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Motion sickness occurs when the vestibular system is subjected to conflicting sensory

information or overstimulation. Despite the lack of knowledge about the actual underlying

mechanisms, several drugs, among which scopolamine, are known to prevent or alleviate

the symptoms. Here, we aim at better understanding how motion sickness affects

the vestibular system, as well as how scopolamine prevents motion sickness at the

behavioral and cellular levels. We induced motion sickness in adult mice and tested

the vestibulo-ocular responses to specific stimulations of the semi-circular canals and

of the otoliths, with or without scopolamine, as well as the effects of scopolamine and

muscarine on central vestibular neurons recorded on brainstem slices. We found that

both motion sickness and scopolamine decrease the efficacy of the vestibulo-ocular

reflexes and propose that this decrease in efficacy might be a protective mechanism

to prevent later occurrences of motion sickness. To test this hypothesis, we used a

behavioral paradigm based on visuo-vestibular interactions which reduces the efficacy

of the vestibulo-ocular reflexes. This paradigm also offers protection against motion

sickness, without requiring any drug. At the cellular level, we find that depending on

the neuron, scopolamine can have opposite effects on the polarization level and firing

frequency, indicating the presence of at least two types of muscarinic receptors in the

medial vestibular nucleus. The present results set the basis for future studies of motion

sickness counter-measures in the mouse model and offers translational perspectives for

improving the treatment of affected patients.

Keywords: vestibular, motion sickness, scopolamine, VOR, neurons, mouse, spatial orientation, visuo-vestibular

INTRODUCTION

Motion sickness (MS) is a disease that occurs when the brain cannot track the movement of
the self in a given environment. Motion sickness is experienced by up to 15% of the humans
subjects traveling by air, sea or on ground (1–3). What are the physiological causes for MS? While
many theories are still debated (4, 5), it is mostly accepted that MS results from a mismatch
between motion-derived neural signals, as for instance a conflict between visual and vestibular
inputs experienced while reading in a moving car or on a sailing boat (6). Notably, the conflict
between motion-sensitive signals can also be limited to a single sensory modality: vestibular-only
motion sickness results from a conflict between semicircular canals signals and otolith signals.
Vestibular-only motion sickness incapacitates the brain to integrate angular and linear acceleration
in order to efficiently reconstruct the orientation of the head in space (7, 8).

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2018.00918
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2018.00918&domain=pdf&date_stamp=2018-11-12
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:eidoux@bu.edu
mailto:mathieu.beraneck@parisdescartes.fr
https://doi.org/10.3389/fneur.2018.00918
https://www.frontiersin.org/articles/10.3389/fneur.2018.00918/full
http://loop.frontiersin.org/people/45241/overview
http://loop.frontiersin.org/people/58872/overview
http://loop.frontiersin.org/people/30035/overview


Idoux et al. Vestibular System Regulation and Motion Sickness

To prevent the onset of motion sickness, medications have
been empirically developed and documented for at least a
century and probably used for much longer (9). To date, one
of the most efficient drugs to prevent in particular space motion
sickness (10, 11) is scopolamine (12–14), a muscarinic antagonist
commonly administered through transdermal patches. While its
molecular effects are well characterized, its putative action on
the peripheral and/or central vestibular system, at the neuronal
(15) and behavioral levels (14, 16) have still to be specified.
Several studies have also tried non-pharmacological approaches
to help prevent motion sickness by habituating the system to
vestibular stimulation (17–20). Habituation to visual stimulation
was also promising because its effects were demonstrated to be
long-lasting (1).

While the interactions between the vestibular system, motion
sickness and pharmacological treatments have been widely
studied in humans, similar studies are conducted on animal
models to understand their correlate at the cellular andmolecular
levels. Here we use the mouse model to investigate the interplay
between vestibular reflexes, motion sickness and different
counter-measures by addressing several related questions.

1. what are the consequences of motion sickness on the efficacy
of the vestibular system?

2. does scopolamine protect mice against MS, as it does in
humans?

3. can a non-pharmacological, preemptive adaptation reduce the
occurrence of mice MS?

4. what are the direct pharmacological effects of scopolamine
on the electrophysiological properties of central vestibular
neurons recorded in vitro?

We find that motion sickness leads to a general decrease in the
efficacy of vestibulo-ocular reflexes (VOR). When administrated
before the occurrence of MS, scopolamine decreases the efficacy
of the vestibulo-ocular reflexes and prevents the occurrence of
symptoms normally associated with MS. Then, we tested the
effect of a long-lasting VOR gain-down reduction protocol and
validated that this reduction offers a protection against MS. At
the cellular level, we demonstrate that muscarinic antagonists
have heterogeneous effects on the neuron’s electrophysiological
parameters suggesting that the action of scopolamine on central
vestibular neurons is differentially affecting subpopulations of
neurons.

MATERIALS AND METHODS

Ethics
Animals were used in accordance with the European
Communities Council Directive 2010/63/EU. All efforts
were made to minimize suffering and reduce the number of
animals included in the study. All procedures were approved by
the ethical committee for animal research of the University Paris
Descartes (CEEA.34).

Surgical Procedures
Surgical preparation and postoperative care for head implant
surgery have been described previously (21, 22). Gas anesthesia

was induced using isoflurane. The head was shaved using an
electric razor. Lidocaine hydrochloride (2%; 2 mg/Kg) was
injected locally before a longitudinal incision of about 2 cm was
performed into the skin to expose the skull. A small custom-
built head holder (3 × 3 × 5mm) was fixed using dental cement
(C&B Metabond; Parkellinc, Edgewood, NY, United States) to
the skull just anterior to the lambda landmark. Following the
surgery, animals were isolated and closely surveyed for 48 h.
Buprenorphine (0.05 mg/kg) was provided for postoperative
analgesia and care was taken to avoid hypothermia and
dehydration.

Behavioral Measures
The vestibulo-ocular pathway works as an open-loop: the
vestibular signals trigger compensatory eye movements to
stabilize gaze in the absence of sensory feedback. As a
consequence, any imbalance or modification in the vestibular
inputs leads to alteration of the eye movements triggered by head
movements. This makes video-oculography the main tool used
in hospitals to measure vestibular function. Eye movements were
therefore used as a proxy to evaluate the efficacy of the vestibular
system by quantification of the vestibulo-ocular reflexes of the
mice.

Video-Oculography Procedure
Eye movements were recorded using non-invasive video-
oculography (23). The experimental set-up, apparatus and
methods of data acquisition are similar to those previously
described (22, 24). Briefly, mice were head-fixed at a ∼30◦ nose-
down position to align the horizontal canals in the yaw plane
(25, 26). Animals were placed in a custom-built Plexiglas tube
secured on the superstructure of a vestibular stimulator. The
VOR performance was tested in a temperature-controlled room
(21◦C) with all sources of light turned off except for computer
screens. The turntable was further surrounded with a closed box
to isolate the animal from remaining light, with a final luminance
inside the box <0.02 lux.

