RMSD between 19 modes and 20 modes (1.0e−15) is

almost zero, while that between 18 modes and 19 modes is on

the order of 0.2, hence a noticeable decrease on the squared

RMSD difference plot at the position of the mode 19. Note

that even though Figure 3 represents one simulation, the same

observation is obtained from 500 simulations. Therefore, in

real data case, the difference of squared RMSD with respect

to the data between consecutive numbers of modes is worth

investigation for the choice of modes to retain.

F. Impact of the time series size

In the previous simulations, the time series size is 20 based

on an arbitrary choice. It is interesting to analyse the impact

of the time series size in order 1) to get the information

about the minimal time series size that allows the PM method

getting satisfactory results 2) to know if a large time series

size improves or degrades the quality of the reconstruction.

For this, simulations with time series size varying between

10 and 100 are performed in case of trend and oscillatory

displacements. For each time series size, 500 simulations are

performed to avoid randomness.

1) Unwrapped interferogram time series: Figure 6 shows

the error reduction rate (τerr) and the number of mode with

the smallest RMSD (imin) as a function of time series size for

trend displacement and oscillatory displacement in the case of

unwrapped interferogram time series.

The global observation is that increasing time series size

does not degrade the quality of the reconstruction. For trend

displacement, the first mode is always sufficient to capture the

main displacement variability, with increasing time series size.

The error reduction rate is increased quickly when the time

series size increases from 10 to 30. After that, with further

increasing time series size, the error reduction rate continues

to increase, but the increase rate slows down. In particular,

when the time series size is larger than 50, the gain in error

reduction rate is very small. If a τerr value on the order of

0.5 can be considered as an indicator of good results, then in

this case, a time series size of 10 is sufficient. For oscillatory

displacement, on average, the first two modes are sufficient

to capture the main displacement variability, with increasing

time series size. The same as in the previous case, the error

reduction rate increases quickly when the time series size

increases from 10 to 30, then the increase rate slows down.

When the time series size is larger than 40, the gain in error

reduction rate is very small. Note that in this case, globally

the error reduction rate is smaller than that in the case of trend

displacement. A error reduction rate value of 0.5 is reached

when the time series size is 70. With a time series size of 10,

the error reduction rate is 0.3. Therefore, larger minimal time

series size is required in this case to ensure the quality of the

reconstruction.

2) Wrapped interferogram time series: Figure 7 shows the

error reduction rate (τerr) and the number of mode with the

smallest RMSD (imin) as a function of time series size for
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(a) (b)

Fig. 6. (a) τerr and (b) imin as a function of time series size for trend displacement (top) and oscillatory displacement (bottom) in the case of unwrapped
interferogram time series.

trend displacement and oscillatory displacement in case of

wrapped interferogram time series.

As in the previous case, increasing time series size does

not degrade the quality of the reconstruction. Another global

observation is that the error reduction rates are smaller than

those in the case of unwrapped interferograms. One may

consider this as an indicator of a degradation of efficiency

of the PM method in this case. According to detailed inspec-

tion, this degradation is mainly due to residual decorrelation

noise that still exists in the reconstruction. However, with the

missing fringes being reconstructed successfully, even though

with the presence of residual decorrelation noise, the wrapped

interferograms can be unwrapped correctly. Therefore, smaller

error reduction rates in this case do not indicate a degradation

of the efficiency of the PM method. For trend displacement,

the error reduction rate has a behaviour similar to that in the

case of unwrapped interferograms. When the time series size

is between 10 and 15, only one mode is identified to represent

the main displacement variability. Then with larger time series

size, two modes are identified and this number stays stable

even with further increase of time series size. Therefore, in

this case, the minimal time series size should be 15. For

oscillatory displacement, the behaviour of the error reduction

rate is similar to that of the trend displacement. The imin
value increases with increasing time series size. However, note

that when the time series size is larger than 50, even with

more modes identified, the gain in error reduction rate is very

limited. A time series size of about 30 can give satisfactory

results.

G. Efficiency of the PM method

Figure 8 gives an example of the truth, the noisy displace-

ment, the reconstruction by the PM method, the residual (noisy

displacement - reconstruction) and the noise included in the

noisy displacement for trend and oscillatory displacement in

cases of unwrapped and wrapped interferograms time series in

order to show the efficiency of the PM method in a qualitative

way. The reconstructions are obtained with a number of mode

determined from the RMSD. For trend displacement, in both

unwrapped (first column) and wrapped (third column) interfer-

ograms cases, the displacement patterns hampered by the noise

have been reconstructed correctly and the residuals are very

similar to the noise present in the noisy displacement. There-

fore, in case of trend displacement, the separation between

the displacement signal and the noise is very efficient. For

oscillatory displacement, the displacement/noise separation

efficiency is degraded compared to that for trend displacement

because of the complexity of the displacement characteristics.

