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Thyroid hormones (THs) modulate all stages of

Introduction

In mammals, thyroid hormones (thyroxine, T 4 ; triiodothyronine, T 3 ) are crucial for brain development and function throughout life, from early embryogenesis to neurogenesis in the adult brain. Thyroid hormone (TH) signaling governs many aspects of neurogenesis including proliferation, survival, cell fate decision, migration, differentiation and maturation of both neuronal and glial cells. The fundamental role of TH signaling in developmental processes and more specifically in neurodevelopmental events is not restricted to mammals, but is well conserved throughout vertebrates. For example, in amphibians [START_REF] Su | Molecular and cellular basis of tissue remodeling during amphibian metamorphosis[END_REF] and some teleosts such as the flatfishes [START_REF] Power | Thyroid hormones in growth and development of fish[END_REF] TH regulates larval metamorphosis, including remodeling of the nervous system. Furthermore, in avian species, TH is also essential for nervous system development [START_REF] Mcnabb | Avian thyroid development and adaptive plasticity[END_REF] and for adult neurogenesis [START_REF] Alvarez-Buylla | Mechanism of neurogenesis in adult avian brain[END_REF]. Metamorphosis in non-chordates can also be initiated by TH, even though they do not possess a thyroid gland, for example in echinoderm larvae that obtain exogenous TH from their food [START_REF] Heyland | Cross-kingdom hormonal signalling: an insight from thyroid hormone functions in marine larvae[END_REF][START_REF] Heyland | Thyroid hormone metabolism and peroxidase function in two non-chordate animals[END_REF].

The timing of TH-programmed development of the fetal brain involves simultaneous activity, at the tissue level, of a complex set of evolutionarily conserved distributor proteins, transporters, deiodinases, receptors and cofactors. Thus, taking a comparative approach (evo-devo) to analyse roles of TH during brain development can provide information on the cellular and molecular mechanisms underlying TH regulation of neurogenesis, from early to adult neurogenesis.

THs are released from the thyroid gland then transported to target tissues where they regulate genomic and non-genomic actions. More than 99% of circulating T 3 and T 4 are bound to plasma binding proteins such as transthyretin (TTR), thyroxine-binding globulin (TBG) or albumin. In the central nervous system (CNS), in presence or absence of T 3 , transcriptional regulations are mediated by TH nuclear receptors (TRs). Four classic receptor isoforms are encoded by two genes: TRα1 and TRα2 (from THRA gene) and TRβ1 and TRβ2 (from THRB gene). Three TR isoforms are able to bind with high-affinity to T 3 : TRα1, the predominant subtype expressed in the CNS, TRβ1 and TRβ2. On a positively regulated target gene, in absence of T 3 , the unliganded TR (aporeceptor) recruits corepressors and histone deacetylases that repress T 3 -target gene transcription. In contrast, when T 3 binds to TR, corepressors are released and coactivators together with histone acetylases are recruited, thereby activating transcription [START_REF] Bernal | Thyroid hormone receptors in brain development and function[END_REF]. In all tissues, especially in different developing brain structures, TH availability is precisely modulated by the ontogenic profiles of three iodothyronine deiodinases (DIO1, DIO2 and DIO3) [START_REF] Burrow | Maternal and fetal thyroid function[END_REF][START_REF] St Germain | Insights into the role of deiodinases from studies of genetically modified animals[END_REF]. DIO2 and DIO3 are the main deiodinases expressed in mammalian brains. DIO2 converts T 4 to T 3 and is highly expressed in brain, enabling a local production of T 3 . Lastly, DIO3 that inactivates T 3 and T 4 is strongly expressed in fetal and placental tissues, including the brain where it is expressed in neurons (Kaplan et al, 1981), thus limiting TH effects during much of fetal life. TH transport into the brain is mediated by transmembrane transporters such as MCT8, MCT10, LAT1, LAT2, OATP1c1 (for review, see [START_REF] Wirth | Transport of thyroid hormone in brain[END_REF]). These transporters, especially MCT8, are needed for TH uptake across the blood-brain-barrier (BBB) and for TH transport between cerebral cells like astrocytes and neurons within the brain.

In this review, we provide an overview of the impact of TH in the developing embryo/fetal brain in mammalian and non-mammalian vertebrates. The second part focuses on the roles of TH during adult neurogenesis especially in mammals. We also discuss the role of neural stem cells during ageing and the implications of THs in neurogenic regions of the aged brain. Lastly, we apply an evolutionary approach to discuss long-term impacts of the interaction between TH signalling and environmental thyroid disruptors on brain development and adult neurogenesis.

Roles of thyroid hormone signalling during embryonic and fetal brain development

The evidence for the role of TH in vertebrate brain development comes from three different sources:

(i) epidemiological data collected in areas of iodine deficiency and (ii) studies of children born to women with thyroid disorders and (iii) studies of animal models including mammalian (rodents, sheep, chickens, marmosets) and non-mammalian models (amphibians, birds and teleosts).

Human studies

THs are essential for human brain development from the beginning of pregnancy to the first years of life [START_REF] Berbel | An evo-devo approach to thyroid hormones in cerebral and cerebellar cortical development: etiological implications for autism[END_REF]. Inadequate maternal TH levels, due to clinical or subclinical hypothyroidism, irreversibly alter neurodevelopment in the progeny, leading to mental and physical disorders. Among neurological diseases, cretinism, deafness, schizophrenia and attention deficit hyperactive disorder (ADHD) have been linked to insufficient iodine levels during gestation and the early post-natal period [START_REF] De Escobar | Iodine deficiency and brain development in the first half of pregnancy[END_REF][START_REF] Haddow | Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child[END_REF][START_REF] Hetzel | Iodine and neuropsychological development[END_REF][START_REF] Zimmermann | Iodine-deficiency disorders[END_REF]. More recently, maternal hypothyroidism was associated with a higher risk for autism in the progeny [START_REF] Román | Autism: transient in utero hypothyroxinemia related to maternal flavonoid ingestion during pregnancy and to other environmental antithyroid agents[END_REF][START_REF] Román | Association of gestational maternal hypothyroxinemia and increased autism risk[END_REF].

Most of the literature describes the crucial role of TH in brain development during the perinatal period [START_REF] Bernal | Thyroid hormone receptors in brain development and function[END_REF]. However, recent epidemiological and clinical studies highlight that the first half of pregnancy, before the onset of the fetal thyroid gland at mid-gestation (week 12-22 of gestation), is a maternal TH-sensitive period for optimal fetal neurodevelopment [START_REF] Berbel | Delayed neurobehavioral development in children born to pregnant women with mild hypothyroxinemia during the first month of gestation: the importance of early iodine supplementation[END_REF][START_REF] Downing | Severe maternal hypothyroidism corrected prior to the third trimester is associated with normal cognitive outcome in the offspring[END_REF]. During the first trimester, the human fetus is strictly dependent on maternal TH for early cortical neurogenesis (from week 5-20 of gestation), neuronal migration, and early phases of maturation (axonogenesis and dendrogenesis). In a severely iodine-deficient area of China, iodine treatment to mothers up to the end of the second trimester of pregnancy improves fetal neurological status [START_REF] Cao | Timing of vulnerability of the brain to iodine deficiency in endemic cretinism[END_REF]. Even if Dio3 expression in placental membranes and fetal tissues limits maternal TH supply to fetal compartments, the early human fetal brain is exposed to biologically relevant TH concentrations [START_REF] Calvo | Fetal tissues are exposed to biologically relevant free thyroxine concentrations during early phases of development[END_REF]. Several arguments strongly suggest that maternal THs can exert a biological function in the fetal brain before the onset of fetal thyroid gland at mid-gestation. First, chorionic gonadotropin (hCG), produced by fetal throphoblast cells, acts as a thyrotropic agonist (TSH-like activity) and directly increases maternal free T 4 secretion following thyrocytes stimulation up to the end of the first trimester [START_REF] Bancalari | Pituitary gland development: an update[END_REF]. In parallel, circulating TBG is also transiently increased [START_REF] Glinoer | The importance of iodine nutrition during pregnancy[END_REF]. This increased maternal thyroid function involves increased iodine uptake by the thyroid gland. Second, the increased synthesis and secretion of TTR by the human placenta during the first trimester is thought to facilitate maternal TH delivery to the developing fetus [START_REF] Alshehri | The diversity of mechanisms influenced by transthyretin in neurobiology: development, disease and endocrine disruption[END_REF][START_REF] Landers | Transthyretin and the human placenta[END_REF]. Third, T 4 concentrations are similar in fetal and maternal fluids [START_REF] Calvo | Fetal tissues are exposed to biologically relevant free thyroxine concentrations during early phases of development[END_REF]. Moreover, TRα1 and TRβ1 isoforms are detected at low levels from 8 to 10 weeks of gestation; TRα1 mRNA and receptor binding increase 8to 10-fold by 16 to 18 weeks [START_REF] Bernal | Ontogenesis of the nuclear 3,5,3'-triiodothyronine receptor in the human fetal brain[END_REF][START_REF] Kilby | Expression of thyroid receptor isoforms in the human fetal central nervous system and the effects of intrauterine growth restriction[END_REF]. Lastly, high T 3 levels are found in the human cortex from the 9 th to the 13 th week of fetal life and about 25% of nuclear receptors are bound by T 3 [START_REF] Ferreiro | Estimation of nuclear thyroid hormone receptor saturation in human fetal brain and lung during early gestation[END_REF]. This is due to the ontogenic profile of DIO2: DIO2 activity increases in the developing cerebral cortex, being involved in correct cerebral layering during the first trimester [START_REF] Chan | Early expression of thyroid hormone deiodinases and receptors in human fetal cerebral cortex[END_REF].