To prevent excessive pupil dilatation in dark, a topical
application of a combination of pilocarpine (inducing a miosis
via local muscarinic stimulation) and Combigan (brimonidine
0.2%+ timolol 0.5%, preventing themydriasis by locally blocking
the adrenergic pathways) was used. The addition of Combigan
on top of the usually used pilocarpine is necessary to counteract
locally the miotic effect of the systemic scopolamine injected in
some protocols (cf. Table 1). To avoid introducing a bias between
experiments with and without scopolamine, the combination of
Combigan and pilocarpine was used in all experiments.

Vestibulo-Ocular Reflex Tests and Analysis
To evaluate the canalar and otolithic contributions to the VOR,
different vestibular stimulations were used.

1. The eye movements evoked by an angular stimulation of the
horizontal canals (aVOR) were tested. The animal was rotated
around a vertical axis with sinusoidal movements at frequency
of 0.2, 0.5, 1Hz with a peak velocity of 25◦/s. The angular
amplitude of the movement was adjusted accordingly. At least
60 cycles were produced for each frequency. Two parameters
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were extracted from the recordings: the gain (aVOR_G) and
the phase (aVOR_ϕ). The gain is the ratio between the
amplitude of the eye (response) and head (stimulus) rotations.
Since the animal is head-fixed to the rotating table, head
movements and table movements are identical. The phase
is the temporal shift between the eye and table rotations,
expressed as ratio of the sinusoidal cycle (2 pi). Details for gain
and phase calculation are reported in Carcaud et al. (24).

2. The eye movements evoked by a specific stimulation of the
otoliths (maculo-ocular reflexes, MOR) were tested (27) using
off-vertical axis rotation (OVAR) as previously described
(22). Briefly, the axis of rotation was tilted by 17◦ with
respect to the vertical. Rotations were performed at constant
speed (50◦/s) for at least 10 rotations both in the clockwise
(cw) and the counterclockwise (ccw) directions. Due to the
inertial nature of the angular movement detection, a rotation
at constant speed elicits a combined canalar and otolithic
response at the beginning of the trace, however after a
few seconds only the otolithic component remains (22, 28).
Since gravitational acceleration acts vertically, this stimulation
is equivalent to a continuous rotation (at 0.14Hz) around
the mouse head of a 17◦ tilted constant linear acceleration
stimulus [see Figure 2B in Beraneck et al. (22)]. For horizontal
OVAR responses, quick-phases were identified and removed.
During rotations, the velocity of horizontal slow phases is
modulated (modulation, µ) around a constant bias (β). Both
parameters (µ and β) were calculated from the sinusoidal fit
of eye horizontal slow-phase velocity using the least-squares
optimization of the equation:

SP (t) = β + µ · sin
[

2π · f0 · (t+ td)
]

where SP(t) is slow-phase velocity, β is the steady-state bias slow
phase velocity, µ is the modulation of eye velocity, f0 is the
frequency of table rotation, td is the dynamic lag time (in ms) of
the eye movement with respect to the head movement. The bias
(Maculo-ocular reflex Bias; MORβ) is reported here as the main
index of otolithic response (22, 27)

Motion Sickness Generation
Motion sickness was induced in mice using a double provocative
rotation comparable to the one used in rats by Morita et al. (29).
Animals were tested one at a time. Each animal was rotated for
30min in the home-made motion sickness generating device,
under room lighting (300 lux). This device is composed of one
central axis rotating clockwise a 30 cm-long arm at 60◦/s constant
velocity. At the distal extremity of the arm is a second axis,
which rotates the box containing the animal counter-clockwise
with a sinusoidally-modulated speed (range 5–55◦/s; Figure 1A).
The box containing the non-restrained mouse had a padded
floor. The padding was changed before each test to prevent any
olfactory signaling within the box. The top part of the box was
transparent.

Motion Sickness Evaluation
Kaolin is a mineral clay commonly used in animal feed.
Preparation of a mix of kaolin (Sigma Aldrich #18672) and

1% w/w arabic gum (Sigma Aldrich #G9752-500G), hereafter
referred to as “kaolin”, was similar to that reported by Yu
et al. (30). To quantify the occurrence of MS, we measured the
changes in alimentary preferences observed following an aversive
stimulus. Affected mice eat less of the regular food and instead
turn to kaolin, which has no nutritional value.

Each mouse was housed individually for the entire time of the
experiment, with ad libitum access to water, regular food, and
kaolin. Individual consumption of food (F) and kaolin (K) was
measured daily. The kaolin intake ratio (KIR) is calculated as
K/(K+F) and expressed in percent.

Protective Protocols

Scopolamine dynamics
To test whether the effects of scopolamine were lasting during
the entire experiment, we measured the pupil dilation under
constant artificial lighting (300 lux) in a separate group of
animals (n = 12). Animals were injected with scopolamine
(Sigma Aldrich # S1875-1G; 0.3µg/g of corporal mass, in saline
solution) and the individual duration of the pupil dilation was
measured. During this preliminary experiment, the scopolamine
effects were found to peak within minutes and then to slowly
fade: significant pupil dilatation was seen after 5–7min and this
dilation lasted for at least 90min, i.e., longer than the duration of
the experimental protocols (see Table 1 below). No change in the
pupil size was observed when animals were injected with saline
in the same configuration.

Visuo-vestibular mismatch protocol
To test if decreasing the efficacy of the vestibular system is
causally linked to the protective effect of scopolamine, we took
advantage of a behavioral protocol recently developed [see Figure
2 in Carcaud et al. (24)] that leads to a decrease of VOR gain. A
custom-built device was secured on top of the head holder for
14 days. The device consisted of a “helmet” (size: 2.2 cm width
× 1.5 cm depth × 1.5 cm length; weight 2 g) that completely
covered the mouse’s head. The front of the device was adapted
to the mouse anatomy so that the nose was not covered, and
its width allowed for grooming and barbering behaviors. To
preserve light-dependent physiology and nychthemeral rythm,
the device was made of non-opaque plastic with a thickness of
0.3mm. In addition, 3mm large vertical black stripes were drawn
on the external surface. When the mouse moves its head, the
highly contrasted head-fixed stripes generate a visuo-vestibular
mismatch (VVM). After 2 weeks, we reported a long-lasting
gain-down reduction of the angular VOR of about 50% [range
tested 0.2–2Hz for velocities of 10–50◦/s; see results in Carcaud
et al. (24)]. Here, we take advantage of this protocol to test the
interactions between the VOR and motion sickness.

