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Abstract

While motor interaction between a robot and a human, or between humans, has important implications for society as well
as promising applications, little research has been devoted to its investigation. In particular, it is important to understand
the different ways two agents can interact and generate suitable interactive behaviors. Towards this end, this paper
introduces a framework for the description and implementation of interactive behaviors of two agents performing a joint
motor task. A taxonomy of interactive behaviors is introduced, which can classify tasks and cost functions that represent the
way each agent interacts. The role of an agent interacting during a motor task can be directly explained from the cost
function this agent is minimizing and the task constraints. The novel framework is used to interpret and classify previous
works on human-robot motor interaction. Its implementation power is demonstrated by simulating representative
interactions of two humans. It also enables us to interpret and explain the role distribution and switching between roles
when performing joint motor tasks.
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Introduction

Joint action is a fundamental aspect of human life [1], as we

collaborate or interact with peers in most actions. This paper

concerns in particular joint actions with motor interaction, which

stands either for ‘‘physical interaction’’ (which is ambiguous as

physics is not restricted to mechanics) or for ‘‘haptic interaction’’

(as haptics concerns (touch and force) sensing while interaction

additionally requires a motor action). Many common tasks rely on

the motor interaction of two humans, such as sawing, dancing,

physical rehabilitation, fighting, mating, carrying a table, etc. [2]

(see some examples in Fig. 1). As voluntary movement is the

defining characteristic of animals, it is plausible that motor

interactions are at the basis of all social and communication

behaviors [3]. How humans deal with motor interactions is largely

unknown, and has not been systematically studied until recently.

In fact, in the last 150 years, human motor control research has

been devoted mostly to the study of walking [4] and free arm

movements [5]. It is only in the last 40 years that robotic interfaces

have been used to investigate how humans interact with the

environment (e.g., [6–8]) and with each other (e.g., [9,10]) to

perform a variety of tasks.

Understanding how humans interact in tasks requiring motor

interaction is an interesting and challenging new field of research,

and is critically important to designing robots interacting with

humans. Recent years have seen a surge of cooperative robots,

such as assistive devices for industry [11], robotic wheelchairs to

increase the mobility of people with physical or cognitive deficits

[12], workstations with haptic feedback which can be used to train

surgeons [13], and robotic systems to increase the amount and

intensity of physical therapy after stroke [14].

Therefore, it becomes necessary to develop tools for character-

izing and understanding the nature and the issues of interactive

tasks. Having a taxonomy of interaction kinds and strategies would

enable us to identify the interaction strategies humans use. This

may help us creating robots that react as humans do during motor

interaction, as well as efficient human-robot dyads able to use the

best of the human and the robot. Therefore, we would like to

design a taxonomy of interactive behaviors that can classify the different kinds

of motor interactions, model the agents’ behavior and simulate their control.

In order to do so, we first reviewed literature on motor

interaction behaviors in the fields of human computer interaction

(HCI), robotics, psychology and game theory [15]. The main

results on taxonomies for motor interactions can be summarised as

follows:

N Some taxonomies from HCI (e.g., [16,17]) can be used for

motor interactions, but are not specific to them and difficult to

apply in concrete tasks.

N Analyses of motor interaction kinds [18,19] have defined roles

according to either the trajectory [20] or the force [21].

Models using both trajectory and force (e.g., [22]) are complex

and thus difficult to use.

N A few implementations of controllers with flexible behavior

have been developed [20,21], which are based on simplified

taxonomies and thus not adapted to all situations. For instance,
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important motor interactions for humans such as competition

have not been considered.

N While studies on psychological [23] and social factors [24]

influencing joint action focused on kinematic and haptic

information exchanges present interesting analyses, they could

hardly be used to generate joint motor behaviors.

These shortcomings of previous taxonomies for motor behaviors

prompted us to describe the role distribution during a joint motor

action in a simple quantitative way. First, the nature of the task

and how it constrains the choice of possible behaviors for each

agent and their interactions was studied. Then, the role of each

agent was defined through a cost function that it needs to

minimize, and the interaction between the two agents arises by

their physical coupling. This enables us to use mathematical tools

from Game Theory, optimal control and nonlinear adaptive

control in order to derive the two partners’ motor behavior and

adaptation.

It has been shown in neuroscience studies that humans interact

with the environment by minimizing error (e) and effort (u)

[25,26], which can be modelled as the minimization of the cost

function

V (t):ae2(t)zbu2(t),a,bw0: ð1Þ

Furthermore, when interacting with novel dynamics, humans

adapt force, mechanical impedance and trajectory to minimize

such a cost function [27–29]. Similar cost functions will be used to

model the interaction of two agents.