Minor dysfunction of the maternal thyroid axis is sufficient to alter neuro-motor development in the child [START_REF] Boas | Thyroid effects of endocrine disrupting chemicals[END_REF]. Early maternal hypothyroxinemia induces in the progeny a lower intelligence quotient [START_REF] Ghassabian | Downstream effects of maternal hypothyroxinemia in early pregnancy: nonverbal IQ and brain morphology in school-age children[END_REF], a deficit in motor performance [START_REF] De Escobar | Maternal thyroid hormones early in pregnancy and fetal brain development[END_REF][START_REF] Pop | Maternal hypothyroxinaemia during early pregnancy and subsequent child development: a 3-year follow-up study[END_REF] and a slower response speed [START_REF] Finken | Maternal hypothyroxinemia in early pregnancy predicts reduced performance in reaction time tests in 5-to 6-year-old offspring[END_REF]. This impaired psychomotor development may be associated with a lower child's scholastic performance [START_REF] Korevaar | Association of maternal thyroid function during early pregnancy with offspring IQ and brain morphology in childhood: a population-based prospective cohort study[END_REF][START_REF] Noten | Maternal hypothyroxinaemia in early pregnancy and school performance in 5-year-old offspring[END_REF][START_REF] Päkkilä | Maternal and Child's Thyroid Function and Child's Intellect and Scholastic Performance[END_REF]. Both low and high levels of maternal TH during early pregnancy are deleterious to child IQ and brain morphology [START_REF] Korevaar | Association of maternal thyroid function during early pregnancy with offspring IQ and brain morphology in childhood: a population-based prospective cohort study[END_REF], showing that the supply of maternal TH should be tightly controlled for proper brain development.

For obvious ethical constraints, the role of TH on brain development at cellular and molecular levels is currently studied using animals models, especially rodents (see below). However, it has been recently demonstrated using imaging techniques (especially MRI scans) that many aspects of brain structure and maturation are impaired in newborns and infants of mothers diagnosed with hypothyroidism during pregnancy [START_REF] Korevaar | Association of maternal thyroid function during early pregnancy with offspring IQ and brain morphology in childhood: a population-based prospective cohort study[END_REF][START_REF] Lischinsky | Preliminary Findings Show Maternal Hypothyroidism May Contribute to Abnormal Cortical Morphology in Offspring[END_REF][START_REF] Samadi | Children born to women treated for hypothyroidism during pregnancy abnormal corpus callosum development[END_REF][START_REF] Stagnaro-Green | Overt hyperthyroidism and hypothyroidism during pregnancy[END_REF]Willoughby et al., 2014a, b). Moreover, children whose mothers suffered from low TH levels in the first trimester have smaller hippocampus that can be associated with a memory deficit {Willoughby, 2014a), showing that the first trimester in human is a critical period for TH signalling that controls many neurogenesis-promoting events. This early fetal period, and up to the end of the second trimester, is a period of active neuronal proliferation and migration. In the ventricular zone, radial glia cells (embryonic neural stem cells) give rise to neuronal precursors that use radial glial fibres to migrate into the six-layered developing cortex and then generating cortical neurons [START_REF] Moog | Influence of maternal thyroid hormones during gestation on fetal brain development[END_REF].

Animals models

As previously mentioned, the TH signalling pathway is an ancient and strongly evolutionary conserved pathway that regulates many aspects of developmental events even in basal chordates (cephalochoradates and urochordates) [START_REF] Klootwijk | A nonselenoprotein from amphioxus deiodinates triac but not T3: is triac the primordial bioactive thyroid hormone?[END_REF][START_REF] Paris | Active metabolism of thyroid hormone during metamorphosis of amphioxus[END_REF][START_REF] Paris | The history of a developmental stage: metamorphosis in chordates[END_REF][START_REF] Patricolo | Presence of thyroid hormones in ascidian larvae and their involvement in metamorphosis[END_REF] and non-chordates (echinoderms, mollusks…) [START_REF] Heyland | Thyroid hormone metabolism and peroxidase function in two non-chordate animals[END_REF][START_REF] Huang | Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System[END_REF]. However, while there is some evidence for developmental and physiological roles for TH in these basal organisms, the source of TH and the mechanisms of action, especially during neural development, are unclear. Thus, analyzing TH action during neurodevelopmental processes in basal species could be a very promising area of research for future studies that should improve our knowledge on evolutionary mechanisms underlying TH actions.

In contrast, experimental mammalian and non-mammalian vertebrate models have largely been used

to study cellular and molecular mechanisms underlying TH control of neurogenesis [START_REF] Bernal | Thyroid hormone receptors in brain development and function[END_REF].

Recently developed animal models permit to investigate more closely the consequences on neurological processes of TH signalling modulations with genetic mutations of TH components (receptor, transporter, deiodinase). Moreover, hypothyroidism can be induced by surgical thyroidectomy, iodine deficient diets or anti-thyroid agents such as propylthiouracil (PTU) or methimazole (MMI). Non-mammalian models such as amphibians, teleosts are also very useful for study how TH influence brain development because embryos are readily accessible (extra uterine development) and controlling TH availability during development is easier.

Mammalian models

Regulation of Cellular Processes

The early contribution of maternal TH to fetal cortical neurogenesis has best been best elucidated in rodents and allows extrapolation to studies in human offspring whose mothers were iodine deficient during pregnancy. Experimentally induced maternal hypothyroxinemia in gestating rats (between embryonic days E12 and E15), before the onset of the fetal thyroid gland (E18), causes an abnormal neuronal migration in the cortex and hippocampus of young postnatal rats analyzed at post-natal day 40 [START_REF] Ausó | A moderate and transient deficiency of maternal thyroid function at the beginning of fetal neocorticogenesis alters neuronal migration[END_REF]. [START_REF] Mohan | Maternal thyroid hormone deficiency affects the fetal neocorticogenesis by reducing the proliferating pool, rate of neurogenesis and indirect neurogenesis[END_REF] showed that decreased maternal THs irreversibly reduced proliferation and commitment of neuronal progenitors located within the ventricular zone. Prior to birth, maternal THs cross the placenta and the fetal blood brain barrier reaching the fetal brain via the cerebral spinal fluid produced by the choroid plexus of the ventricles [START_REF] Dratman | Transport of iodothyronines from bloodstream to brain: contributions by blood:brain and choroid plexus:cerebrospinal fluid barriers[END_REF]. Thus, maternal THs can reach the ventricular zone and regulate fetal neurogenesis. The overall reduction of neurogenesis in the fetal neocortex is partially rescued following TH treatment in hypothyroid dams [START_REF] Mohan | Maternal thyroid hormone deficiency affects the fetal neocorticogenesis by reducing the proliferating pool, rate of neurogenesis and indirect neurogenesis[END_REF].

The dependence of the perinatal period on TH has been extensively reviewed by Bernal [START_REF] Bernal | Perspectives in the study of thyroid hormone action on brain development and function[END_REF]. During this period, THs promote neurogenesis, neuronal proliferation, migration of post-mitotic neurons from the ventricular zone towards the pial surface in the developing cerebral cortex, the hippocampus and the ganglionic emimence. After birth, THs entirely derived from the newborn's thyroid gland, control glial cell proliferation and migration, differentiation and their maturation into myelinating oligodendrocytes within the cortex, the hippocampus and the cerebellum. Axonal outgrowth, dentritic branching and synaptogenesis also occur. Inducing hypothyroidism during the perinatal period impairs neuronal cell proliferation, migration and differentiation. Notably, dendritic arborization of cerebellar Purkinje cells is reduced (hypoplasia of the dentritic tree, reduction in spine number) in the cerebellum demonstrating the action of T 3 on Purkinje cell differentiation and maturation. Myelination in hypothyroidism is also delayed due to oligodendrocyte differentiation and maturation defaults. Several TH-target genes involved in both neurogenesis and gliogenesis are crucial for neo-natal brain development [START_REF] Bernal | Perspectives in the study of thyroid hormone action on brain development and function[END_REF].