Design of the Study
Different procedures were designed to test, on one hand, the
functional consequences of motion sickness or of scopolamine
on the vestibular system and, on the other hand, the influence
of scopolamine or of the visuo-vestibular mismatch on motion
sickness.
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FIGURE 1 | (A) Rotation induces motion sickness. Left, scheme of the protocol designed for intra-individual comparison. Animals received saline injection and VOR

was tested before and after a sham experiment and a provocative double-rotation. Right, Pica behavior quantified as a Kaolin Index Ratio was quantified before and

after rotation. (B) Motion sickness reduces angular horizontal vestibulo-ocular reflex. Left panel, raw traces of the eye movement observed during sinusoidal rotation of

the turntable after the Sham or provocative rotation session. Right panel, intra-individual comparison of the VOR gain measured with or without MS. (C) Motion

sickness reduces the maculo-ocular reflex. Off-vertical axis rotation was performed at velocities of 50◦/s. A sample of 4 over 10 cycles of 360◦ rotations at constant

velocity are presented. Left, raw traces of the eye movements evoked with or without MS. Right, intra-individual comparison of the MOR gain measured with or

without MS. In this and all figures, plots represent mean ± standard deviation. Asterisks indicate statistically significant differences with Holm-Bonferroni correction,

*p < 0.05; **p < 0.01; ***p < 0.001 respectively. For table position up is left; for ease of reading, eye position is inverted (up is right).

All behavioral measures reported were performed on
n = 24 mice. 12 additional animals were used in preliminary
experiments to determine the exact parameters used but were not
included in the study.

During the first week, the susceptibility of the 24 mice to
provocative rotations was tested following an injection of a
saline solution (Figure 1A). To account for the inter-animal
variability and non-specific effects, each animal was tested in 2
sessions: vestibulo-ocular reflexes were tested a first time in the
dark (aVOR and MOR testing, pre). Then, the animal was put
into the motion sickness generating device either activated (i.e.,
provocative rotation condition) or not (Sham condition). Finally,

the same vestibulo-ocular reflexes were recorded a second time
in the dark (aVOR and MOR testing, post; Figure 1A).

The effects of scopolamine were tested in a subset of mice
(n = 16). The mice received a scopolamine injection (0.3µg/g
of corporal mass, in saline solution). The mice were then
tested again in the Sham and provocative rotations conditions
(Figure 2A).

To test whether motion sickness could be prevented without
scopolamine, the remaining 8 mice were included in the VVM
gain-decrease experiment (Figure 3A). After the initial motion
sickness tests, the helmet was put on the mouse’s head for 2 weeks
(see section Visuo-vestibular mismatch protocol). Following this
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TABLE 1 | Experimental protocols.

Rationale Protocol Injection Provocative rotation VVM

Control CTL Saline No (Sham) No

Effect of Motion sickness Rotation Saline Yes No

Effect of Scopolamine SCO Scopolamine Oculomotor testing, pre No (Sham) Oculomotor testing, post No

Scopolamine protection against motion sickness SCO + Rotation Scopolamine Yes No

Behavioral protection against motion sickness VVM + Rotation Saline Yes Yes

CTL, Control; SCO, scopolamine; VVM, Visuo-vestibular mismatch protocol.

FIGURE 2 | (A) Scopolamine protects against motion sickness. Left panels, animals already tested with saline received scopolamine injection; VOR was tested before

and after a Sham experiment and a provocative double-rotation experiment. Right, Pica behavior demonstrated the protective effects of scopolamine against motion

sickness. (B) Scopolamine reduces vestibular sensitivity. Left, plots of angular VOR gain show significant reduction at all tested frequencies before provocative

stimulation (Pre measurements). Right, plots of MOR bias shows significant reduction under scopolamine treatment. (C) No additional reduction of vestibular

sensitivity was observed following provocative rotation protocol (Post measurements). Left, plots of angular VOR. Right, plots of MOR bias. Asterisks indicate

statistically significant differences with Holm-Bonferroni correction, *p < 0.05; **p < 0.01; ***p < 0.001 respectively.
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perturbation period, the VOR was recorded immediately after
removing the helmet, and again after the provocative rotation
stimulation. No sham condition was recorded to prevent de-
adaptation of the VOR.

The different protocols are summarized in Table 1.

Electrophysiological Experiments
To measure the neuronal effects of scopolamine, 220 µm-
thick coronal brainstem slices were obtained from 5-week-old
male C57BL/6J mice (n = 18) (24, 31). A total of 51 medial
vestibular nuclei neurons (MVNn) were recorded with patch-
clamp electrodes. The artificial cerebrospinal fluid (aCSF) used
during the dissection and slicing is composed of (in mM):
NaCl (120), NaHCO3 (25), NaH2PO4 (1), KCl (2.5), MgCl2
(3), CaCl2 (0), glucose (10), sucrose (240). The recording
solution differs only for NaCl (120), MgCl2 (2), CaCl2 (1) and
sucrose (0). Analysis of resting discharge parameters, spike shape
and classification of type A vs. type B neurons are similar
to those previously reported (31). The intrinsic properties,
as well as the responses to hyperpolarizing and depolarizing
steps were compared between control conditions, or during
pharmacological testing by the addition of muscarine (10µM),
or addition of muscarine (10µM)+ scopolamine (10µM) to the
bath. All chemicals were purchased from Sigma-Aldrich.

Statistics
All mice were first tested during the Control protocol
(Figure 1), then during one of the two counter-measure
protocols (scopolamine, Figure 2, or visuo-vestibular mismatch,
Figure 3). This approach allowed performing statistical analyses
based on within-subjects models to account for non-specific
and inter-individual variations. Since not all parameters were
normally distributed (as tested with a Lilliefors test), we used
the same non-parametric paired-test (Wilcoxon signed-rank
test) to evaluate statistical significance in all conditions. When
appropriate, a one-tail version was used to account for prior
knowledge about the alternative hypothesis [e.g., the effect of
a treatment on the parameters as the expected reduction of
the VOR gain by the VVM protocol, Carcaud et al. (24)]. The
thresholds for the statistical tests were adjusted using the Holm-
Bonferroni method to account for the numerosity of the planed
multiple comparisons. Although adjusted p-value thresholds
were used to define the level of significance of the statistical
tests, for ease of reading we report in the results section the
corresponding uncorrected value noted with the /c symbol. All
results in both the text and the figures are reported as mean ±

standard deviation.

RESULTS

Effect of Rotation on the Behavior of
Control Mice
Induction and Quantification of MS
In response to motion sickness (MS), mice do not vomit (30,
32); however behavioral proxies can be used in rodents to
assess the debilitating effects associated with MS. Following the
provocative double-rotation protocol, qualitative symptoms such

TABLE 2 | KIR for the different protocols.