This paper’s outline is as follows. A framework for motor

interactive tasks and control is first introduced, in the form of a

simple taxonomy for the interaction between two agents,

physically coupled (directly or through an external object or tool)

and conditioned by the tasks they are carrying out. The paper then

presents how the taxonomy can be used to classify existing

implementations of human-robot motor interaction, and provides

an overview of the problems that remain to be addressed. The new

taxonomy can also be used to generate appropriate behaviors, as is

illustrated in simulations. Finally, possible applications of the

framework to other fields like behavioral psychology and agent

theory are described.

Methods

A framework for motor interactions
Game theory [30], which describes and analyzes situations

where interactive decisions take place, appears as a natural

framework to consider the motor interaction in a human-human,

human-robot or robot-robot dyad. Game theory comprises a set of

analytical tools to predict the outcome of complex interactions

among decision makers, obeying to a strategy based on perceived

or measured results. Two-player games, such as the motor

interactions considered in this paper, play a fundamental role in

game theory because their analysis is straightforward; John von

Neumann’s minimax theorem [30] establishes a unique value of

such games.

Models that address the interaction among individual decision

makers are called games and the rational decision makers are

referred to as agents in this paper. Interaction between the agents is

represented by the influence that each agent has on the resulting

outcome through a cost function representing its objectives.

Steady-state conditions in which each player is assumed to know

the equilibrium strategies of the other players, and no player has

anything to gain by changing only his own strategy unilaterally,

known as Nash equilibria, can be identified [31,32]. The interaction

tasks can be seen as differential games, also called utility-based games,

where the evolution of the partners’ state variables is governed by

differential equations. The problem of finding an optimal strategy

in a differential game is closely related to optimal control. Note

that while game theory has been originally conceived to model

conscious (and also rational) decisions of agents, interaction

behaviors may be at least in part automatic (i.e. without voluntary

control) and sometimes unconscious. Agents behavior may be well

described by the mathematical (game theoretical) framework

without assuming that they know exactly what they have to do or

think about it. However, the reaction to a sudden change that can

be seen as irrational is considered as a transition in the system so

does not affect its properties (such as existence, uniqueness, etc.).

Interaction definition. We consider the interaction of two

agents, 1 and 2, that:

N generally aim at minimizing their effort ui, i~1,2.

N perform separate actions a1 and a2 or a common action a,

whose performance is rewarded by reinforcement signals ri or

evaluated through error measures ei, i~1,2.

N are each equipped with multimodal sensors. To simplify the

exposition, we will focus on sensors measuring position, force

and body contact. Agent 1 is able to perceive its own error e1

and estimate the partner’s error e2 (denoted by êe2), whereas

agent 2 perceives e2 and estimates e1 (denoted by êe1).

N are equipped with actuators able to affect the environment and

the other agent with suitable force and mechanical impedance,

using a controller Ci(ai,ei,êej), i,j~1,2, i=j (i.e., j~1 if i~2
and j~2 if i~1). êej denotes the estimate from i of the error of

the other agent.

Figure 1. Different tasks requiring interaction between two agents (here represented with LegoH parts and characters). From left to
right: sawing, lifting a heavy load together, agonistic arm wrestling task and interactive dancing task.
doi:10.1371/journal.pone.0049945.g001
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In summary, each agent i has to fulfil a task by minimizing some

error (or maximizing some reward) while using minimal metabolic

cost. Each interaction behavior will arise from the combination of the

minimization of the individual cost functions Vi(ai,ei,êej ,ui,ûuj),

i=j, i,j~1,2, and is thus characterized by these two cost

functions.

The nature of the motor interaction between the agents depends

on the combination of their personal behaviors, as will be

described in more detail in the ‘‘Taxonomy of interactive behaviors’’

section of the Methods, and is also constrained by the particular

task(s) carried out, which will be described in detail in the ‘‘Divisible

vs. interactive tasks’’ and ‘‘Agonistic vs. antagonistic tasks’’ sub-sections of

the Methods. These cost functions can also be used to adapt

behavior as will be described in the ‘‘Learning’’ paragraph of the

Results. The following task description extends the approach of

[33] about representations and action monitoring supporting joint

action.