Molecular Mechanisms of TH Actions in Neurogenesis

In mammals, both T 3 and T 4 are detected in fetal fluids and brain prior to onset of fetal thyroid function, suggesting a role for maternal THs [START_REF] Grijota-Martínez | Lack of action of exogenously administered T3 on the fetal rat brain despite expression of the monocarboxylate transporter 8[END_REF]. Accordingly, early studies on maternal T 3 -dependent gene expression show the importance of TH action in the brain before the onset of fetal thyroid function [START_REF] Dowling | Acute changes in maternal thyroid hormone induce rapid and transient changes in gene expression in fetal rat brain[END_REF]. In the brain, the local T 3 production is tightly regulated by deiodinases, transporters and TRs. High DIO2 expression is mostly detected in glial cells of the rat brain [START_REF] Riskind | The regional hypothalamic distribution of type II 5'-monodeiodinase in euthyroid and hypothyroid rats[END_REF]. Surprisingly, Dio2 knockout mice present a mild neurological phenotype [START_REF] Galton | Thyroid hormone homeostasis and action in the type 2 deiodinase-deficient rodent brain during development[END_REF], suggesting that compensatory mechanisms limit consequences of Dio2 absence. TRα1 is the earliest and the most widely distributed isoform to be expressed before the onset of fetal thyroid function [START_REF] Forrest | Distinct functions for thyroid hormone receptors alpha and beta in brain development indicated by differential expression of receptor genes[END_REF], strongly suggesting that TRα controls most of T 3 effects in the fetal brain. A weak expression of TRβ just prior to the onset of fetal gland is detected in specific brain areas of rat (hippocampus) and mouse (developing pituitary, vestibule-cochlear). The current model is that intracellular T 3 levels detected in the fetal murine brain are produced by local DIO2 activity in astrocytes that converts maternal T 4 to intracellular T 3 that is taken up by neural target cells [START_REF] Gereben | Cellular and molecular basis of deiodinase-regulated thyroid hormone signalling[END_REF][START_REF] Morte | Thyroid hormone action: astrocyte-neuron communication[END_REF]. Additionally, MCT8 promotes the direct transfer of T 3 (and T 4 ) through the blood-brain-barrier of the choroid plexus. Later during brain development, after the secretion of fetal TH from the fetal thyroid gland, maternal T 4 protects fetal brain from a potential T 3 deficiency. Only supplying T 4 (and not T 3 ) to pregnant rats increases T 3 levels in the brain of hypothyroid fetus [START_REF] Calvo | Congenital hypothyroidism, as studied in rats. Crucial role of maternal thyroxine but not of 3,5,3'-triiodothyronine in the protection of the fetal brain[END_REF].

Non-mammalian models 1.2.2.1 Regulation of Cellular Processes

In non-mammalian vertebrate models, a lack of maternal THs recapitulates features observed in mammals. In chick, exogenous T 3 interferes with neural tube morphogenesis [START_REF] Flamant | Involvement of thyroid hormone and its alpha receptor in avian neurulation[END_REF]. In zebrafish, an early lack of maternal THs supply decreases neuronal proliferation and differentiation in the developing brain [START_REF] Campinho | Maternal thyroid hormones are essential for neural development in zebrafish[END_REF]. During early Xenopus embryogenesis, a reduction of TH signalling by the TH antagonist NH3 decreases proliferating cells and induces delayed neural differentiation in the neurogenic zones [START_REF] Fini | Thyroid hormone signalling in the Xenopus laevis embryo is functional and susceptible to endocrine disruption[END_REF]. Similarly, the same treatment strongly affects embryonic neural crest cells migration [START_REF] Bronchain | Implication of thyroid hormone signalling in neural crest cells migration: Evidence from thyroid hormone receptor beta knockdown and NH3 antagonist studies[END_REF]. In post-embryonic development, T 3 is also required for brain remodeling that occurs during tadpole metamorphosis [START_REF] Denver | The molecular basis of thyroid hormone-dependent central nervous system remodeling during amphibian metamorphosis[END_REF]. More precisely, T 3 through its receptor TRα, promotes cell proliferation in the ventricular/sub-ventricular zone of the brain [START_REF] Denver | Thyroid hormone receptor subtype specificity for hormone-dependent neurogenesis in Xenopus laevis[END_REF].

Molecular Mechanisms of TH Actions in Neurogenesis

As in mammalian species, T 3 and T 4 are also detected during early brain development in non-mammalian species. Both the human fetus and the chicken have a well thyroid function at birth/hatching. In some species born or hatch with well matured sensory and motor nervous systems (e.g. certain mammals like sheep, deer and certain nidifuge birds as exemplified by the chicken), a peak of TH precedes birth/hatching [START_REF] Buchholz | More similar than you think: Frog metamorphosis as a model of human perinatal endocrinology[END_REF][START_REF] Darras | Ontogeny of type I and type III deiodinase activities in embryonic and posthatch chicks: relationship with changes in plasma triiodothyronine and growth hormone levels[END_REF][START_REF] Thommes | Plasma iodothyronines in the embryonic and immediate post-hatch chick[END_REF]. By this way, chicken is a better model than common rodent mammalian models to understand these transitions [START_REF] Darras | Regulation of thyroid hormone metabolism during fetal development[END_REF]. However, returning to early roles of TH in developing brain, TH are detected in chick embryo brain on day 6 of development. [START_REF] Flamant | Involvement of thyroid hormone and its alpha receptor in avian neurulation[END_REF] demonstrated that at the blastula and neurulation stages, T 3 is enriched in Hensen's node, the embryo organizer.

TRα mRNA is detected at the blastula stage and expression levels increase during neurulation in neural plate cells close to the site of T 3 release, Hensen's node [START_REF] Flamant | Involvement of thyroid hormone and its alpha receptor in avian neurulation[END_REF]. Later on embryonic day 5, TRα mRNA is expressed in fore-, mid-and hindbrain [START_REF] Forrest | Distinct functions for thyroid hormone receptors alpha and beta in brain development indicated by differential expression of receptor genes[END_REF]. Just before hatching, higher levels of TRβ in cerebellum may regulate neuronal differentiation and maturation [START_REF] Forrest | Distinct functions for thyroid hormone receptors alpha and beta in brain development indicated by differential expression of receptor genes[END_REF]. At this stage, downregulation of Dio1 in the internal granular cells of the cerebellum, secondary to hypothyroidism induction, alters TH-dependent gene expression (reelin, tenascin-C, disabled protein 1…) delaying neuronal proliferation and migration in the cerebellum [START_REF] Verhoelst | Type I iodothyronine deiodinase in euthyroid and hypothyroid chicken cerebellum[END_REF][START_REF] Verhoelst | Role of spatiotemporal expression of iodothyronine deiodinase proteins in cerebellar cell organization[END_REF]. Thus, as in mammalian species, local TH availability is tightly regulated via the ontogenic changes in deiodinases expression allowing proper brain lamination [START_REF] Gereben | Ontogenic redistribution of type 2 deiodinase messenger ribonucleic acid in the brain of chicken[END_REF][START_REF] Verhoelst | Role of spatiotemporal expression of iodothyronine deiodinase proteins in cerebellar cell organization[END_REF].

Fish and amphibian eggs contain relevant concentrations of maternal TH that decrease as a function of egg development [START_REF] Chang | Changes in thyroid hormone levels during zebrafish development[END_REF][START_REF] Dubois | Deiodinase activity is present in Xenopus laevis during early embryogenesis[END_REF]. The knockdown of Mct8 (a selective TH transporter, see above paragraph 1.2.1.2), responsible for Allen Herndon Dudley syndrome (a form of X-linked mental retardation) in humans [START_REF] Friesema | Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation[END_REF], shows that maternal TH availability participates in regionalization, survival and differentiation of specific neural cell lineages in zebrafish embryos [START_REF] Campinho | Maternal thyroid hormones are essential for neural development in zebrafish[END_REF]. This phenotype has been recapitulated in other vertebrate species [START_REF] Braun | Developmental and cell type-specific expression of thyroid hormone transporters in the mouse brain and in primary brain cells[END_REF][START_REF] Trajkovic | Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8[END_REF][START_REF] Van Der Deure | Molecular aspects of thyroid hormone transporters, including MCT8, MCT10, and OATPs, and the effects of genetic variation in these transporters[END_REF]. TRs have also been identified in developing teleost embryos [START_REF] Campinho | Coordination of deiodinase and thyroid hormone receptor expression during the larval to juvenile transition in sea bream (Sparus aurata, Linnaeus)[END_REF][START_REF] Essner | The zebrafish thyroid hormone receptor alpha 1 is expressed during early embryogenesis and can function in transcriptional repression[END_REF].

Functional studies during zebrafish development suggest that TR have a ligand-independent function thus acting as a transcriptional repressor, notably by repressing retinoic-acid signalling [START_REF] Essner | The zebrafish thyroid hormone receptor alpha 1 is expressed during early embryogenesis and can function in transcriptional repression[END_REF]. In Xenopus, TRα and TRβ mRNA are detected in the oocyte and in embryos [START_REF] Fini | Thyroid hormone signalling in the Xenopus laevis embryo is functional and susceptible to endocrine disruption[END_REF][START_REF] Havis | Unliganded thyroid hormone receptor is essential for Xenopus laevis eye development[END_REF][START_REF] Oofusa | Expression of thyroid hormone receptor betaA gene assayed by transgenic Xenopus laevis carrying its promoter sequences[END_REF]. Moreover, detectable levels of mRNA encoding Dio1, Dio2 and Dio3 are found in embryos at neurula stage. This early expression of deiodinases in eggs and embryos may indicate a maternally origin of these mRNA (Morvan- [START_REF] Morvan-Dubois | Xenopus laevis as a model for studying thyroid hormone signalling: from development to metamorphosis[END_REF]. Furthermore, from late neurula to embryo/larva transition, the three deiodinases mRNA are strongly expressed in the head region together with a high DIO2 activity (Morvan [START_REF] Dubois | Deiodinase activity is present in Xenopus laevis during early embryogenesis[END_REF], suggesting a tight control of TH availability in the brain during early Xenopus development.

To conclude this section, maternal THs are concentrated in eggs of vertebrates with metamorphic stages as well as in fetal fluids of mammalian vertebrates via the placenta. They regulate early brain development.

Roles of TH during adult neurogenesis

Research in the last twenty years has firmly established that new neurons are generated throughout life in the brain of many animal phyla. However, the capacity for generating new neurons decreases significantly during the course of evolution [START_REF] Lindsey | A comparative framework for understanding the biological principles of adult neurogenesis[END_REF] and during aging (see below, section 3). In post-natal brain, especially in mammals and birds, neurogenesis persists in specific active proliferative brain areas, called neurogenic niches where neural stem cells (NSC) are located.