Group 1 vs. Group 2 Group 1 Group 2 p

Mean ± SD Mean ± SD

No VVM

protocol;

n = 16 mice

a Sham vs. Rotation 2.90 ± 1.39 6.90 ± 3.18 0.0014

b Sham vs. SCO 2.90 ± 1.39 3.27 ± 2.14 0.2934

c Rotation vs. SCO + Rotation 6.90 ± 3.18 3.86 ± 1.97 0.0026

d Sham vs. SCO + Rotation 2.90 ± 1.39 3.86 ± 1.97 0.4627

e Sham vs. Rotation 3.08 ± 1.67 9.08 ± 3.64 0.023

VVM protocol;

n = 8 mice

f Rotation vs. VVM + Rotation 9.08 ± 3.64 5.13 ± 1.71 0.062

g Sham vs. VVM + Rotation 3.08 ± 1.67 5.13 ± 1.71 0.117

SCO, scopolamine; VVM, Visuo-vestibular mismatch protocol; SD, standard deviation.

as urination, piloerection or tremor were observed, suggesting
that MS had been induced. To quantify the occurrence of
MS, we measured the “Pica” behavior: changes in alimentary
preferences observed following an aversive stimulus (33, 34).
Affected mice eat less of the regular food and instead turn to
a substance referred to as “Kaolin” which has no nutritional
value.

Mice food consumption was measured before and after
their exposure to the Sham condition or provocative rotation
condition (Figure 1A). The quantity of food and of Kaolin was
then compared and used to calculate the Kaolin Index Ratio
(KIR). As expected, the Pica behavior was observed in all mice
(n = 24) following MS induction and the KIR was significantly

increased (Figure 1A; p < 0.01/c; Table 2a,e for the different
protocols).

Sustained Rotation Decreases the Efficacy of the

Vestibular Reflexes
To assess the interplay between vestibular responses and MS
syndrome, various components of vestibulo-ocular reflexes were
tested during passive head-fixed movements performed in the
dark.

First, to determine possible non-specific effects of the
protocol, mice were tested in a Sham condition (put in the device
after saline injection, but not rotated; Figure 1A, left panel).
There was a diminution of aVOR gain by ∼10% (15% at 0.2Hz,

p < 0.05/c; 9% at 0.5Hz, p < 0.05/c; 5% at 1Hz, p > 0.1/c) during
the secondmeasure. To account for this effect, we compare below
and in Figure 1 the different protocols from similar conditions
(e.g., Sham Pre vs. rotated Pre; Sham Post vs. rotated Post).

For all tested frequencies, mice had similar angular VOR gain

(aVOR_G; range 0.45 ± 0.13–0.87 ± 0.19; p > 0.1/c) and phase

(range 20.6 ± 7.2 to −2.5 ± 5.8; p > 0.1/c) responses before
the protocols (Pre values). Following the MS protocol however,
there was a significant decrease in the aVOR gain (Figure 1B;

p < 0.01/c for all frequencies). When the responses before and
after the rotation were compared, the mean decrease in aVOR
gain reached about ∼30% at 0.2Hz and ∼20% at 0.5 and 1Hz
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FIGURE 3 | (A) Visuo-vestibular mismatch reduces vestibular sensitivity. Left, picture of a mouse during the visuo-vestibular conflict protocol. The helmet is kept for 2

weeks. Right panel, Pica behavior demonstrated the protective effect of VVM protocol against MS induced by the double-rotation (B). Left panels, plots of angular

VOR of the n = 8 mice before the provocative rotations (black and deep blue bars) and after the provocative rotations (white and light blue bars). Right panels, MOR

bias ratios in the same conditions. No additional reduction of vestibular sensitivity was induced by the rotation, suggesting protective effects of the VVM protocol.

Asterisks indicate statistically significant differences with Holm-Bonferroni correction, *p < 0.05; **p < 0.01; ***p < 0.001 respectively.

(Figure 1B, right panel). There was also significant changes in
the timing of the aVOR (aVOR_ϕ) toward greater phase leads,
particularly for the low and middle frequencies (0.2 Hz: 1phase

= +5◦, p < 0.05/c; 0.5 Hz: 1phase = +3◦, p < 0.05/c at 0.5Hz; 1

Hz: 1phase=+2.5◦, p > 0.1/c at 1Hz).
As for the angular VOR, Sham condition was first tested for

the maculo-ocular reflex (MOR; Figure 1C) and no significant
differences were found. Before the MS protocol, the efficacy of
the MOR tested in clockwise and counterclockwise direction was
similar in all mice (MORβ: 0.11± 0.06 vs. 0.12± 0.07; n= 24).

Following the MS protocol however, a significant decrease of

∼50% in the efficacy of the MOR was evidenced (p < 0.001/c;
Figure 1C), in both CW (MORβ POST: 0.06 ± 0.04) and CCW
directions (0.06± 0.03).

Overall, these results demonstrate that the provocative
rotation induces motion sickness-associated behavior and affects
the vestibular system by decreasing its response to motion.
This decrease is observed when canal-dependent (aVOR) or

otolith-dependent (MOR) reflexes are recorded; suggesting that
sensitivity to angular and linear motion is affected.

Scopolamine Prevents Motion
Sickness-Related Changes in the
Vestibular System
Scopolamine is known to help preventing motion sickness in
humans. To determine if scopolamine has a comparable effect
on mice, the effect of an injection of scopolamine on VOR and
motion sickness were investigated on a subset of the animals
(n= 16).

First, the effect of scopolamine on the Pica behavior was
measured. Injection of scopolamine did not significantly change
the baseline of the KIR in Sham condition (Table 2b, Figure 2A

black vs. red bar; p > 0.1/c). Then, the protective effects were
tested by rotating the scopolamine-injected mice. While the
rotation was efficient in provoking motion sickness in the
absence of scopolamine (higher KIR with the MS protocol;
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Table 2a, Figure 2A, white bar; p< 0.05/c), the KIR remained low
when scopolamine was preemptively administrated (Table 2c,
Figure 2A, gray bar). The KIR of scopolamine-injectedmice after
rotation was not different from that of the Control condition
(no scopolamine; no rotation; Table 2d, Figure 2A black vs. gray

bars; p > 0.1/c). Thus, while rotation provoked the Pica behavior
in these mice, preemptive injection of scopolamine protected
them against MS.