In case of unwrapped interferograms (second column), no

displacement signal is identified in the residual but part of

spatially correlated perturbations still remain in the reconstruc-

tion. In case of wrapped interferograms, the global displace-



IEEE TRANSACTIONS ON GEOSCIENCES AND REMOTE SENSING, VOL. XX, NO. X, XXXX 11

(a) (b)

Fig. 7. (a) τerr and (b) imin as a function of time series size for trend displacement (top) and oscillatory displacement (bottom) in the case of wrapped
interferogram time series.

ment pattern has been reconstructed successfully. However,

displacement signal is observed in the residual, even though

the magnitude is very small. Obviously, keeping more modes

in the reconstruction can help get back the displacement signal

in the residual at the expense of keeping more noise in the

reconstruction at the same time. This strategy thus degrades

the quality of the reconstruction. A better approach to get back

the displacement signal in the residual without degrading the

quality of the reconstruction consists of a further analysis of

the residual in terms of spatial/temporal correlation. Note also

that the simulated oscillatory displacement corresponds to a

very difficult case, i.e. the sum of three embedded sinusoidal

behaviours (i.e. product of sine and cosine functions, see

equation 27). Indeed, oscillatory displacements from the sum

of as many as four single sinusoidal behaviours, the sum of two

embedded sinusoidal behaviours and one embedded sinusoidal

behaviour have also been simulated. Displacement signal is

only observed in the residual for some interferograms in the

case with two or three embedded sinusoidal behaviours. These

complex displacement behaviours only represent a few partic-

ular cases in Earth displacement measurements. Therefore, the

PM method can be considered efficient in most applications

of Earth displacement measurement.

To give further quantitative analysis results, RMS errors

of the reconstruction and noisy data compared to the truth

are presented with different noise levels (Figure 9). For both

trend and oscillatory displacements in cases of wrapped and

unwrapped interferograms time series, the RMS errors of

the reconstructions are significantly decreased compared to

those of noisy data. In case of unwrapped interferograms,

the RMS error reduction is more significant in case of lower

SNR; while in case of wrapped interferograms, the RMS error

reduction is more efficient in case of higher SNR. According to

Figure 9, it can be concluded that the PM method can improve

significantly the global accuracy. For individual points, the

quality of the reconstruction varies, depending on the noise

level on each point as well as the global noise level of the time

series. As shown in Figure 10 by examples of displacement

time series over a point chosen arbitrarily, in general, the

reconstruction gets closer to the truth with the decrease of the

global noise level in the four cases and the reconstruction is

more accurate for less noisier data sets in a given time series.

However, the benefit of the PM method is more important in

case of low and moderate SNR, because the gain in accuracy

in these cases is crucial to make useless data sets exploitable

(left and middle columns in Figure 10).

H. Impact of unique events

In order to highlight the impact of unique events whose

displacement pattern is different from those observed in most

interferograms in the time series, time series (with 20 in-

terferograms) of a constant displacement pattern have been
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(a) (b) (c) (d)

Fig. 8. Example of truth (first line), noisy displacement (second line), reconstruction (third line), residual (noisy displacement - reconstruction) (fourth line)
and noise (fifth line) in case of (a) unwrapped interferogram of trend displacement (m) (b) unwrapped interferogram of oscillatory displacement (m) (c)
wrapped interferogram of trend displacement (rad) (d) wrapped interferogram of oscillatory displacement (rad).
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(a) (b)

Fig. 9. Examples of RMS errors of the reconstruction (solid line) and noisy data (dashed line) for (a) trend displacement (b) oscillatory displacement in
the case of unwrapped interferogram time series (top) and of wrapped interferogram time series (bottom). In case of wrapped interferogram time series, M
corresponds to the multi-looking factor in noise generation (see equation 28). In case of unwrapped interferogram time series, amp. factor corresponds to the
amplification factor used in noise generation (see III-B).

generated in different cases. To introduce unique events in the

time series, different displacement patterns have been used.

For trend displacement time series, oscillatory displacement

is used as unique events, while for oscillatory displacement

time series, trend displacement is used as unique events.

Thus, the displacement patterns of unique events are totally

different from those in most other interferograms in the time

series. The plot of the RMS errors of the reconstruction as a

function of the number of interferograms with unique events

is shown in Figure 11. In case of unwrapped interferograms

of trend displacement (Figure 11 (a)), compared to the case

without unique events, the RMS errors are only increased for

interferograms with unique events. In other words, the recon-

structions of other interferograms are not harmed by the unique

events. Moreover, even with the presence of as many as 10

interferograms with unique events (given the total number of

interferograms of 20), the RMS errors of other interferograms

are not changed. In both cases of unwrapped interferograms of

oscillatory displacement and wrapped interferograms of trend

displacement (Figure 11 (b) and (c)), when the number of

interferograms with unique events reaches as many as 5, the

RMS errors of other interferograms begin to increase, while

in case of wrapped interferograms of oscillatory displacement,

the critical number of interferograms with unique events is 3.