These NSC are able to generate both neurons and glia, including astrocytes and oligodendrocytes.

Adult neurogenesis is a highly dynamic process and is regulated by several physiological signals. In mammals, TH signalling is one of the main regulators controlling neurogenesis not only in the developing brain (see section 1) but also in the adult brain [START_REF] Ambrogini | Thyroid hormones affect neurogenesis in the dentate gyrus of adult rat[END_REF][START_REF] Desouza | Thyroid hormone regulates hippocampal neurogenesis in the adult rat brain[END_REF][START_REF] Desouza | Thyroid hormone regulates the expression of the sonic hedgehog signalling pathway in the embryonic and adult Mammalian brain[END_REF][START_REF] Kapoor | Thyroid hormone accelerates the differentiation of adult hippocampal progenitors[END_REF][START_REF] Kapoor | Perspectives on thyroid hormone action in adult neurogenesis[END_REF][START_REF] Kapoor | Loss of thyroid hormone receptor β is associated with increased progenitor proliferation and NeuroD positive cell number in the adult hippocampus[END_REF][START_REF] Kapoor | Unliganded thyroid hormone receptor alpha1 impairs adult hippocampal neurogenesis[END_REF][START_REF] Lemkine | Adult neural stem cell cycling in vivo requires thyroid hormone and its alpha receptor[END_REF][START_REF] López-Juárez | Thyroid hormone signaling acts as a neurogenic switch by repressing Sox2 in the adult neural stem cell niche[END_REF][START_REF] Montero-Pedrazuela | Modulation of adult hippocampal neurogenesis by thyroid hormones: implications in depressive-like behavior[END_REF][START_REF] Remaud | Thyroid hormone signaling and adult neurogenesis in mammals[END_REF][START_REF] Zhang | Effects of postnatal thyroid hormone deficiency on neurogenesis in the juvenile and adult rat[END_REF].

Adult neurogenesis contributes to different brain functions such as memory and learning [START_REF] Bruel-Jungerman | Adult hippocampal neurogenesis, synaptic plasticity and memory: facts and hypotheses[END_REF][START_REF] Gonçalves | Adult Neurogenesis in the Hippocampus: From Stem Cells to Behavior[END_REF], olfaction [START_REF] Arenkiel | Adult neurogenesis supports short-term olfactory memory[END_REF], as well as social and reproductive behavior [START_REF] Migaud | Adult neurogenesis and reproductive functions in mammals[END_REF] and other cognitive processes [START_REF] Swan | Characterization of the role of adult neurogenesis in touch-screen discrimination learning[END_REF][START_REF] Zhuo | Young adult born neurons enhance hippocampal dependent performance via influences on bilateral networks[END_REF]. In humans, alterations in adult neurogenesis have been linked to cognitive deficits, neurodegenerative diseases and neuropsychiatric disorders [START_REF] Apple | The role of adult neurogenesis in psychiatric and cognitive disorders[END_REF][START_REF] Kaneko | Adult neurogenesis and its alteration under pathological conditions[END_REF]. Furthermore, many mental disorders such as mood instability, depression or dementia are associated with thyroid dysfunction [START_REF] Baldini | Psychopathological and cognitive features in subclinical hypothyroidism[END_REF][START_REF] Dugbartey | Neurocognitive aspects of hypothyroidism[END_REF][START_REF] Gyulai | Thyroid hypofunction in patients with rapid-cycling bipolar disorder after lithium challenge[END_REF][START_REF] Smith | Thyroid hormones, brain function and cognition: a brief review[END_REF][START_REF] Whybrow | Mental changes accompanying thyroid gland dysfunction. A reappraisal using objective psychological measurement[END_REF], either occurring in the adult or in predisposed children born to hypothyroid mothers. Most recently maternal hypothyroidism was shown to be associated with increased risk of schizophrenia [START_REF] Gyllenberg | Hypothyroxinemia During Gestation and Offspring Schizophrenia in a National Birth Cohort[END_REF]. However, whether schizophrenia is a result of TH-disruption of neurogenesis is not known and constitute a research area with strong potential. This section is focused on the well-known roles of THs on NSC (cell fate decision neuron/glie, cell proliferation, migration and differentiation…) located in the neurogenic niches of the vertebrate mammalian and non-mammalian adult brain. The current discussion will not include studies on the adult neurogenesis occuring in some basal non-vertebrate species. For example, in several cnidarian model systems (Hydra, Clytia, Podocoryne, Nematostella, Aurelia) many signalling pathways regulating neurogenesis have been identified (for review, see [START_REF] Galliot | Origins of neurogenesis, a cnidarian view[END_REF]). Crosstalks between some of them (FGF, Wnt, Notch, SHH) have been described as relevant to vertebrate adult neurogenesis [START_REF] Adachi | Beta-catenin signalling promotes proliferation of progenitor cells in the adult mouse subventricular zone[END_REF][START_REF] Aguirre | Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal[END_REF][START_REF] Alvarez-Medina | Hedgehog activation is required upstream of Wnt signalling to control neural progenitor proliferation[END_REF]. However, in such animal models, TH function during neurogenesis is not yet known.

Mammalian models

Neurogenesis in the adult SVZ and SGZ niches

Adult neurogenesis in mammals is restricted to two main brain regions: the subventricular zone (SVZ) lining the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus within the hippocampus. In both neurogenic niches, adult NSCs divide asymmetrically to generate a pool of highly proliferative progenitors. Under physiological conditions, these progenitors mainly generate neuroblasts. To a lesser extent, in rodents, progenitors give rise to oligodendrocyte progenitor cells that migrate towards the corpus callosum, adjacent to the lateral ventricle, where they differentiate into myelinating oligodendrocytes [START_REF] Menn | Origin of oligodendrocytes in the subventricular zone of the adult brain[END_REF]. Gliogenesis also occurs in human brains but the cellular and molecular mechanisms remain elusive [START_REF] Nait-Oumesmar | The role of SVZ-derived neural precursors in demyelinating diseases: from animal models to multiple sclerosis[END_REF][START_REF] Rusznák | Adult Neurogenesis and Gliogenesis: Possible Mechanisms for Neurorestoration[END_REF].

In rodents and non-human primates, neuroblasts migrate from the SVZ to the olfactory bulb where they differentiate and integrate into pre-existing neuronal networks. In the adult human, functional neurogenesis is still questioned in the SVZ. The SVZ niche cytoarchitecture and the pattern of neuroblast migration differ in humans and rodents. Neuroblast migration toward the olfactory bulb occurs only in infants up to 18 months [START_REF] Sanai | Corridors of migrating neurons in the human brain and their decline during infancy[END_REF] and is absent in the adult human brain [START_REF] Bergmann | The age of olfactory bulb neurons in humans[END_REF][START_REF] Sanai | Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration[END_REF]. A recent study shows that human neuroblasts migrate toward the striatum, adjacent to the lateral ventricle [START_REF] Ernst | Neurogenesis in the striatum of the adult human brain[END_REF], suggesting divergent mechanisms underlying adult neurogenesis between rodents and humans. In contrast, hippocampal neurogenesis is more conserved among mammals. Newly-generated neurons migrate from the SGZ to the granular cell layer of the hippocampus. In adult humans, a large population of hippocampal neurons is able to renew with a rate comparable with mice [START_REF] Spalding | Dynamics of hippocampal neurogenesis in adult humans[END_REF]. Moreover, negative effects of aging on neuronal cell turnover are less marked in humans than mice [START_REF] Spalding | Dynamics of hippocampal neurogenesis in adult humans[END_REF], suggesting that human adult neurogenesis contributes to brain function throughout life.

However, cognitive pathologies characteristics of aging have been linked to reduced neurogenic capacities at least in the hippocampus of adult rats (Gould et al., 1999a and see section 3).

Besides these two main sites, a third neurogenic niche, lining the third ventricle, was recently identified within the adult rat hypothalamus [START_REF] Rojczyk-Gołębiewska | Hypothalamic subependymal niche: a novel site of the adult neurogenesis[END_REF]. Newly generated hypothalamic neurons have previously been observed in several mammalian species, including rodents [START_REF] Kokoeva | Neurogenesis in the hypothalamus of adult mice: potential role in energy balance[END_REF][START_REF] Kokoeva | Evidence for constitutive neural cell proliferation in the adult murine hypothalamus[END_REF][START_REF] Pencea | Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain[END_REF][START_REF] Xu | Neurogenesis in the ependymal layer of the adult rat 3rd ventricle[END_REF], sheep [START_REF] Batailler | DCX-expressing cells in the vicinity of the hypothalamic neurogenic niche: a comparative study between mouse, sheep, and human tissues[END_REF][START_REF] Migaud | Seasonal changes in cell proliferation in the adult sheep brain and pars tuberalis[END_REF][START_REF] Migaud | Emerging new sites for adult neurogenesis in the mammalian brain: a comparative study between the hypothalamus and the classical neurogenic zones[END_REF], hamster [START_REF] Mohr | Pubertally born neurons and glia are functionally integrated into limbic and hypothalamic circuits of the male Syrian hamster[END_REF]. In humans, new neurons were found in the median eminence, the arcuate and the ventromedial nucleus [START_REF] Batailler | DCX-expressing cells in the vicinity of the hypothalamic neurogenic niche: a comparative study between mouse, sheep, and human tissues[END_REF]. Hypothalamic neurogenesis may be involved in regulating energy metabolism by modulation of food intake, body weight and behavior.