To determine the interplay between motion sickness and
vestibular sensitivity, the VOR and MOR of mice injected
with scopolamine was recorded. Following the injection of
scopolamine, but in the absence of rotation (no MS induction),

the angular VOR gain of mice was decreased (p < 0.001/c at all
tested frequencies; Figure 2B left panel). The decrease was in
range ∼60% at 0.2Hz and ∼40% at 0.5 and 1Hz. Modifications
of aVOR also affected the timing of the response with a tendency

toward greater phase lead at 0.2Hz (1phase = +9◦, p < 0.10/c)

and 0.5Hz (1phase = +15◦, p < 0.01/c). Notably, this effect of
scopolamine was consistently observed in all injected mice tested
before provocative rotation. Similarly, the MOR of scopolamine-
injected mice was significantly reduced in both CW and CCW

direction (Figure 2B, right panel; p < 0.01/c for both directions).
Since motion sickness and scopolamine injection both induce

reduction of the vestibular gain and increase in phase leads,
we asked whether their combination would lead to a greater
attenuation of vestibular reflexes. When scopolamine-injected
animals were provocatively rotated, the gain of the aVOR
was found to stay significantly lower compared to control

conditions (p < 0.01/c at all frequencies; Figure 2B, left
panel). However, there was no additional decrease between the
scopolamine and scopolamine+rotation groups (Figure 2C, left

panel; all frequencies >0.05/c). A similar result was found for
the MORβ which was significantly decreased by the scopolamine

injection (Figure 2B, right panel, p < 0.001/c) but was not
different in scopolamine-injected mice tested with or without
rotation (Figure 2C, right panel). This result demonstrates
that the preemptive modification of the vestibular reflexes by
scopolamine injection has occluded the effects on the VOR
normally observed following rotation (MS induction).

Since the scopolamine injected groups did not show any
obvious sign of MS (see behavioral proxies, Figure 2A), we
interpret that in saline-injected mice the reduction of the
vestibular reflexes could be causally related to the occurrence of
motion sickness following rotation. Since scopolamine-injected
mice do not suffer frommotion sickness, we hypothesize that the
diminution of the vestibular sensitivity (by scopolamine injection
in this case) could act as a protective mechanism against motion
sickness.

Drugless Protection Against Motion
Sickness
To test this hypothesis, we took advantage of a new methodology
based on a long-lasting (14 days) visuo-vestibular mismatch
(VVM, see Methods) which leads to a significant decrease
in the gain of the VOR (24). Another subset of the mice

(n = 8) was initially tested in control conditions and exposed
to the provocative protocol. Before VVM, these mice had
normal KIR, which again significantly increased following MS

induction (Table 2e; p < 0.05/c). Following these initial tests,
the animals were left unperturbed for 48 h, before to start the
VVM protocol. This methodology consists in putting on the
head of the mouse a device which creates a visuo-vestibular
mismatch. For 2 weeks, the animals were left in their home-cage
with the apparatus on the head [see Figure 3A and protocol in
Carcaud et al. (24)].

How does the VVM protocol affect vestibulo-ocular reflexes?
As expected, the VVM protocol significantly reduced the
gain of the VOR compared to pre-VVM values at all tested
frequencies by >50% (Figure 3B compare black and dark

blue bars; p < 0.05/c). We then compared the maculo-
ocular responses of mice before and after the VVM protocol.
The MOR responses of the mice post-VVM were also
significantly reduced compared to pre-VVM condition by
about 50% in both clockwise and counterclockwise directions
(p < 0.05/c for both directions; Figure 3B right panel). This
result demonstrates that the VOR reduction following the long-
lasting visuo-vestibular mismatch already reported for the canal-
dependent pathway similarly reduces the otolith-dependent
pathways, possibly through central mechanisms [see discussion
in Carcaud et al. (24)].

Could the reduction of vestibular sensitivity following the
VVM protocol prevent motion sickness? As expected the KIR
of these mice was increased by the rotations before VVM
(Table 2e, Figure 3A, right panel). After the VVM, the KIR was

not significantly different from control conditions (p > 0.1/c;
compare black and deep blue bars on Figure 3A). When VVM
mice were rotated (light blue bar), their KIR remained low,

tended to be smaller compared to that of Shams (p > 0.1/c)

and similar to the non-rotated condition (p > 0.1/c). The KIR
in the VVM conditions tended to remain smaller from that
of rotated mice (p < 0.10/c for both non-rotated and rotated
VVM conditions), suggesting a protective effect of the VVM
against MS.

To prevent de-adaptation of the reflexes, no Sham condition
were attempted after removal of the device. VOR and MOR
of the VVM mice were thus recorded immediately after
removing the device (Pre values), and again immediately
after MS rotation (Post values; Figure 3A). The effects of the
provocative rotation were evaluated by comparing the PRE and
POST effects (Figure 3B dark vs. white bars). As previously
described (Figures 1B,C), the provocative rotation induced a
reduction of angular VOR and MOR in control condition seen
as a significant reduction in most tested conditions (compare
black and white bars). Following the VVM protocol, rotation
did no longer affect the efficacy of the vestibular reflexes,
so that VOR gains and MOR bias all remained low and
non significantly different between the VVM and VVM +

rotated conditions (Figure 3B, compare blue and light blue
bars).

Overall, these results show that rotations trigger in control
mice MS symptoms (KIR increase) and lead to a reduction of
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the aVOR gain with increased phase lead, and to a decrease of
MOR bias. Scopolamine or visuo-vestibular mismatch protocols
both reduce the efficacy of the reflexes and offer some protection
against motion sickness symptoms.

To understand the cellular mechanisms of scopolamine,
pharmacological experiments were then conducted on vestibular
neurons recorded on brainstem slices.

Electrophysiological Results
Scopolamine Is Specifically Acting on MVNn

Muscarinic Receptors
Thirty-two medial vestibular nuclei neurons (MVNn) were
recorded in standard ACSF solution. MVNn can be segregated
into subpopulations based on the characteristics of the after
hyperplorization and inter-spike interval (35, 36). Table 3

summarizes the membrane properties computed from
spontaneous discharge (pacemaker activity) of the neurons,
i.e., in the absence of any electrical stimulation. Here, from
the 32 neurons recorded, 8 were type A neurons characterized
by a single, deep afterhyperpolarization (AHP) and 24 were
type B neurons characterized by a biphasic AHP. Apart
from the a priori differences (Concavity, convexity and AHP
parameters), only the firing frequency differed significantly
(p < 0.05) between the 2 subpopulations recorded in control
conditions.

Then, scopolamine (10µM) was applied to the bath. Notably,
the addition of scopolamine did not have any effect on either
type A or type B neurons (Table 3). Since scopolamine acts as
an antagonist of muscarinic receptors, and because muscarinic
receptors have been reported in MVNn (38), we hypothesized
that this absence of modulatory effect could be due to the in
vitro slices recording conditions and in particular to the non-
activation of the muscarinic receptors. This result suggests that
the putative action of scopolamine on MVNn is specific and
restricted to its action on muscarinic receptors.

Muscarine Application Can Either Depolarize or

Hyperpolarize the Cells
A second set of 19 neurons (18 type B and 1 type A) was recorded
in presence of cholinergic agonists (Figure 4A). Since only one
type A was recorded, no interpretation can be made about the
effects of muscarine on this subpopulation.