Therefore, given a limited number of both unwrapped and

wrapped interferograms with unique events, the reconstruc-

tions of other interferograms can be not contaminated, the

efficiency of the PM method can thus be maintained.

IV. APPLICATION TO SENTINEL 1 INTERFEROGRAM TIME

SERIES FOR THE GORNER GLACIER DISPLACEMENT

MEASUREMENT

In this section, a time series of 31 Sentinel-1 A/B images,

acquired every 6 days between October 2016 and April 2017,

covering the Gorner glacier situated at the frontier between

Italy and Switzerland (Figure 12) is processed. 30 differential

interferograms (after corrections of orbital and topographical

contributions in the interferometric phase) are constructed

from consecutive acquisitions, using a SRTM digital elevation

model (DEM) (with a spatial resolution of 30 m) and auxiliary

orbital data.

In the interferogram time series, the data quality is not

homogeneous, because of the surface change (snow fall) from

one acquisition to another. The quality of the data, indicated

by the spatially averaged coherence, is presented in Figure 13.

11 out of 30 are of ”good” quality (fringe patterns are clearly

visible over the whole glacier), with the averaged coherence

larger than 0.35. 7 out of 30 are of ”moderate” quality, i.e.

fringe patterns are visible over part of the glacier or over the

whole glacier but with significant noise. The effective size
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Fig. 10. Examples of displacement time series in case of different SNR for unwrapped interferogram time series (2 first lines) and wrapped interferogram
time series (2 last lines). The first and third lines correspond to the trend displacement, and the second and fourth lines to the oscillatory displacement. M
corresponds to the multi-looking factor in noise generation (see equation (28)) and amp. factor corresponds to the amplification factor used in noise generation
(see III-B). For each line, the global noise level decreases from left to right.

of the time series is thus 18. For interferograms with low

coherence, the phase values can be considered as noise (par-

tially or completely). Phase unwrapping is performed on all

interferograms, using the Miminum Cost Flow (MCF) method

provided with Gamma software with coherence as quality map.

After the phase unwrapping, a constant shift exists on the

interferograms because of the phase ambiguity. To fix this,

a constant (an averaged value in a 100×200 window far from

the glacier) is removed from each unwrapped interferogram

with the underlying idea that there is no displacement in the

stable area. The PM method is applied to the whole time

series of both unwrapped and wrapped interferograms. In

case of wrapped interferograms, 3 modes are used for the

reconstruction, while in case of unwrapped interferograms,

2 modes are used, based on the check of the quality of

the reconstruction. These choices are also confirmed by the

difference of squared RMSD presented in Section III. For

this glacier, there is no displacement measurements other than

those from SAR interferometry. Indeed, the same problem

exists for many other natural targets that present difficulties

and risks to access for in situ instrumentation. Therefore, an

absolute precise validation is not possible in the present study.

Hence, we follow the common approach in displacement mea-

surement without ground truth, that is, to check the residual
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(a) (b)

(c) (d)

Fig. 11. Impact of unique events (whose displacement pattern is different from those in most interferograms in the time series) on the efficiency of the PM
method in case of (a) unwrapped interferograms of trend displacement (b) unwrapped interferograms of oscillatory displacement (c) wrapped interferograms
of trend displacement (d) wrapped interferograms of oscillatory displacement. Unique events exist from the 6

th data set and are continuous if the number is
more than one. Unique events are oscillatory displacement for trend displacement time series and trend displacement for oscillatory displacement time series.

46.03°

45.99°

45.95°

7.6° 7.9°7.8°7.7°

45.91°

Fig. 12. Localisation of the Gorner glacier (45.97◦N, 7.8◦E, indicated by
the black rectangle) at the frontier between Italy and Switzerland (Google
Earth).

(reconstructed interferograms - original interferograms). Note

however that this residual, revealing how much an original

interferogram is modified in the reconstruction by the PM

method, is not an absolute indicator of the quality of the

reconstruction, because it also depends on the quality of the

original interferogram and the consistency of displacement

Fig. 13. Spatially averaged coherence of interferogram time series for
displacement measurement over the Gorner glacier between October 2016
and April 2017.

behaviours between interferograms in the time series. The

most important interest of the residual check lies on the

verification if displacement signal is left in the residual.