TH regulation of adult SVZ and SGZ neurogenesis

Many intrinsic and extrinsic factors regulate adult neurogenesis at multiple levels (proliferation, survival, cell fate commitment, migration, differentiation and maturation). Among them, the TH signalling pathway is a crucial endocrine signal that controls adult neurogenesis at the molecular, metabolic, cellular and behavioral levels.

Regulation of Cellular Processes

In the adult murine SVZ, hypothyroidism reduces NSC and progenitor proliferation by blocking cell cycle re-entry [START_REF] Lemkine | Adult neural stem cell cycling in vivo requires thyroid hormone and its alpha receptor[END_REF]. A T 3 -pulse rescues the phenotype, showing that T 3 is necessary and sufficient to restore cell proliferation within the adult SVZ [START_REF] Lemkine | Adult neural stem cell cycling in vivo requires thyroid hormone and its alpha receptor[END_REF]. Moreover, migrating neuroblasts also decrease during hypothyroidism, showing that neurogenesis is globally impaired [START_REF] Lemkine | Adult neural stem cell cycling in vivo requires thyroid hormone and its alpha receptor[END_REF][START_REF] López-Juárez | Thyroid hormone signaling acts as a neurogenic switch by repressing Sox2 in the adult neural stem cell niche[END_REF]. This reduced neurogenesis may affect olfactory function, thus modifying some forms of olfactory behavior [START_REF] Kageyama | The role of neurogenesis in olfaction-dependent behaviors[END_REF]. Indeed, [START_REF] Paternostro | Lack of thyroid hormones but not their excess affects the maturation of olfactory receptor neurons: a quantitative morphologic study in the postnatal rat[END_REF] [START_REF] Paternostro | Lack of thyroid hormones but not their excess affects the maturation of olfactory receptor neurons: a quantitative morphologic study in the postnatal rat[END_REF] have shown that hypothyroidism is associated with a decrease in mature olfactory receptor neurons. Moreover, hypothyroidism produces a loss of sense of smell (anosmia) in adult mice [START_REF] Beard | Loss of sense of smell in adult, hypothyroid mice[END_REF] and has been documented in adult humans. However, the link between SVZ neurogenesis and olfactory function underlying hypothyroidism is not known. Similarly, preparation for migration in salmon (smolting) requires integration of olfactory signals and smolting is a TH-dependent process.

Whether hypothyroidism affects progenitor proliferation within the adult rat SGZ is debated. Some studies show that hypothyroidism reduces progenitor survival and neuronal differentiation [START_REF] Ambrogini | Thyroid hormones affect neurogenesis in the dentate gyrus of adult rat[END_REF][START_REF] Desouza | Thyroid hormone regulates hippocampal neurogenesis in the adult rat brain[END_REF] whereas other studies show that hypothyroidism in adult rats decreases cell proliferation without affecting survival [START_REF] Montero-Pedrazuela | Modulation of adult hippocampal neurogenesis by thyroid hormones: implications in depressive-like behavior[END_REF].

Different approaches to induce adult hypothyroidism or to label tissues with BrdU may explain these discrepant results. However, adult onset-hypothyroidism is also associated with a reduction of the number of newborn neuroblasts [START_REF] Montero-Pedrazuela | Modulation of adult hippocampal neurogenesis by thyroid hormones: implications in depressive-like behavior[END_REF]. Moreover, cognitive functions are affected: depressive behavior being associated with adult-onset hypothyroidism in rats [START_REF] Montero-Pedrazuela | Modulation of adult hippocampal neurogenesis by thyroid hormones: implications in depressive-like behavior[END_REF] as it is in humans [START_REF] Smith | Thyroid hormones, brain function and cognition: a brief review[END_REF].

Molecular Mechanisms of TH Actions in Neurogenesis

Several TR isoforms (TRα1, TRβ1 and TRβ2) are expressed in the adult SGZ [START_REF] Kapoor | Thyroid hormone accelerates the differentiation of adult hippocampal progenitors[END_REF][START_REF] Kapoor | Perspectives on thyroid hormone action in adult neurogenesis[END_REF][START_REF] Kapoor | Loss of thyroid hormone receptor β is associated with increased progenitor proliferation and NeuroD positive cell number in the adult hippocampus[END_REF] whereas only TRα1 is detected in the adult mouse SVZ [START_REF] Kapoor | Perspectives on thyroid hormone action in adult neurogenesis[END_REF][START_REF] Lemkine | Adult neural stem cell cycling in vivo requires thyroid hormone and its alpha receptor[END_REF][START_REF] López-Juárez | Thyroid hormone signaling acts as a neurogenic switch by repressing Sox2 in the adult neural stem cell niche[END_REF][START_REF] Remaud | Thyroid hormone signaling and adult neurogenesis in mammals[END_REF]. TRα1 is not detected by immocytochemistry in NSC co-expressing GFAP and SOX2, but appears in DLX2+ progenitors and is strongly expressed in DCX+ neuroblasts [START_REF] López-Juárez | Thyroid hormone signaling acts as a neurogenic switch by repressing Sox2 in the adult neural stem cell niche[END_REF]. These observations led us to suggest that TRα1 plays a role in NSC determination toward a neuronal fate.

Accordingly, a TRα1 overexpression in NSC/progenitor cells using in vivo gene transfer drove cell fate commitment towards a neuronal fate. Moreover, the number of neural stem/progenitor cells, that are blocked during cell cycle progression, increased in TRa0/0 loss-of-function mutant mice [START_REF] Lemkine | Adult neural stem cell cycling in vivo requires thyroid hormone and its alpha receptor[END_REF]. Similarly, shRNA directed against TRα1 mRNA increased expression of NSC/progenitor markers such as Sox2, suggesting that the pool of neural stem/progenitor cells was enhanced. Thus, a lack of T 3 or TRα1 gave the same phenotype: increased numbers of NSC and progenitors blocked in interphase, thus decreasing the generation of migrating neuroblasts. Very few TH target genes have been identified as underlying TH control of adult SVZ neurogenesis. As mentioned, a key demonstration was that of [START_REF] López-Juárez | Thyroid hormone signaling acts as a neurogenic switch by repressing Sox2 in the adult neural stem cell niche[END_REF], showing that T 3 -through TRα1 -acts as a neurogenic switch in progenitors, repressing a gate-keeper of NSC identity (Sox2), thereby driving cell fate specification toward a neuronal fate. Moreover, T 3 also downregulates at least two cell-cycle genes, CyclinD1 and c-Myc [START_REF] Hassani | A hybrid CMV-H1 construct improves efficiency of PEI-delivered shRNA in the mouse brain[END_REF][START_REF] Lemkine | Adult neural stem cell cycling in vivo requires thyroid hormone and its alpha receptor[END_REF]. Both Sox2 and cell cycle gene repression could bolster NSC/progenitor commitment toward a neuroblast fate by limiting stem cell renewal and promoting cell cycle arrest.

In the adult hippocampal SGZ, TRα1 is mainly expressed in immature neurones and not in uncommitted proliferating progenitors [START_REF] Kapoor | Thyroid hormone accelerates the differentiation of adult hippocampal progenitors[END_REF][START_REF] Kapoor | Perspectives on thyroid hormone action in adult neurogenesis[END_REF][START_REF] Kapoor | Unliganded thyroid hormone receptor alpha1 impairs adult hippocampal neurogenesis[END_REF], suggesting that TRα1 acts at later steps than in the SVZ during the neural lineage specification.

Accordingly, both unliganded TRα1 aporeceptor over-expression (TRa2-/-mutant) and a lack of TRα1 (TRa1-/-mutant) do not affect progenitor proliferation [START_REF] Kapoor | Unliganded thyroid hormone receptor alpha1 impairs adult hippocampal neurogenesis[END_REF] but alter post-mitotic survival and thus neurogenesis. [START_REF] Kapoor | Unliganded thyroid hormone receptor alpha1 impairs adult hippocampal neurogenesis[END_REF] [START_REF] Kapoor | Unliganded thyroid hormone receptor alpha1 impairs adult hippocampal neurogenesis[END_REF] show that neurogenesis is decreased in TRa2-/-mice and increased in TRa1-/-mutant mice, due to an increase in post-mitotic progenitor survival in the latter case. Thus, the decrease of both cell survival and neuronal differentiation following ectopic TRα1 aporeceptor expression mimics adult-onset hypothyroidism [START_REF] Ambrogini | Thyroid hormones affect neurogenesis in the dentate gyrus of adult rat[END_REF][START_REF] Desouza | Thyroid hormone regulates hippocampal neurogenesis in the adult rat brain[END_REF][START_REF] Montero-Pedrazuela | Modulation of adult hippocampal neurogenesis by thyroid hormones: implications in depressive-like behavior[END_REF]. Notably, the decline in neurogenesis is rescued following exogenous T 3 administration [START_REF] Kapoor | Perspectives on thyroid hormone action in adult neurogenesis[END_REF][START_REF] Kapoor | Unliganded thyroid hormone receptor alpha1 impairs adult hippocampal neurogenesis[END_REF]. As in the SVZ, T 3 may act as a neurogenic switch by binding to TRα1 thus allowing proliferating progenitor commitment toward differentiated neuronal cells.