Divisible vs. interactive tasks. We start our description

with divisible tasks, which are composed of compatible subtasks that

can be completed by each agent independently. In some cases the

task could be completed by each agent alone, such as painting a

house walls together [34], or the task in the left panel of Fig. 2,

where two animals can pull a rope to move a pallet and obtain

food. Other divisible tasks have disjunct but complementary

subtasks, such as a hybrid force-position controller in which

position control and force control are executed independently in

separate subspaces [35].

In divisible tasks, the two agents do not need to know anything

about the other agent in order to succeed in their respective

subtask. As the two agents are acting independently, each agent

can minimize its own error and effort, which we represent by the

same cost function as was found when one human is interacting

with the environment [25]:

Vi(t):aie
2
i (t)zbiu

2
i (t), i~1,2: ð2Þ

We name such independent behavior co-activity.

A task in which (at least) one agent needs a partner to carry out

its (sub)task is called interactive. The Game Theory formalism

embraces interactive tasks, in which the activity of one agent

affects the other agent. The middle panel of Fig. 2 illustrates an

interactive task that has been used to examine the social behavior

of animals such as chimpanzes [36], elephants [37] and hyenas

[38]. In this task no animal can succeed in securing the food

without the help of its partner. As in an interactive task the agents’

behaviors are dependent, thus the behavior is more complex than

with a divisible task, and the cost function depends on both agents:

Vi(e
2
i ,êe2

j ,u2
i ,ûu2

j ), i=j. The rich repertoire of behaviors that can be

adopted in interactive tasks is described in subsection ‘‘Taxonomy of

interactive behaviors’’ of the Methods.

Agonistic vs. antagonistic tasks. Both divisible and inter-

active tasks can be agonistic or antagonistic. In an antagonistic task,

performance improvement in (at least) one agent is detrimental to

the partner, due to conflicting interests, as is illustrated in the right

panel of Fig. 2. An agent’s gain (or loss) of utility is exactly

balanced by the loss (or gain) of the utility of the other agent. If the

total gains of the agents are added up, and the total losses are

subtracted, they will sum to zero; that is why these types of

interactive tasks are considered as strictly competitive and

correspond to zero-sum games in game theory (the total benefit

to both players in the game, for every combination of strategies,

always adds to zero). Examples of antagonistic tasks include arm

wrestling, rope pulling game and fighting. In general, the agents

have distinct subtasks and there is no common task.

In contrary, in agonistic tasks improvement in one agent’s subtask

contributes to the improvement in the common task. This category

stains numerous interactive tasks like moving a heavy table

together, dancing or mating, where joint action is the only solution

to succeed in the task, but also divisible tasks such as hybrid

position/force control. Both the left and middle panels of Fig. 2

are agonist tasks. In such a case, the task enforces cooperative

behavior and these types of interactive tasks correspond to the

cooperative games of game theory.

In summary, tasks are determined by two antagonisms:

divisible/interactive, and agonistic/antagonistic. Divisible tasks

induce a co-active behavior which will help both agents in

agonistic tasks, such as in the left panel of Fig. 2, and can be

mutually detrimental in an antagonist task, such as in the right

panel of Fig. 2. Similarly, interactive tasks can be either agonistic,

Figure 2. Example of different kinds of tasks two agents can carry out. We consider simple tasks in which two animals can pull a rope in
order to approach a pallet with food. ei is a measure of error relative to the target and ri a reward increasing when the state approaches the target. In
the divisible task, each agent contributes to his own subtask (i.e., pulling the rope), which helps getting the pallet for both animals. In the interactive
task the two agents have to collaborate in order to succeed in completing the task. In the antagonistic task the performance of one agent is
detrimental to the other.
doi:10.1371/journal.pone.0049945.g002
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such in the middle panel of Fig. 2, or antagonistic, when a Sumo

fighter pushes as much as possible against the opponent and

suddenly drops the force in order to destabilize him.

Taxonomy of interactive behaviors
The behaviors adopted to perform interactive tasks can be

classified in three main categories: cooperation, collaboration and

competition. Competition will be mainly observed during the

antagonistic tasks as a noncooperative game, whereas various

kinds of cooperation and collaboration will mainly occur during

agonistic tasks and will be treated as a cooperative game (the

partners are able to form binding commitments). These categories

and the associated cost functions are summarized in Fig. 3 and will

be described now. Note that the associated cost functions suggest a

utility-based game theoretic approach, in which the behavior of

the agents depends on the utilities being chosen.