The results in case of unwrapped interferograms are
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(a) (b) (c)

Fig. 14. (a) original and (b) reconstructed unwrapped interferograms (c) residual (reconstruction - original) at time spans (from top to bottom) 2016/12/17 -
2016/12/23, 2016/12/29 - 2017/01/04, 2017/02/15 - 2017/02/21, 2017/03/11 - 2017/03/17, 2017/02/03 - 2017/02/09, 2017/03/05 - 2017/03/11).
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presented in Figure 14 with several representative exam-

ples. The original interferograms (2016/12/17 - 2016/12/23),

(2016/12/29 - 2017/01/04) and (2017/02/15 - 2017/02/21) (first

three lines in Figure 14) are already of good quality. The

reconstructed interferograms can be considered as a filtered

version of the original interferograms, with the displacement

pattern over the glacier smoothed and most spatially correlated

(at small scales) noise in stable areas filtered out (perturbations

correlated at large scales and the displacement signal are

mainly located at the two first EOF modes, thus impossible

to separate them). The latter can also be observed from the

residuals (Figure 14 (c)). The residuals over the glacier of

these three interferograms are small and particularly homo-

geneous, with no clear displacement signal observed. Larger

residuals are only observed at the upper edge of the glacier

where localised phase unwrapping errors exist in the original

interferograms due to the transition between the fast moving

glacier and the stable areas. According to the histograms of

residuals (Figure 15 (a) - (c)), the distributions of residuals

are almost centred at 0 in stable areas. Over the glacier, a

distribution centre shift from 0 is observed, especially for the

interferogram (2016/12/17 - 2016/12/23). The mean residual

values over the glacier are 1.14 cm, -0.34 cm and -0.05 cm

respectively for these three interferograms (Table II). Thus,

the relatively larger residual observed on the interferogram

(2016/12/17 - 2016/12/23) is on the order of 1 cm. Note also

that this larger residual is homogeneous over the glacier and it

can be due to imperfect constant shift correction on unwrapped

interferograms before the application of the PM method. A

precise constant shift correction after phase unwrapping is

expected to further improve the results of the PM method. For

interferograms (2017/03/11 - 2017/03/17) and (2017/02/03 -

2017/02/09) (4th and 5th lines in Figure 14), the original inter-

ferograms are sufficiently noisy, the displacement patterns are

visible but significantly deformed. The PM method provides an

important improvement: the deformation of the displacement

pattern is corrected and a displacement pattern similar to

those observed on interferograms of good quality is retrieved.

Moreover, given larger noise in stable areas in the original

interferograms, larger residuals are observed in stable areas for

these two interferograms, which implies that the PM method

is able to filter out most perturbations (correlated at small

scales). The histograms of residuals (Figure 15 (d) - (e)) show

that more larger residuals exist for these two interferograms

compared to interferograms of good quality. This is due to

significant correction of the displacement pattern over the

glacier and efficient filtering of noise in stable areas in the

reconstructions by the PM method. The original interferogram

(2017/03/05 - 2017/03/11) (last line in Figure 14) is so noisy

that it cannot provide any useful displacement information.

After the PM method, the reconstructed interferogram is still

very noisy, although the displacement pattern is highlighted.

The residual is large, especially over the glacier (Figure 15 (f)),

due to significant correction of displacement pattern on the

reconstructed interferogram. The summary of residuals of all

interferograms in the time series can be found in Table II. Over

the glacier, most mean residual values are small, less than

1 cm. Displacement signal (of low magnitude) is identified

in part of the glacier only on the interferogram (2016/12/05

- 2016/12/11), where a mean residual value of -1.27 cm

is observed. These results show that, in case of unwrapped

interferogram time series, 1) the PM method does not degrade

interferograms of good quality, except the smoothness of

the displacement pattern; 2) the good performance of the

PM method is obtained for interferograms with a minimum

sufficient SNR. Moreover, given the observation that localised

phase unwrapping errors presented on a small proportion of

interferograms can be filtered out, the PM method prefers local

propagation phase unwrapping methods to global fit phase

unwrapping methods.

In Figure 16, the results in case of wrapped interfero-

grams are presented with several representative examples.

The 6 interferograms are those in Figure 14 before phase

unwrapping. The global observation is that fringe patterns

are highlighted by the PM method for all interferograms,

independent of the SNR. For interferograms (2016/12/17 -

2016/12/23) and (2016/12/29 - 2017/01/04) (first two lines

in Figure 16), the PM method acts as a slight denoising

filter. The residuals (modulo 2π) confirm the quality of the

reconstructed interferograms. Indeed, similar observations are

obtained for most other interferograms of good quality in

the time series. However, for the interferogram (2017/02/15 -

2017/02/21) (third line in Figure 16), large displacement signal

is observed over the glacier in the residual. In fact, the fringe

pattern of this interferogram is different from those on most

other interferograms, i.e. one more fringe is observed on this

interferogram. The reconstructed interferogram is similar to

other interferograms. Consequently, large residual is observed.