Metabolic Regulations

TH effects on neurogenesis and cell fate choice could be enacted through their impact on mitochondrial respiration. It is indeed well established that THs are crucial regulators of mitochondrial metabolism [START_REF] Weitzel | Coordination of mitochondrial biogenesis by thyroid hormone[END_REF]. Furthermore, stem cells display metabolic features of glycosylation, in contrast with differentiated cells, that mainly rely on oxidative phosphorylation (OXPHOS) [START_REF] Vander Heiden | Understanding the Warburg effect: the metabolic requirements of cell proliferation[END_REF][START_REF] Zheng | Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation[END_REF]. Adult NSC differentiation thus require a metabolic switch from glycolysis to OXPHOS [START_REF] Li | Hypoxia inducible factor-1α (HIF-1α) is required for neural stem cell maintenance and vascular stability in the adult mouse SVZ[END_REF][START_REF] Pistollato | Oxygen tension controls the expansion of human CNS precursors and the generation of astrocytes and oligodendrocytes[END_REF], putting cell metabolic changes at the center of regulation of neurogenesis. Furthermore, O 2 availability can modulate NSC decisions in different directions, whether neuronal, astrocytic or towards an oligodendrocyte destiny [START_REF] De Filippis | Hypoxia in the regulation of neural stem cells[END_REF][START_REF] Rafalski | Energy metabolism in adult neural stem cell fate[END_REF][START_REF] Rone | Oligodendrogliopathy in Multiple Sclerosis: Low Glycolytic Metabolic Rate Promotes Oligodendrocyte Survival[END_REF]. This finding highlights the importance of normoxic versus hypoxic culture conditions when carrying out in vitro studies on neurogenesis. These elements are consistent with the idea that an impairment of mitochondrial metabolism can impact neurogenesis, and with the observation that mitochondrial dysfunctions are associated with numerous neurodegenerative diseases, including Alzheimer's disease [START_REF] Hauptmann | Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice[END_REF][START_REF] Kapogiannis | Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer's disease[END_REF]) and Parkinsons's disease [START_REF] Hu | Mitochondrial dysfunction in Parkinson's disease[END_REF].

Non-mammalian models

While many studies have examined TH signalling during adult mammalian neurogenesis, studies on the roles of TH in non-mammalian species are scarce. Contrary to mammals, multiple neurogenic niches have been identified in non-mammalian models such as teleosts (principally zebrafish and medaka), amphibians, and reptiles (lizards). Proliferation, survival and differentiation of newly generated neurons are regulated by a wide range of hormonal signals (sex steroids, prolactin, thyroid hormones…) and environmental factors (seasons, sensorial stimulation).

In lampreys, the most basal group of vertebrates, neurogenesis is implicated in functional spinal cord regeneration [START_REF] Zhang | Antisense Morpholino Oligonucleotides Reduce Neurofilament Synthesis and Inhibit Axon Regeneration in Lamprey Reticulospinal Neurons[END_REF]. Interestingly, the authors showed that cell proliferation depends on seasonal fluctuations following spinal cord injury. The well-known seasonal variations in TH levels [START_REF] Yoshimura | Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds[END_REF] may affect this season-dependent proliferation. However, whether THs regulate cell proliferation during axonal regeneration is unknown. The links between CNS regeneration and TH are well documented in basal vertebrates, such as fish and amphibians. In these species, the adult central nervous system is also capable of successful regeneration, though for amphibians, regeneration is less vigorous after metamorphosis [START_REF] Endo | Brain regeneration in anuran amphibians[END_REF]. Recently, THs were shown to accelerate optic tectum reinnervation in the adult zebrafish. However, this positive effect on regeneration occurs without affecting retinal ganglion cell survival and proliferation [START_REF] Bhumika | Decreased thyroid hormone signalling accelerates the reinnervation of the optic tectum following optic nerve crush in adult zebrafish[END_REF], but probably through an altered inflammatory response. These authors did not detect TR expression in the optic tectum of zebrafish but TRα1 and TRβ expression were reported in the adult Xenopus optic tectum [START_REF] Denver | Thyroid hormone receptor subtype specificity for hormone-dependent neurogenesis in Xenopus laevis[END_REF].

In Xenopus, regeneration of the CNS (spinal cord and forebrain) occurs in tadpoles but not in post-metamorphic adult frogs [START_REF] Endo | Brain regeneration in anuran amphibians[END_REF]. Ependymal cells proliferate but they are not able to migrate toward the brain lesion. However, TH treatment in the adult Xenopus modifies the neuronal connectivity pattern in the optic tectum [START_REF] Hofmann | Thyroxine influences neuronal connectivity in the adult frog brain[END_REF], demonstrating that THs may affect adult brain function. Moreover, in the neurogenic niche of juvenile Xenopus brain, T 3 stimulates proliferation of progenitor cells that do not express DIO3, permitting a T 3 -response [START_REF] Préau | Differential thyroid hormone sensitivity of fast cycling progenitors in the neurogenic niches of tadpoles and juvenile frogs[END_REF]. Similarly, in birds, the capacity to regenerate following spinal cord injury is lost during development, suggesting that neurogenic response to a CNS injury is also limited in the adult bird brain. Accordingly, active avian neurogenesis is limited to the periventricular zone [START_REF] Kaslin | Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain[END_REF].

A more direct action of TH was described in adult birds where neurogenesis is linked to vocal learning [START_REF] Alvarez-Buylla | Mechanism of neurogenesis in adult avian brain[END_REF]). In the adult zebra finch brain, THs modulate survival of TRα-expressing neurons in the High Vocal Center [START_REF] Tekumalla | Effects of excess thyroid hormone on cell death, cell proliferation, and new neuron incorporation in the adult zebra finch telencephalon[END_REF]. As in mammals, hippocampal neurogenesis in birds is also involved in memory and learning functions, especially spatial learning during food-storing behaviour. Seasonal variations are involved in the recruitment of new neurons in the avian hippocampal complex [START_REF] Barnea | Seasonal recruitment of hippocampal neurons in adult free-ranging black-capped chickadees[END_REF]. As described above, the seasonal variations in TH levels [START_REF] Yoshimura | Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds[END_REF] may be implicated in avian hippocampal neurogenesis.

From a comparative point of view, this question is particularly pertinent in the context of TH-dependent regulation of adult neurogenesis in the mammalian hippocampus.

Roles of TH in the ageing brain

Neurogenesis decreases with age [START_REF] Enwere | Aging results in reduced epidermal growth factor receptor signalling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination[END_REF]Gould et al., 1999b;[START_REF] Kuhn | Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation[END_REF], and cognitive deficiency is frequent in the elderly humans and also observed in ageing rodents [START_REF] Bach | Age-related defects in spatial memory are correlated with defects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signalling pathway[END_REF][START_REF] Cao | The reduced serum free triiodothyronine and increased dorsal hippocampal SNAP-25 and Munc18-1 had existed in middle-aged CD-1 mice with mild spatial cognitive impairment[END_REF]. Neurogenesis in the dentate gyrus of the hippocampus, where learning and memory processes occur, is particularly impacted by ageing and is implicated in many neurodegenerative pathologies (Gould et al., 1999a;[START_REF] Van Praag | Functional neurogenesis in the adult hippocampus[END_REF][START_REF] Zhao | Impaired hippocampal neurogenesis is involved in cognitive dysfunction induced by thiamine deficiency at early pre-pathological lesion stage[END_REF].

Besides a reduction in the number of NSC observed in the aged brain, the phenomenon of decreased neurogenesis could also involve a decrease in TH availability. Decreased levels of circulating TH occur with ageing in humans [START_REF] Chakraborti | Hypothalamic-pituitary-thyroid axis status of humans during development of ageing process[END_REF] and rodents [START_REF] Cao | Reduced thyroid hormones with increased hippocampal SNAP-25 and Munc18-1 might involve cognitive impairment during aging[END_REF], and have also been observed in non-mammals, including birds [START_REF] Carr | Age-related changes in pituitary/thyroid function in chickens[END_REF]. Many studies have shown declines in the hippocampal process of spatial memory assimilation in aged humans, rodents, or monkeys [START_REF] Foster | Characterizing cognitive aging of spatial and contextual memory in animal models[END_REF][START_REF] Jiang | Accelerated reduction of serum thyroxine and hippocampal histone acetylation links to exacerbation of spatial memory impairment in aged CD-1 mice pubertally exposed to bisphenol-a[END_REF]. This process is well established as being particularly sensitive to decreases in TH availability [START_REF] Correia | Evidence for a specific defect in hippocampal memory in overt and subclinical hypothyroidism[END_REF][START_REF] Ge | Resveratrol improved the spatial learning and memory in subclinical hypothyroidism rat induced by hemi-thyroid electrocauterization[END_REF]. Mooradian et al even extrapolated a global reduction of cerebral responsiveness to TH from decreased expression of THRP (TH responsive protein) in the brain of old rats [START_REF] Mooradian | Age-related changes in thyroid hormone responsive protein (THRP) expression in cerebral tissue of rats[END_REF]. In this context, it is important to recall the role of TH signalling in cellular metabolism, mitochondrial function [START_REF] Weitzel | Coordination of mitochondrial biogenesis by thyroid hormone[END_REF] and mitochondrial biogenesis [START_REF] Wulf | T3-mediated expression of PGC-1alpha via a far upstream located thyroid hormone response element[END_REF][START_REF] Wu | Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1[END_REF]. This latter process decreases with age [START_REF] Derbré | Age associated low mitochondrial biogenesis may be explained by lack of response of PGC-1α to exercise training[END_REF], potentially impacting differentiation of NSC, that require a major increase in oxidative phosphorylation [START_REF] Vander Heiden | Understanding the Warburg effect: the metabolic requirements of cell proliferation[END_REF][START_REF] Zheng | Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation[END_REF].