Muscarine depolarized 11 type B neurons by ∼3mV.
Application ofmuscarine strikinglymodified the frequency of the
spontaneous discharge which nearly doubled (Figures 4B1,C1).
In addition, it slightly but significantly increased the amplitude
of the AHP and the width of the action potential. Finally,
the cellular resistance measured both in presence and in
absence of action potentials significantly increased by ∼30%
(Table 4).

Conversely, application of muscarine hyperpolarized the 7
remaining type B neurons by ∼4mV (Figures 4B2,C2), while
the frequency of the spontaneous discharge was almost halved
and the cellular resistance measured in presence and in absence
of action potentials decreased significantly by ∼40 and 30%,
respectively (Table 5).

Scopolamine Counteracts an Activated Cholinergic

System
What are the effects of scopolamine on both subpopulations?
When applied on the depolarized neurons, scopolamine reversed
all the effects of the muscarine application such that neurons
membrane potential, frequency of discharge, spike parameters
and resistance were all back to normal range and no longer
statistically significantly modified compared to control condition
(Table 4).

When scopolamine was applied on the hyperpolarized
neurons, it also significantly reversed the effects of muscarine
on the membrane potential, frequency of discharge, and
resistance. Compared to control conditions, only the regularity
of the discharge (CV) and interspike interval (Convexity)
were still significantly different compared to control condition
(Table 5).

Overall, these electrophysiological data show that (i)
cholinergic stimulation has opposite effects on specific
subpopulations of type B neurons, suggesting that each might
express specific type of muscarinic receptors, (ii) scopolamine
effects on vestibular neurons depends on cholinergic activation,
is direct and specific, (iii) scopolamine acts as an antagonist
which completely abolished the various cholinergic responses on
all type B neurons tested.

DISCUSSION

Rodent Models for Studying Motion
Sickness Using Combined Genetic,
Molecular and Physiological Approaches
Motion sickness is a disease associated with discomfort, and often
mistaken with the emetic reflex. While the association of MS
and emesis is common in humans, it was demonstrated that
rodents actually lack the brainstem neurological components
responsible for emesis (32). However, the illness-response
behavior known as Pica was identified as an analogous to
vomiting, observed both in response to intoxication (33)
and to provocative vestibular stimuli (29). The Pica behavior
has since the 90’s extensively been used as an index of rat
motion sickness [e.g., (34, 39–41)] and was later validated in
mice (42, 43). In both species, the causal relation between
an intact vestibular system and the Pica behavior following
challenging rotational stimuli was demonstrated (29, 43). Here,
we have shown that in mice, Pica behavior can serve as a
reliable index of motion sickness induced by a double-rotation
paradigm similar to the one originally used in rats (29). We
note that other behavioral symptoms such as piloerection,
tremble, and abnormal urination were also frequently observed,
although not quantified here. The stimulation protocol used
is particularly efficient in generating combined canalar and
otolithic overstimulation. Because of the possibility to use
genetically-engineered mice and to conduct molecular studies,
rodent models have recently attracted the attention of many
research groups. Wang et al. (44–46) have studied in rats
the inter-individual differences and the implication of the
vestibulo-thalamic pathway in the habituation to provocative

Frontiers in Neurology | www.frontiersin.org 9 November 2018 | Volume 9 | Article 918

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Idoux et al. Vestibular System Regulation and Motion Sickness

TABLE 3 | Absence of effects of scopolamine in absence of cholinergic agonists.

Type A (n = 8) Type B (n = 24)

Control condition Scopolamine alone (10µM) p Control condition Scopolamine alone (10µM) p

Vm (mV) −52.76 ± 3.11 −52.69 ± 6.26 1 −51.23 ± 4.69 −50.31 ± 5.70 0.34

F (Hz) 5.61 ± 1.92 1.78 ± 1.24 0.13 13.85 ± 5.89 15.86 ± 11.98 0.57

CV 14.02 ± 8.20 35.86 ± 14.04 0.25 11.86 ± 7.55 24.93 ± 27.94 0.1

AHP (mV) 32.11 ± 7.26 32.40 ± 6.96 0.88 25.83 ± 5.20 25.35 ± 5.61 0.73

Width (ms) 1.70 ± 0.56 1.70 ± 0.52 0.88 0.78 ± 0.23 0.82 ± 0.27 0.12

Concavity

(mV)

−2.79 ± 1.55 −6.16 ± 0.75 0.13 −0.05 ± 0.14 −0.62 ± 1.33 0.06

Convexity

(mV)

0.31 ± 0.28 0.13 ± 0.06 0.13 0.74 ± 0.56 0.49 ± 0.64 0.38

AHPR (V/s) 0.18 ± 0.11 0.14 ± 0.06 0.38 N/A N/A N/A

dAHP (V/s) N/A N/A N/A 6.50 ± 2.41 6.28 ± 3.32 0.85

Resistance

Hyperpol.

(MΩ )

522 ± 177 514 ± 164 0.38 416 ± 141 378 ± 323 0.08

Resistance

Depol. (MΩ )

110 ± 52 153 ± 71 0.13 121 ± 52 120 ± 51 1

Vm, membrane potential, F, spontaneous discharge frequency, CV, coefficient of variation of the spontaneous discharge, AHP, After HyperPolarization, Width, spike width at threshold,

Concavity and convexity: quantification of the shape of the interspike interval, AHPR, quantification of the AHP rectification, dAHP, quantification of the double AHP, Resistance hyperpol:

slope of the IV curve in response to hyperpolarizing steps, Resistance depol: slope of the IV curve in response to depolarizing steps. For more details on how these parameters are

calculated see (31, 36, 37).

TABLE 4 | Effects of scopolamine on neurons depolarized by muscarine.

Depolarized type B (n = 11) I: Control II: Muscarine alone (10µM) III: Muscarine (10µM) +Scopolamine (10µM) p-value

I vs. II II vs. III I vs. III

Vm (mV) −48.37 ± 3.97 −45.08 ± 4.72 −47.89 ± 3.68 0.001 0.001 0.52

F (Hz) 13.50 ± 12.54 23.04 ± 16.71 16.48 ± 14.31 0.001 0.003 0.32

CV 24.18 ± 21.91 19.67 ± 33.44 22.31 ± 21.42 0.24 0.102 0.638

AHP (mV) 24.68 ± 4.31 25.89 ± 4.61 26.45 ± 4.87 0.042 0.175 0.0019

Width (ms) 0.81 ± 0.50 0.86 ± 0.51 0.87 ± 0.59 0.0047 0.848 0.186

Concavity (mV) −0.91 ± 1.87 −0.39 ± 0.76 −1.36 ± 2.10 0.188 0.125 0.813

Convexity (mV) 0.73 ± 0.70 0.90 ± 0.66 0.78 ± 0.53 0.24 0.465 0.7

AHPR (V/s) 0.02 ± 0.03 0.03 ± 0.07 0.03 ± 0.08 0.625 0.625 0.625

dAHP (V/s) 6.36 ± 4.54 5.26 ± 4.13 5.51 ± 4.28 0.0014 0.432 0.105

Resistance

Hyperpol. (MΩ )