The PM method failed to capture the particular displacement

behaviour (corresponding to unique event) on this interfero-

gram. In the time series, the same problem also exists for the

interferogram (2017/02/21 - 2017/02/27) that shares a common

SAR image with the interferogram (2017/02/15 - 2017/02/21).

These observations showcase a weakness of the PM method:

with a certain number of modes retained in the reconstruction

to eliminate as much as possible the noise, it happens that

the reconstruction cannot capture high frequency displacement

signal that represents unique events in the time series. For this,

more modes are necessary in the reconstruction to keep this

part of information, at the expense of keeping more noise at the

same time. Another approach to get this part of information

consists of a further analysis of the residual. Moreover, for

interferograms (2016/11/29 - 2016/12/05) and (2017/01/04 -

2017/01/10) (not shown here), displacement signal is also

observed in the residual, but the magnitude is smaller (less than

one fringe). For interferograms (2017/03/11 - 2017/03/17),

(2017/02/03-2017/02/09) and (2017/03/05-2017/03/11) (last

three lines in Figure 16), part of or the whole interferograms

are buried in the decorrelation noise. Fringe patterns are recon-

structed successfully by the PM method, given the quality of

the original interferogram. Similar results are obtained for all

other low SNR interferograms in the time series. The residuals

of these interferograms are so noisy that they cannot be used

to indicate the quality of the reconstructed interferograms.

As all the interferograms cover the same season and the

displacement behaviour is consistent in most interferograms
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(a) (b) (c)

(d) (e) (f)

Fig. 15. Histograms of residual (shown in Figure 14 (c)) for (a) 2016/12/17-2016/12/23 (b) 2016/12/29 - 2017/01/04 (c) 2017/02/15 - 2017/02/21 (d)
2017/03/11 - 2017/03/17 (e) 2017/02/03-2017/02/09 (f) 2017/03/05-2017/03/11.

unwrapped interferograms time series 2-stage PM application
N◦ time span glacier stable area glacier stable area

mean (cm) std (cm) mean (cm) std (cm) mean(cm) std (cm) mean (cm) std (cm)