Visser and colleagues provided a detailed analysis of the evolution of circulating and local TH in wild-type and mutant mice with an accelerated aging phenotype [START_REF] Visser | Tissue-Specific Suppression of Thyroid Hormone Signaling in Various Mouse Models of Aging[END_REF]. No decrease in the T 3 and T 4 serum levels of 18 weeks-old wild-type and mutant mice was observed but significant changes in TH signalling was noted in different organs. They suggested that these were due to reduced TH availability due to alterations in TH binding to carrier proteins, potential TH sequestration in different cell compartments, downregulation of TRs and modulation of deiodinase expression. In the brain, T 4 concentrations decreased but not those of T 3 . Levels of the inactivating Dio3 also decreased, thus protecting the brain from low TH availability. One can speculate that this protection might not be sufficient for mice aged of more than 18 weeks, especially as TH secretion rates are altered, at least in their secretion rhythmicity, due to age-associated deterioration of hormonal secretion patterns [START_REF] Hertoghe | The "multiple hormone deficiency" theory of aging: is human senescence caused mainly by multiple hormone deficiencies?[END_REF][START_REF] Ross | Thyroid hormone signalling genes are regulated by photoperiod in the hypothalamus of F344 rats[END_REF][START_REF] Weinert | Age-dependent changes of the circadian system[END_REF]. [START_REF] Cao | Reduced thyroid hormones with increased hippocampal SNAP-25 and Munc18-1 might involve cognitive impairment during aging[END_REF] also reported no significant changes in circulating total T 4 in mice at 22 months compared to 6 months of age but did observe decreases in free T 3 [START_REF] Cao | Reduced thyroid hormones with increased hippocampal SNAP-25 and Munc18-1 might involve cognitive impairment during aging[END_REF]. In addition, circadian rhythms are increasingly disrupted in humans during ageing [START_REF] Campos Costa | Aging, circadian rhythms and depressive disorders: a review[END_REF][START_REF] Froy | Circadian rhythms, aging, and life span in mammals[END_REF], notably affecting TSH secretion levels [START_REF] Bitman | Circadian and ultradian rhythms of plasma thyroid hormone concentrations in lactating dairy cows[END_REF][START_REF] Gancedo | Changes in thyroid hormone concentrations and total contents through ontogeny in three anuran species: evidence for daily cycles[END_REF][START_REF] Morris | Circadian system, sleep and endocrinology[END_REF]. Furthermore, the binding capacity of TRs also decreases in the cortex and cerebellum of 24 month-old rats [START_REF] De Nayer | Thyroid hormone receptors in brain and liver during ageing[END_REF].

Overall, the global alteration of TH signalling in the ageing brain seems only partly due to a global decrease in serum T4 and T3 levels, possibly due to brain-specific protection mechanisms (such as decreased inactivating mechanisms) implemented in early stages of ageing.

Another process implicating neurogenesis that could be impaired in ageing is repair following a lesion.

In ageing this new generation of neurons alone might not be sufficient to improve cognitive capacities in older individuals, at least not in the hippocampus [START_REF] Yeung | Impact of hippocampal neuronal ablation on neurogenesis and cognition in the aged brain[END_REF]. Modifying the complex processes at play in maintaining memory and cognition during ageing requires adaptation of the brain neurogenic niches but these adaptations will be related to the physiological condition of the whole animal or patient. TH signalling affects multiple physiological systems during ageing [START_REF] Bowers | Thyroid hormone signalling and homeostasis during aging[END_REF]. Although, some TH treatments can improve cognitive performances in hypothyroid humans [START_REF] Kramer | Treated hypothyroidism, cognitive function, and depressed mood in old age: the Rancho Bernardo Study[END_REF] and mice [START_REF] Fu | Thyroid hormone prevents cognitive deficit in a mouse model of Alzheimer's disease[END_REF][START_REF] Fu | The synthetic thyroid hormone, levothyroxine, protects cholinergic neurons in the hippocampus of naturally aged mice[END_REF]. The generalisation of TH treatment for subclinical hypothyroidism in the elderly is a topic of active debate [START_REF] Bensenor | Hypothyroidism in the elderly: diagnosis and management[END_REF].

Returning to the rodent models, Fu et al. showed that the administration of L-T 4 to aged mice can significantly improve their learning and memory capacities, through increases of both serum and brain concentrations of free T 3 and T 4 [START_REF] Fu | The synthetic thyroid hormone, levothyroxine, protects cholinergic neurons in the hippocampus of naturally aged mice[END_REF]. Similar treatments also can counteract depression in rats and humans [START_REF] Bauer | Supraphysiological doses of levothyroxine alter regional cerebral metabolism and improve mood in bipolar depression[END_REF][START_REF] Ge | Resveratrol Ameliorates the Anxiety-and Depression-Like Behavior of Subclinical Hypothyroidism Rat: Possible Involvement of the HPT Axis, HPA Axis, and Wnt/β-Catenin Pathway[END_REF][START_REF] Uhl | Influence of levothyroxine in augmentation therapy for bipolar depression on central serotonergic function[END_REF]. Depression is known to be linked with an impaired neurogenesis [START_REF] Jacobs | Adult brain neurogenesis and depression[END_REF][START_REF] Schoenfeld | Adult neurogenesis and mental illness[END_REF].

Treatment with resveratrol has also been shown to improve memory and depressive-like behaviour in hypothyroid rats, and this through normalizing hypothalamus-pituitary-thyroid (HPT) axis activity [START_REF] Ge | Resveratrol improved the spatial learning and memory in subclinical hypothyroidism rat induced by hemi-thyroid electrocauterization[END_REF][START_REF] Ge | Resveratrol Ameliorates the Anxiety-and Depression-Like Behavior of Subclinical Hypothyroidism Rat: Possible Involvement of the HPT Axis, HPA Axis, and Wnt/β-Catenin Pathway[END_REF]. An interesting, testable, hypothesis is that this improvement in HPT axis function involves resveratrol activation of SIRT1 [START_REF] Borra | Mechanism of human SIRT1 activation by resveratrol[END_REF], with SIRT1 regulating TSH release [START_REF] Akieda-Asai | SIRT1 Regulates Thyroid-Stimulating Hormone Release by Enhancing PIP5Kgamma Activity through Deacetylation of Specific Lysine Residues in Mammals[END_REF] as well as acting as a TRβ cofactor [START_REF] Suh | SIRT1 is a direct coactivator of thyroid hormone receptor β1 with gene-specific actions[END_REF].

Evolutionary implications of endocrine-disrupting chemicals exposure for brain function