Competition vs. collaboration. In a competition, both agents

focus on their own action and effort, and if necessary impede the

other’s performance in this purpose:

Vi(t):aie
2
i (t)zbiu

2
i (t){ ci êe

2
j (t)zdi ûu

2
j (t)

� �
, i=j, i,j~1,2: ð3Þ

In this scheme the two agents may have different goals, such as

reaching different targets at the same time with the same object, or

the same goal, such as when two children attempt to grasp the

same cookie. In contrast, in a collaboration both agents jointly try to

develop a consensual solution to solve a problem [39], and, as in

cooperative games, no agent has incentive to leave the coalition

formed and receive a smaller utility. A collaboration is also

modelled as a symmetric behavior (i.e., the cost function’s structure

does not change under the permutation 1<2), but this time with

positive influence on the partner:

Vi(t):aie
2
i (t)zbiu

2
i (t)z ci êe

2
j (t)zdi ûu

2
j (t)

� �
, i=j, i,j~1,2: ð4Þ

Each agent minimizes its and the partner’s error and metabolic

cost (i.e., energy, force, etc.).

Cooperation vs. collaboration. In a collaboration, there is

no a priori roles distribution, but a spontaneous roles distribution

depending on the interaction history. Any physical interaction

with negotiations and discussions to accommodate others while

considering their perspective, belong to this category. In this case

‘‘activity is synchronized and coordinated in order to build and

maintain a shared conception of a problem’’ [40].

In contrast, a cooperation occurs when different roles are ascribed

to the agents prior to the beginning of a task and this distribution is

not questioned until its completion. While in collaboration the

agents work on an even basis, cooperation has an uneven

distribution of subtasks or roles during the task [39]. Cooperating

agents work towards the same end and need each other to

complete the task, but are not equal. In fact, cooperation is

characterized by an asymmetric behavior, in the sense of asymmetry in

the cost functions as tested from the permutation 1<2.

Master-slave vs. education. The most typical asymmetric

relationship of a cooperation is the master-slave scheme. This

behavior is characterized by the following cost functions:

V1(t)~c1êe2
2(t)zd1ûu2

2(t) slave,

V2(t)~a2e2
2(t)zb2u2

2(t) master:
ð5Þ

The master is only considering himself, while the slave considers

only (his perception of) the master needs. The above cost functions

illustrate the danger of this relation, where the slave does not

consider its own effort expense and may eventually lose all its

energy.

We want now to examine the teacher-student relationship. This

relation is critical to human society and education, and also to

developing service robots. The efficiency of all kinds of virtual

reality based training systems (for surgery, sport, etc.) and robot-

assisted physical rehabilitation systems will namely depend on a

suitable interaction behavior. One may a-priori think that the

master-slave scheme applies here as well, with the teacher as

master and the student as slave. However, efficient learning

schemes suppose that the student is building his own capacities

while the teacher is assisting this process. Similarly, 20 years of

experience with robot-assisted neurorehabilitation of stroke

patients have shown that stroke survivors improve their motor

functions only when actively attempting to move, but do not

improve when they can rely on the robot to move their arm

[41,42].

Therefore, the master-slave interaction behavior is not appro-

priate for education. However, an altered version of an assistance

can be considered for the relationship between a teacher and his

Figure 3. Definition of main kinds of behaviors (in interactive tasks) through cost functions. For simplicity, the time variable (t) was
omitted in the cost functions.
doi:10.1371/journal.pone.0049945.g003
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student, or a sportsman and his coach. A good teacher will try to

maximize the student’s independence. Therefore, the teacher can

minimize his own effort in order to challenge the student, let him

perform according to his capabilities and eventually increase them.

In the education behavior, the cost functions V1 of the teacher and V2

of the student are thus defined as:

V1(t)~b1u2
1(t)zc1êe2

2(t) teacher,

V2(t)~a2e2
2(t)zb2u2

2(t) student:
ð6Þ

This definition describes the main quality of a good teacher as

the capability to maximize student involvement and action. Even if

the teacher is an expert in the task (good at minimizing goal error)

or wants to help the student, he should not care too much about

the task achievement (i.e., adopt the slave role), but let the student

try and improve his or her performance. Indeed, ‘‘the goal of the

teacher is to become obsolete as soon as possible, leaving the pupil

to perform the skill on his or her own’’ [43].