1 2016/10/06 - 2016/10/12 -0.73 1.70 0.04 1.36 -0.14 1.54 0.26 1.4

2 2016/10/12 - 2016/10/18 -0.36 1.57 0.02 1.45 -5.42 3.68 -0.55 1.55

3 2016/10/18 - 2016/10/24 -0.09 1.89 0.00 1.64 -1.76 4.22 1.26 2.41

4 2016/10/24 - 2016/10/30 -0.51 1.63 0.03 1.58 -8.34 5.20 -2.05 2.71

5 2016/10/30 - 2016/11/05 -1.39 1.66 0.07 1.64 -2.10 2.01 0.48 1.73

6 2016/11/05 - 2016/11/11 0.53 1.72 -0.02 2.00 -5.66 5.79 -1.18 2.26

7 2016/11/11 - 2016/11/17 0.37 1.22 -0.02 1.33 0.17 1.62 -0.03 1.55

8 2016/11/17 - 2016/11/23 -0.33 1.61 0.02 1.99 -4.40 4.76 0.38 2.05

9 2016/11/23 - 2016/11/29 0.46 2.38 -0.02 1.79 -3.85 4.58 0.11 2.23

10 2016/11/29 - 2016/12/05 0.06 1.03 0.00 1.22 0.68 1.58 0.70 1.81

11 2016/12/05 - 2016/12/11 -1.27 1.00 0.06 1.42 -1.22 1.45 -0.67 1.94

12 2016/12/11 - 2016/12/17 0.11 1.19 0.00 1.57 0.18 1.57 0.39 1.84

13 2016/12/17 - 2016/12/23 1.14 1.20 -0.06 1.55 0.14 1.75 -1.61 2.27

14 2016/12/23 - 2016/12/29 0.18 1.28 -0.01 1.16 0.03 1.79 0.49 1.61

15 2016/12/29 - 2017/01/04 -0.34 1.27 0.02 1.27 -0.42 1.58 0.10 1.39

16 2017/01/04 - 2017/01/10 -0.66 1.40 0.03 1.36 -2.20 1.79 0.21 1.79

17 2017/01/10 - 2017/01/16 0.20 1.86 -0.01 1.56 -5.91 5.42 -0.54 1.73

18 2017/01/16 - 2017/01/22 0.24 1.40 -0.01 1.37 -0.08 1.50 0.14 1.28

19 2017/01/22 - 2017/01/28 -1.07 1.45 0.05 1.46 -3.83 2.36 -0.36 1.47

20 2017/01/28 - 2017/02/03 0.81 1.30 -0.04 1.58 -2.78 2.53 -0.71 1.90

21 2017/02/03 - 2017/02/09 0.42 2.25 -0.02 2.03 -5.34 2.86 -3.42 3.38

22 2017/02/09 - 2017/02/15 0.83 1.71 -0.04 1.60 0.20 3.80 2.84 2.25

23 2017/02/15 - 2017/02/21 -0.06 1.14 0.00 1.05 1.51 2.23 -0.20 1.34

24 2017/02/21 - 2017/02/27 -0.41 1.60 0.02 1.29 -1.11 2.45 0.38 1.73

25 2017/02/27 - 2017/03/05 0.19 1.66 -0.01 1.61 -6.99 2.96 -3.24 2.77

26 2017/03/05 - 2017/03/11 0.40 2.06 -0.02 1.77 3.16 5.34 6.13 5.09

27 2017/03/11 - 2017/03/17 -0.87 1.88 0.04 1.52 -4.40 5.13 0.56 1.82

28 2017/03/17 - 2017/03/23 0.15 1.62 0.00 1.89 -7.10 5.73 -1.11 2.39

29 2017/03/23 - 2017/03/29 0.68 1.62 -0.03 1.64 -6.55 5.44 -1.18 2.08

30 2017/03/29 - 2017/04/04 0.16 1.35 -0.01 1.64 -3.97 5.49 1.50 2.30
TABLE II

MEAN AND STANDARD DEVIATION OF RESIDUALS (RECONSTRUCTED INTERFEROGRAMS - ORIGINAL INTERFEROGRAM) IN CASE OF UNWRAPPED

INTERFEROGRAM TIME SERIES AND 2-STAGE APPLICATION OF THE PM METHOD. GRAY LINES CORRESPOND TO INTERFEROGRAMS OF GOOD QUALITY,
WITH AVERAGED COHERENCE LARGER THAN 0.35.
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of good quality, we can think that the displacement behaviour

on these low SNR interferograms is also consistent with those

observed on most interferograms of good quality. Therefore,

the reconstructed interferograms can be considered credible.

These results confirm the ability of the PM method to restore

coherent fringe patterns in a wrapped interferogram time series

including low or even very low SNR interferograms. In this

way, useless interferograms can become exploitable, the PM

method can thus increase the effective size of the time series.

According to the results of the interferograms of low SNR

(2017/03/11 - 2017/03/17), (2017/02/03 - 2017/02/09) and

(2017/03/05 - 2017/03/11), the PM method is more efficient

in case of wrapped interferogram time series. Indeed, in this

case, the phase value is modulo 2π, in case of low SNR,

the phase value includes only the decorrelation noise, the

displacement signal is totally lost. The decorrelation noise is

random, it does not introduce new variation directions in the

SVD analysis of the temporal covariance matrix. While in case

of unwrapped interferogram time series, even with low SNR,

the displacement signal is still there, but biased significantly

by the spatially correlated perturbations. This can hinder the

true variation directions in the SVD analysis. Therefore, the

PM method is more efficient in case of wrapped interferogram

time series.