362 ± 203 470 ± 277 396 ± 232 0.002 0.002 0.375

Resistance

Depol. (MΩ )

101 ± 49 128 ± 54 106 ± 49 0.002 0.002 0.492

Vm, membrane potential, F, spontaneous discharge frequency, CV, coefficient of variation of the spontaneous discharge, AHP, After HyperPolarization, Width, spike width at threshold,

Concavity and convexity: quantification of the shape of the interspike interval, AHPR, quantification of the AHP rectification, dAHP, quantification of the double AHP, Resistance hyperpol:

slope of the IV curve in response to hyperpolarizing steps, Resistance depol: slope of the IV curve in response to depolarizing steps. For more details on how these parameters are

calculated see (31, 36, 37). Statistically significant differences are highlighted in red.

rotation. They also demonstrated that otoconia-deficient mice
(het) are less susceptible to vestibular MS, indicating the
pivotal role of otolithic overstimulation in MS generation.
Wang and colleagues (47) took advantage of the mouse model
to study the genetic susceptibility to MS by generating MS-
susceptible or MS-resistant mouse strains. This recent work
suggests the implication of a new protein, the swiprosin-1,
in the vestibular-dependent response to MS. Collectively these
studies demonstrate that Pica behavior constitute a reliable

index of MS and reveal the high potential for combined
genetic, molecular and physiological approaches in rodent
models of MS.

Relation Between Vestibulo-Ocular
Reflexes and Motion Sickness
Many studies have investigated the correlation between VOR
characteristics and the susceptibility of the subject toMS, in order
to use the VOR as a predictive measurement of MS. Overall,
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FIGURE 4 | (A) scheme of the pharmacology patch-clamp experiment. (B1), cells depolarized by muscarine; (B2), cells hyperpolarized by muscarine. Scopolamine

counteracts muscarine effect at cellular level, irrespective of initial response to muscarine. (C1) Raw traces from a type B neuron in control condition (left panel),

depolarized following addition of muscarine (middle panel), and re-polarized by the addition of scopolamine (right panel). (C2) Raw traces from a type B neuron in

control condition (left panel), hyperpolarized by muscarine (middle panel) and re-polarized by the addition of scopolamine (right panel). Note that the hyperpolarization

induced by muscarine silenced the neuron (middle panel, red trace). A holding current (gray trace) was injected to ensure the neuron was still correctly recorded.

Neurons presented in (C1,C2) are highlighted in (B1,B2). All numbers and statistics for the electrophysiology experiments are further reported in Tables 3–5.

contradictory results were reported regarding angular VOR and
occurrence of MS (48, 49). Ventre-dominey and colleagues (50)
reported that MS susceptibility co-occurs with decreasing time
constant of the VOR and with the increasing eye velocity during
otolith-specific stimulation (OVAR); however other studies
contradicted this result (51) and rather suggested an implication
of the velocity storage in the genesis of MS during OVAR.
Recently, Clement and Reschke (52) reported a correlation
between MS susceptibility and the phase lead of the VOR at low
frequency, with no correlation with VOR gain. Overall, studies
in humans suggest a closer relationship between MS and VOR
dynamic properties (phase) rather than VOR sensitivity (gain).
Notably, human studies were conducted in order to evoke some
degree of discomfort, but experiments were stopped just before
or as soon as the subject reached sickness (52), limiting the
exposure to motion to typically few minutes, which differs from
our protocol. We note also that the rotation protocol used here

(combination of 2 opposite directions of rotation with sinusoidal
variation in angular speed) is more challenging than the protocols
used in humans. Our results suggest that a lasting provocative
vestibular stimulation leading to the occurrence of MS drives
a significant decrease in the gain of vestibulo-ocular reflexes
associated with an increase in the phase lead. This decrease
in gain similarly concerned the semi-circular canals (angular
VOR) and the otoliths (Maculo-ocular reflex), compatible with
the hypothesis of a central common mechanism. Reduction of
motion sickness following habituation was associated with a
decrease in the time constant of the velocity storage (51, 53–56)
and there is evidence for angular VOR gain reduction correlated
with MS reduction in expert subjects, as for instance in skaters
(57) or in sailors (58). A link between a higher aVOR gain and
an increase in phase lead was also suggested as an indication
of higher seasickness susceptibility (48). Within this framework,
the general decrease in gain and increase in phase lead in
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TABLE 5 | Effects of scopolamine on neurons hyperpolarized by muscarine.

Hyperpolarized type B (n = 7) I: Control II: Muscarine alone (10µM) III: Muscarine (10µM) Scopolamine (10µM) p-value

I vs. II II vs. III I vs. III

Vm (mV) −53.68 ± 3.17 −57.81 ± 5.58 −54.51 ± 5.90 0.0016 0.0016 0.688

F (Hz) 15.64 ± 6.03 8.25 ± 6.59 13.75 ± 7.80 0.0016 0.0016 0.375

CV 11.65 ± 11.74 9.14 ± 8.25 20.52 ± 15.42 0.938 0.375 0.0016

AHP (mV) 24.90 ± 5.36 23.30 ± 6.66 23.02 ± 7.82 0.375 0.688 0.469

Width (ms) 0.82 ± 0.21 0.87 ± 0.25 0.90 ± 0.27 0.688 0.813 0.234

Concavity (mV) −0.11 ± 0.29 −0.01 ± 0.03 −0.30 ± 0.80 1 0.5 0.5

Convexity (mV) 1.20 ± 0.86 0.66 ± 0.46 0.69 ± 0.87 0.047 0.688 0.0031

AHPR (V/s) 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.00 0.5 0.5 1

dAHP (V/s) 3.95 ± 3.41 3.43 ± 2.97 3.58 ± 3.75 0.469 0.938 0.375

Resistance

Hyperpol. (MΩ )

596 ± 300 377 ± 117 462 ± 138 0.0031 0.0031 0.156

Resistance

Depol. (MΩ )

173 ± 131 123 ± 102 197 ± 159 0.0031 0.0031 1

Vm, membrane potential, F, spontaneous discharge frequency, CV, coefficient of variation of the spontaneous discharge, AHP, After HyperPolarization, Width: spike width at threshold,

Concavity and convexity: quantification of the shape of the interspike interval, AHPR, quantification of the AHP rectification, dAHP: quantification of the double AHP, Resistance hyperpol:

slope of the IV curve in response to hyperpolarizing steps, Resistance depol: slope of the IV curve in response to depolarizing steps. For more details on how these parameters are

calculated see (31, 36, 37). Statistically significant differences are highlighted in red.

the vestibulo-ocular responses we report, putatively associated
with a decrease in the general sensitivity of the vestibular
system, might reduce the sensitivity to the conflicting sensory
inputs, and thus putatively help preventing later occurrence
of MS.