Endocrine disruption is becoming a major health concern, particularly regarding embryonic development. Pesticides, like Dichlorodiphenyltrichloroethane (DDT), plasticizers such as bisphenol-A (BPA), bisphenol-S (BPS) or phtalates, industrial lubricants including the polychlorinated biphenyls (PCBs), various flame retardants, or pharmaceuticals such as ethinylestradiol (EE2) found in contraceptive pills, are examples of molecules known to act as Endocrine disruptors (EDCs) [START_REF] Heudorf | Phthalates: toxicology and exposure[END_REF][START_REF] Leonetti | Brominated flame retardants in placental tissues: associations with infant sex and thyroid hormone endpoints[END_REF][START_REF] Rasier | Early maturation of gonadotropin-releasing hormone secretion and sexual precocity after exposure of infant female rats to estradiol or dichlorodiphenyltrichloroethane[END_REF][START_REF] Rochester | Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes[END_REF][START_REF] Rosenfeld | Environmental Health Factors and Sexually Dimorphic Differences in Behavioral Disruptions[END_REF]. Many EDCs can interfere with TH signalling, mainly indirectly through interfering with TH synthesis, TSH, deiodinases, TH transporters or iodine uptake [START_REF] Leonetti | Brominated flame retardants in placental tissues: associations with infant sex and thyroid hormone endpoints[END_REF][START_REF] Patrick | Thyroid disruption: mechanism and clinical implications in human health[END_REF][START_REF] Porterfield | Thyroidal dysfunction and environmental chemicals--potential impact on brain development[END_REF][START_REF] Dong | Effects of Long-Term In Vivo Exposure to Di-2-Ethylhexylphthalate on Thyroid Hormones and the TSH/TSHR Signaling Pathways in Wistar Rats[END_REF]. Because of human activities and failure to regulate, EDCs exposure has become global, notably in aquatic habitats, as shown for BPA in 2015 [START_REF] Bhandari | Effects of the environmental estrogenic contaminants bisphenol A and 17α-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species[END_REF]. In humans, dozens of different artificial molecules -potential EDCs -are found today in the blood of most persons tested [START_REF] Woodruff | Bridging epidemiology and model organisms to increase understanding of endocrine disrupting chemicals and human health effects[END_REF], in the amniotic fluid of pregnant women [START_REF] Cariou | Perfluoroalkyl acid (PFAA) levels and profiles in breast milk, maternal and cord serum of French women and their newborns[END_REF] and in breast milk [START_REF] Gascon | Polybrominated diphenyl ethers (PBDEs) in breast milk and neuropsychological development in infants[END_REF]. Among the deleterious effects of EDCs early exposure, growing concern exists about the long term impact it has on brain. Impaired memory, cognitive functions and spatial navigational learning, increased anxiety and hyperactivity are some of the direct consequences of developmental to just BPA or EE2 exposure, as shown in various studies on diverse rodent species [START_REF] Jašarević | Disruption of adult expression of sexually selected traits by developmental exposure to bisphenol A[END_REF][START_REF] Johnson | Effects of developmental exposure to bisphenol A on spatial navigational learning and memory in rats: A CLARITY-BPA study[END_REF][START_REF] Johnson | Sex-dependent effects of developmental exposure to bisphenol A and ethinyl estradiol on metabolic parameters and voluntary physical activity[END_REF][START_REF] Liu | Early developmental bisphenol-A exposure sex-independently impairs spatial memory by remodeling hippocampal dendritic architecture and synaptic transmission in rats[END_REF][START_REF] Rosenfeld | Environmental Health Factors and Sexually Dimorphic Differences in Behavioral Disruptions[END_REF][START_REF] Williams | Effects of developmental bisphenol A exposure on reproductive-related behaviors in California mice (Peromyscus californicus): a monogamous animal model[END_REF], zebrafish [START_REF] Kinch | Low-dose exposure to bisphenol A and replacement bisphenol S induces precocious hypothalamic neurogenesis in embryonic zebrafish[END_REF] or painted turtles [START_REF] Manshack | Effects of developmental exposure to bisphenol A and ethinyl estradiol on spatial navigational learning and memory in painted turtles (Chrysemys picta)[END_REF]. Flame retardant exposure during fetal development leads to important disturbances in TH and TSH concentration, leading to reduced proliferation in neurogenic niches in xenopus [START_REF] Fini | Thyroid hormone signalling in the Xenopus laevis embryo is functional and susceptible to endocrine disruption[END_REF], and mental and psychomotor retardations in humans and rodents [START_REF] Czerska | Effects of polybrominated diphenyl ethers on thyroid hormone, neurodevelopment and fertility in rodents and humans[END_REF]. PCBs and BPA exposure can decrease levels of circulating THs, and inhibit TH-dependent development of neuronal dendrites, notably in Purkinje cells [START_REF] Kimura-Kuroda | Disrupting effects of hydroxy-polychlorinated biphenyl (PCB) congeners on neuronal development of cerebellar Purkinje cells: a possible causal factor for developmental brain disorders?[END_REF]. A dose-dependent decrease in IQ with prenatal PCB exposure and TH levels reduction has been shown [START_REF] Wise | Upstream adverse effects in risk assessment: a model of polychlorinated biphenyls, thyroid hormone disruption and neurological outcomes in humans[END_REF]. Therefore, EDC-induced TH disruption can have a major impact on brain development and maturation in animals as well as in humans. Generalized alterations of TH signaling during fetal development can lead to modifications of genetic expression patterns, and could in turn impact evolution as the developmental period is a key determinant of evolutionary processes [START_REF] Gould Stephan | Ontogeny and Phylogeny[END_REF].

Adult neurogenesis can also be impacted by EDCs. Several studies show that early exposure to EDCs can impair adult neurogenesis, whether through TH signaling or other endocrine pathways. One example comes from the work of Martini et al., who linked perinatal exposure to EE2 with organizational modifications in adult hippocampal neurogenesis [START_REF] Martini | Perinatal exposure to methoxychlor enhances adult cognitive responses and hippocampal neurogenesis in mice[END_REF]. Perinatal exposure to BPA can cause mitochondrial malfunction that impact health later in life, as exemplified by work done on rat or sheep [START_REF] Jiang | Mitochondrial dysfunction in early life resulted from perinatal bisphenol A exposure contributes to hepatic steatosis in rat offspring[END_REF][START_REF] Veiga-Lopez | Developmental programming: interaction between prenatal BPA exposure and postnatal adiposity on metabolic variables in female sheep[END_REF]. Given that BPA is a known thyroid disruptor [START_REF] Fini | An in vivo multiwell-based fluorescent screen for monitoring vertebrate thyroid hormone disruption[END_REF][START_REF] Somogyi | Bisphenol A influences oestrogen-and thyroid hormone-regulated thyroid hormone receptor expression in rat cerebellar cell culture[END_REF], it would be interesting to investigate if this impact of BPA on mitochondria is generated through disruption of TH signaling. This could be something to consider in the context of impaired neurogenesis caused by BPA exposure, during both perinatal periods and adulthood (Tiwari et al., 2015a;Tiwari et al., 2015b). Exposure to BPA during puberty can also impair spatial cognitive abilities in adult mice [START_REF] Jiang | Accelerated reduction of serum thyroxine and hippocampal histone acetylation links to exacerbation of spatial memory impairment in aged CD-1 mice pubertally exposed to bisphenol-a[END_REF]. Besides, EE2

exposure during adulthood has been shown to disrupt cell proliferation in neurogenic niches of mice [START_REF] Brock | Short term treatment with estradiol decreases the rate of newly generated cells in the subventricular zone and main olfactory bulb of adult female mice[END_REF][START_REF] Ormerod | Estradiol initially enhances but subsequently suppresses (via adrenal steroids) granule cell proliferation in the dentate gyrus of adult female rats[END_REF] and zebrafish [START_REF] Diotel | Effects of estradiol in adult neurogenesis and brain repair in zebrafish[END_REF]. Since cross-talks exist between estrogens and TH pathways at multiple levels, especially through co-regulations of TR and estrogen receptor expression, the implication of TH signaling in EE2-mediated disruption is highly probable [START_REF] Scalise | Ligand-induced changes in Oestrogen and thyroid hormone receptor expression in the developing rat cerebellum: A comparative quantitative PCR and Western blot study[END_REF][START_REF] Zane | Estrogens and stem cells in thyroid cancer[END_REF]. Thus, it appears that EDCs can impact neurogenesis at all stages of life, and even in the ageing brain [START_REF] Weiss | Can endocrine disruptors influence neuroplasticity in the aging brain?[END_REF]. More research is necessary to better characterize the impact that BPA and other EDCs have on developmental and adult neurogenesis.

Conclusions:

As summarized in the figure, TH signalling has acquired critical roles in vertebrate brain morphology, growth, maturation and function from early fetal life to adult. Recent data highlight the vital role of maternal TH on early neurogenic events. Thus, any mild alteration in maternal TH levels, whether due to iodine deficiency, hypothyroidism or chemical exposure, may interfere with brain development.

Any such modification can have long-term implications for brain function and social behaviour, potentially heritable to future generations. A better understanding of the interactions between TH and EDCs at the cellular, molecular and epigenetic levels are needed to limit the societal impact of EDCs. Furthermore, in most vertebrate species, TH is also essential to adult neurogenesis. However, experiments are required to determine how TH availability is controlled in both the SGZ and SVZ adult niches (expression of transporters, deiodinases…). Moreover, molecular (new TH-target genes) and epigenetic mechanisms underlying TH signalling regulation of cell fate decision, proliferation and differentiation need further investigation.

A current hypothesis is that the highly conserved TH function in the brain of many organisms influences the evolution of cognitive complexity. A better understanding of how TH modulates the different successive steps in brain organization across species will highlight mechanistic evolutionary processes underlying apparent differences. A second idea worthy of investigation is how these interspecies differences contribute to different aspects of animal behavioural (food seeking and storage behaviours, social behaviour and cognition). Hypothyroidism or TRα1 aporeceptor overexpression decrease neurogenesis (proneural gene expression is reduced leading to a decrease of cell survival).

  Figure legend:(A) Timing of embryonic brain development for two non-mammalian species (Xenopus, chicken) and mouse. Before the onset of fetal TH production (see purple arrow), maternal TH regulate the early stages of fetal cortical neurogenesis (proliferation, migration and differentiation of neuronal progenitors). In both Xenopus and chicken, maternal THs are stored in the yolk. In mammals, maternal THs pass through the placenta. Alteration in TH levels (e.g. iodine accessibility, certain EDCs) alter neurological processes in the offspring, leading to cognitive deficits.(B) Localization of adult neurogenic niches in vertebrates. Compared to anamniotes (Xenopus) where adult neurogenesis occurs in most brain regions, neural stem cell (NSC) proliferation is limited to the forebrain in amniotes (birds and mammals). In mammals, adult neurogenesis is found in two main niches, the SGZ of the hippocampus and the SVZ lining the lateral ventricles. The impact of EDCs on adult neurogenesis is not known.(C) TH regulation of both SVZ and hippocampal adult neurogenesis in mammals. In the adult SVZ (right panel), NSCs divide asymmetrically to give rise to highly proliferative progenitors. Under normal homeostatic conditions, they give rise mainly to neuroblasts that migrate toward the olfactory bulb where they differentiate into interneurons. T 3 regulates both proliferation and cell fate decision within the adult SVZ. T 3 /TRα1, act as a neurogenic switch by repressing SOX2 in progenitors, determining a neuronal phenotype. In the hippocampal SGZ niche (left panel), NSC divide asymmetrically to generate transitory progenitors (2a progenitors) capable to produce migrating neuroblasts (2b progenitors) and then immature and mature granule neurons. Type 2b and 3 progenitors respond to TH signalling. In presence of T 3 , TRα1 increases proneural gene expression.
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