Given the efficiency of the PM method in denoising and

reconstructing the fringe patterns on wrapped interferograms,

it seems interesting to first apply the PM method on wrapped

interferogram time series, and then to perform the phase

unwrapping on interferograms with improved SNR, finally to

apply a second time the PM method to unwrapped interfero-

gram time series in order to separate the displacement signal

from other spatially correlated perturbations. This processing

strategy provides spectacular results. In Figure 17, the origi-

nal unwrapped interferograms, the unwrapped reconstructed

wrapped interferograms and the reconstruction after the 2-

stage PM method are shown. The global observation for the

6 interferograms (as well as for other interferograms not

shown) is that the displacement pattern over the glacier is

highlighted and regularised and most perturbations (both at

small and large scales) in stable areas are filtered out on the

reconstructed interferograms after the 2-stage PM method. Im-

portant displacement signals have been retrieved successfully

on almost useless original interferograms and perturbations

correlated at large scales have been filtered out efficiently,

thanks to the application of the PM method to the wrapped

interferogram time series. Then a second application of the

PM method to the unwrapped interferogram time series further

removes the artefacts, which results of homogeneous, close to

0 values in stable areas (corresponding to the reality). The

residuals (reconstructed interferogram after the 2-stage PM

method (Figure 17 (c)) - unwrapped original interferogram

(Figure 17 (a)) of the 6 reconstructed interferograms are shown

in Figure 18 and the corresponding histograms are shown in

Figure 19. For interferograms of good quality, in stable areas,

the perturbations correlated at large scale (in the upper part of

the image) in the original interferograms have been filtered to

the residuals, which results of larger residuals compared to the

case of unwrapped interferograms (see also Table II). Over the

glacier, the first observation is the large residual at the upper

edge of the glacier due to localised phase unwrapping errors

in the original unwrapped interferogram (see also first three

lines of Figure 14 (c)). Displacement signal is observed in the

residual of the interferogram (2017/02/15 - 2017/02/21) (Fig-

ure 18 (c)), consistent with the large distribution centre shift

observed in Figure 19 (c), because of the inappropriate modi-

fication of the fringe pattern on the wrapped interferogram by

the PM method. For interferograms (2016/12/17-2016/12/23)

and (2016/12/29 - 2017/01/04) (Figure 18 (a) (b), Figure 19 (a)

(b)), the residuals are small and homogeneous, with mean

values of 0.14 cm and -0.42 cm respectively (Table II).

For interferograms of low SNR (2017/03/11 - 2017/03/17),

(2017/02/03-2017/02/09) and (2017/03/05-2017/03/11) (Fig-

ure 18 (d)-(f), Figure 19 (d)-(f)), the observations are similar:

over the glacier, large residuals are mainly due to significant

corrections of the displacement pattern (noise replaced by

coherent displacement signal) by the PM method; while in

stable areas, perturbations spatially correlated at both small

and large scales in the original interferograms have most

been filtered to the residuals. The summary of residuals

of all interferograms in the time series can be found in

Table II. Compared to the case of unwrapped interferograms,

the increased mean residual values in stable areas imply the

efficiency of the 2-stage PM method in filtering perturbations

spatially correlated both at small and large scales. Over the

glacier, for interferograms of low SNR, larger residuals are

due to significant correction of the displacement pattern in the

reconstruction; for interferograms of good quality, most mean

residual values are decreased or stay the same, which indicates

the improvement of the 2-stage PM method compared with the

only application to unwrapped interferograms. Larger residual

exists for interferograms where larger residual is obtained on

reconstructed wrapped interferograms due to non coherent dis-

placement signals (i.e. unique events) on these interferograms.

To further validate the reconstructions of the PM method,

offset tracking is applied to Sentinel-1 image pairs of 12-

days interval in order to obtain other type of displacement

measurement as in [28]. The mean velocity over the Gorner

glacier obtained from 7 offset tracking measurements of good

quality is shown in Figure 20 (a). Except some artifacts at the

edge of the glacier, the displacement pattern is similar to that

observed in interferograms. This mean velocity is compared

to those obtained from original interferograms, reconstructed

unwrapped interferograms and reconstructions of the 2-stage

application of the PM method on a profile located along the

central line of the glacier (Figure 20). Original interferograms

and reconstructed unwrapped interferograms underestimate the

mean velocity in areas where the glacier flow velocity is

largest. The mean velocity obtained from the 2-stage appli-

cation of the PM method follows well that issued from offset

tracking measurements, which confirms the efficiency of the

2-stage PM method.

V. CONNECTION TO OTHER MULTI-TEMPORAL INSAR

APPROACHES

The PM method can improve the SNR of interferograms,

therefore, it is expected that using the reconstructed interfero-
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(a) (b) (c)

Fig. 16. (a) original (b) reconstructed wrapped interferograms (c) residual (reconstruction - original) modulo 2π at time spans (from top to bottom) 2016/12/17
- 2016/12/23, 2016/12/29 - 2017/01/04, 2017/02/15 - 2017/02/21, 2017/03/11 - 2017/03/17, 2017/02/03 - 2017/02/09, 2017/03/05 - 2017/03/11).

grams by the PM method in other multi-temporal approaches

can further improve the final accuracy of displacement rate

estimation. This seems particularly useful in case of interfer-

ograms of moderate to low SNR, where other multi-temporal

approaches alone cannot work due to coherence loss. In the

present application of the PM method, interferograms from

consecutive SAR acquisitions (i.e. very small temporal base-

line) are used. The use of these reconstructed interferograms in
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(a) (b) (c)

Fig. 17. (a) Original unwrapped interferograms (b) unwrapped interferogram of the PM wrapped reconstruction (c) reconstruction of the 2-stage PM method
at time spans (from top to bottom) 2016/12/17 - 2016/12/23, 2016/12/29 - 2017/01/04, 2017/02/15 - 2017/02/21, 2017/03/11 - 2017/03/17, 2017/02/03 -
2017/02/09, 2017/03/05 - 2017/03/11).

other mutli-temporal approaches will not be beneficial because

of lack of redundancy in the interferogram network. Indeed,

single master interferograms time series can also be used in

the PM method and single master interferograms time series

is often used in PS approaches. Thus, it is interesting to

investigate the gain in accuracy by using the reconstructed

single master interferograms time series in a PS approach.