Visual and Vestibular Interactions and
Motion Sickness Prevention
If interactions between the VOR main parameters and MS exist,
then it might be possible to act on the reflexes to manipulate
the susceptibility of the patients. Dai et al. (1) demonstrated
in a group of MS-susceptible patients that a visuo-vestibular
iterated training protocol could reduce MS sensitivity for several
weeks following the habituation sessions. We took advantage of
a long-lasting visuo-vestibular mismatch to induce a reduction
in the vestibulo-ocular reflexes that again affected equally both
canals- and otolith-based reflexes. We demonstrated (24) that
this protocol leads to a reduction of the neural responses in
the direct VOR pathway. The cellular mechanisms associated to
this decrease were a reduction in the synaptic efficiency between
the vestibular afferent and the central vestibular neurons and a
decrease in the excitability of subpopulations of central vestibular
neurons (24). In other term, the long-lasting visual perturbation
reduced the brainstem sensitivity to vestibular inputs. Here, we
show inmice that the visually-induced reduction in the vestibular
reflexes offers a protection against MS. Our results suggest that
this effect lasts for at least 3 days, although longer term effects are
possible and would deserve dedicated experiments. Overall, our
neural and behavioral evidence support the possibility of using
visuo-vestibular protocols to habituate susceptible patients to
MS induced by vestibular overstimulation or by visuo-vestibular
sensory conflicts. For example, since myopic people who wear
glasses (but not lenses) have lower angular VOR gains (59), it

would be interesting to test whether they are less susceptible
to MS than myopic people wearing lenses, and even less than
hyperopic people corrected with glasses, whose angular VOR
gain is enhanced because of their high positive lenses. Because
changes in the efficacy of gaze stabilizing systems are often
associated with oscillopsia (60, 61), it would be interesting to
study if patients under anti-motion sickness treatments report
greater oscillopsia during active head motions.

Scopolamine Effects on the Vestibular
Reflexes and on Motion Sickness
Scopolamine is well-known as being among the most efficient
anti-MS drugs in humans. It is commonly used in particular
during space flight as a counter-measure against space motion
sickness. In a series of experiments performed on humans
in the 80’s, Pyykkö et al. (62–64) demonstrated that patches
of scopolamine prevented motion sickness by reducing the
vestibular and optokinetic gains and suggested that the drug
acted on the integrative function of the central vestibular
nuclei. More recently, Werts et al. (14) reported a reduction
of the angular VOR and caloric response following intranasal
administration of scopolamine. Scopolamine had a depressant
action on the response of the semicircular canals, postulated
to be a combination of peripheral and central effects while
it had little effect on the saccular reflex tested with cervico
Vestibular Evoked Myogenic Potentials (cVEMP). On the other
hand, Tal et al. (65) reported a significant decrease in cVEMP
p13 latency following scopolamine administration. Bestaven
et al. (16) demonstrated a significant reduction of ∼30% of the
vestibulo-spinal reflexes following galvanic vestibular stimulation
associated with a decrease in balance test and vertical perception.
In cat, no direct effect of scopolamine on the VOR was found
at low doses, while at high doses the effects were confounded
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by sedation (66). To our knowledge, our experiments for the
first time demonstrate in rodents that the prophylactic effect
of scopolamine is associated with a reduction of vestibular
sensitivity that concerns not only the semi-circular canal but
also the otolith signals. We further show that the preemptive
reduction of the vestibular reflexes by scopolamine injection can
occlude the reduction of the VOR normally observed following
MS. This occlusion suggests that both phenomena rely on a
single mechanism or that, if the two processes are distinct, they
converge on the same neuronal elements that cannot be adapted
below a certain threshold.

Neuronal Mechanisms and Motion
Sickness
What are the neuronal mechanisms associated with MS?
Experimental evidence suggests that the processing of divergent
sensory inputs in various brain areas (e.g., cerebellum; thalamus)
contributes to patients’ MS and also impacts the functioning of
many cortical areas (67, 68). A key observation which emphasizes
the instrumental role of the vestibular system may be, however,
that patients with a total loss of labyrinthine function do not
get motion sick [review in Lackner (5)]. In addition, in most
instances it is the exposure to passive, rather than active,
motion that leads to MS (69). In the vestibular nuclei and
in the fastigial nuclei of the cerebellum, neurons categorized
as “vestibular-only” were demonstrated to differentially encode
passive and activemovements (70–74). The proposedmechanism
is termed “reafference cancelation.” It suggests that the vestibulo-
cerebellum is using an internalmodel to predict the consequences
of active, voluntary movements and substract this reafference
signal from the signal sensed by the vestibular organs, termed
exafference signal. As a result of the substraction of reafference
and exafference, the discharge of vestibular-only neurons would
represent the difference between the expected movement and the
actual movement. Their discharge thus codes the “unexpected,”
passive part of head movements. Vestibular-only neurons are
implicated in vestibulo-spinal and vestibulo-sympathic pathway
and are nowadays the best candidate for motion sickness
generation within the vestibulo-cerebellum (73).

The identification of vestibular-only neurons in vitro still
remains to be done. However, recent data have suggested that
type B neurons constitute the vestibular-projection neurons

while type A neurons would constitute the interneurons

implicated in local regulation of activity (24, 35). It was also
demonstrated that VN neurons that project to the cerebellum
and are implicated in vestibulo-cerebellar regulatory loops are
glutamatergic, so there is a high probability that vestibular-
only neurons and neurons that project on the cerebellum are
dominantly type B neurons. Here, all tested type B neurons
were found to be modulated by cholinergic stimulation. The
presence of nicotinic and muscarinic acetylcholine receptors
(mAChR) in the vestibular nucleus with high density in the
medial vestibular nucleus is well documented (75–79). Two
distinct populations of type B neurons were found based on
their modulation by the cholinergic system. Acetylcholine had
opposite effects on these subpopulations, suggesting the existence
of different receptors. Zhu et al. (38) reported that among
the five mAChR subtypes, M2 and M3 may be the most
highly expressed in the rat MVN. Interestingly, M2 is linked
to the excitatory Gq/11 proteins, while M3 is coupled to the
inhibitory Gi/o proteins (80, 81), and both receptors could play
distinct roles in regulating vestibular afferent activity onto MVN
neurons and activity of cerebellum-projecting neurons (38). The
potential of mACHR subtype-specific agonists and antagonists
as counter-measures again MS should be the focus of future
studies.
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