For a full stack of all possible interferograms from a time

series of SAR images, these interferograms cannot be used

together directly in the PM method. In this case, it is better

to first reorganise all interferograms into several single master

or equal temporal baseline interferogram groups. Then, the

reconstruction can be performed in each group in order to

make use of the PM method to improve the SNR. Afterwards,

the reconstructed interferograms can be used in other multi-

temporal approaches in order to make the application of the
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(a) (b) (c)

(d) (e) (f)

Fig. 18. Residual (unwrapped interferogram after the 2-stage PM method (i.e. Figure 17 (c)) - original unwrapped interferogram (i.e. Figure 17 (a)) for
(a) 2016/12/17-2016/12/23 (b) 2016/12/29 - 2017/01/04 (c) 2017/02/15 - 2017/02/21 (d) 2017/03/11 - 2017/03/17 (e) 2017/02/03-2017/02/09 (f) 2017/03/05-
2017/03/11 2016/12/17-2016/12/23.

(a) (b) (c)

(d) (e) (f)

Fig. 19. Histograms of residual (shown in Figure 18) for (a) 2016/12/17-2016/12/23 (b) 2016/12/29 - 2017/01/04 (c) 2017/02/15 - 2017/02/21 (d) 2017/03/11
- 2017/03/17 (e) 2017/02/03-2017/02/09 (f) 2017/03/05-2017/03/11.

latter possible and to improve the accuracy of displacement

rate estimation.

VI. CONCLUSION

In this paper, a data-adaptive method, the PM method,

based on a SVD analysis of the spatially averaged temporal

covariance of a time series, is proposed to retrieve coherent

displacement signal from a displacement measurement time

series from consecutive SAR acquisitions for decorrelating

targets. The PM method learns about the underlying processes

that control the evolution of the time series and identifies the

spatial patterns that vary together following a specific time

function. Thereby, it can separate the coherent displacement

signal and other perturbations in a displacement measurement
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Fig. 20. (a) Mean velocity (cm/day) over the Gorner glacier obtained from 7 offset tracking measurements (from Sentinel-1 image pairs of 12-days interval) of
good quality between 2016/11/29 and 2017/02/27 (b) Mean velocities on the profile indicated by a black line in (a) obtained from all original interferograms,
reconstructed unwrapped interferograms, reconstructions of the 2-stage application of the PM method and 7 offset tracking measurements of good quality.

time series. In a time series of displacement measurement,

for high SNR data sets, it behaves like a filter that denoises

the displacement patterns, while for low SNR data sets, it

can be considered as a gap filler that replaces the noise

by coherent displacement signal based on the spatial and

temporal correlation of the displacement. The PM method

can be applied to both wrapped and unwrapped interferogram

time series. In both applications, it is demonstrated that the

PM method has strong capacity in retrieving coherent signals

in the time series with low SNR. For decorrelating targets,

the PM method, especially the 2-stage PM method, can make

useless data exploitable thus increase the effective size of

the displacement time series, which is important to provide

complete and credible information about the evolution of the

phenomenon under observation.

Besides the high efficiency, the PM method presents other

advantages, for instance, it does not need any a priori knowl-

edge about the displacement characteristics. Moreover, since

it works with the data alone, inhomogeneities and/or non-

isotropic behaviours are automatically taken into account in

the processing. Furthermore, the ease of implementation con-

stitutes another important feature of the PM method, which

makes it possible to be considered as a routine method for

displacement signal retrieval from a time series.

On the other hand, the PM method also presents some

limitations. It is particularly suitable for measurement of

continuous displacement over time (linear, with accelera-

tion/deceleration, periodic, etc). In other words, primary vari-

ation modes must exist in the SVD analysis of the temporal

covariance. For significantly irregular displacement (e.g. inter-

mittent or random displacement), the PM method may fail, due

to lack of dominant variability in the time series. Moreover, in

case of regular displacement, if high frequency displacement

related to unique events exists in the time series, it can be lost

in the reconstruction. Further analysis on the residual will be

necessary to retrieve this part of displacement.

The PM method works with very simple assumptions, i.e.

the displacement pattern is continuous and coherent over

time, while other perturbations are not. This corresponds

to most cases in real displacement measurement. However,

more complex displacement and perturbation behaviours could

happen in some cases. For this, an extension of the PM method

taking into account also the spatial covariance, thus the spatio-

temporal covariance will be investigated in the future work.

Furthermore, the combination of the PM method and other

multi-temporal InSAR approaches in case of moderate to high

SNR also constitutes a promising subject to investigate in the

future work.
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