Mutual assistance. Finally, the anecdotical mutual assis-

tance or reciprocal altruism [44] can also be represented in our

taxonomy, using cost function

Vi(t)~ci êe
2
j (t)zdi ûu

2
j (t), i,j~1,2, i=j: ð7Þ

This ideal interaction behavior occurs in particular contexts such

as the iterative prisoner dilemma and associated strategies such as

tit-for-tat [45], where the interaction strategy is selected by

considering long term benefits.
A tool to interpret switchings between interactive

behaviors. The importance of transitions between distinct

behaviors has been emphasized in [46]. The above framework

enables us to understand the relations between distinct interaction

behaviors in the case of interactive tasks. As illustrated in Fig. 4,

collaboration and competition both involve symmetric behaviors

between the partners and distinguish themselves principally by the

helpful vs. harmful interaction, i.e., only by a sign change in the

cost function. This may suggest how easy it is to switch between

these two interactive behaviors, i.e., from ‘love to hate’ or

conversely.

As already mentioned, assistance and education differ only in

the energy preservation making the slave an educator, as in

Beaumarchais’ ‘‘Marriage of Figaro’’ [47], when a clever servant is

in fact leading the action and helping the master to change his

perspective, which eventually results in a new collaboration.

Conversely, a collaboration degenerates into a cooperation when

one agent focuses on itself and the other, either obeys in the

assistance or accepts to look for the other’s task in the education.

Note that both collaboration and competition require from the

agents the capacity to interpret their partner’s behavior [48].

Therefore, an autistic agent, which may not possess this capacity,

would hardly be able to work in a symmetric collaboration or

competition situation. In fact, the interaction of two autistic agents

may correspond to co-activity. In a cooperation, an autistic agent

could be the master or the student (thus is able to learn), while the

complementary roles of slave and teacher would require the

capability to interpret the partner’s behavior.

Results

Classification of human-robot interactions
We now want to examine how human-robot interactions can be

classified and interpreted within our framework. Based on the

analysis of last two sections, we first developed a logigram to

facilitate the classification, which is shown in Fig. 5. Note that

some questions could be asked in a different order, e.g., first those

about the agonist/antagonist, and then those about the divisible/

interactive alternatives. This scheme is used to classify various

human-robot interaction behaviors found in the literature.

Assistance (cooperation). The name ‘‘robot’’ stems from

slave or serf [49], and in fact many projects have developed

robotic slaves for assisting humans in performing tasks, e.g., to help

lifting and carrying heavy or bulky objects. The most common

example is provided by teleoperation systems [50] as well as force

extenders or exoskeletons to amplify the physical capabilities of

humans [51]. A force amplifying exoskeleton tries to minimize the

human master effort, while it is mechanically connected to the

human body and is transferring power to it (in contrast to remote

teleoperation). Recent years have seen the development of lower

limb extenders, in particular for military applications [52].

Robots can be designed to assist human beings in specific tasks

by providing assistive forces or trajectory corrections [53], or by

guiding movements within a restricted workspace [12,54]. A

robotic interface to guide the user’s motion along desired

directions while preventing motion in undesired directions or

regions of the workspace [55] can be considered as a slave, because

it provides appropriate support during action and cannot complete

the main task alone. In robotics literature, such robotic aids are

Figure 4. Relations between distinct interaction behaviors. Such changes are mainly controlled by a higher control layer influencing the
choice of the interactive strategy, before the interaction (according to some previous experience of the task completion and learning processes) or
during the interaction (through the perception of signals that the central nervous system tries to recognize and interpret in order to predict future
action.)
doi:10.1371/journal.pone.0049945.g004
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encountered as intelligent assistive devices (IAD) or simply robotic lifting

assistants.

Robots providing an assistance behavior also include the cobots

or collaborative robots described in [56]. Despite their name, these

robots do not collaborate in the sense of our taxonomy, but are in

fact conceived to yield a master-slave behavior. As these cobots

track human operator behavior and react accordingly (with for

example, a load lifting assistant fitted with an assistance to motions

in the plane, provided according to the angular movements of the

loading cable [57]), they implement assistance behavior rather

than co-activity.

Various platforms, e.g., mobile robots with a robotic arm [58],

which involve a controller to detect the intentions of the human

user [59,60] or the control of multiple slave robots [61], are other

applications of the assistive scheme. Finally, robot teach pendants

where the human teacher directly moves the robot that records the

motion to reproduce, or imitation learning [62] where the robot is

moved according to data of human movement recorded in some

other way, also correspond to an assistance scheme, because the

robot is passively following the human example.

Education (cooperation). As mentioned in subsection

‘‘Taxonomy of interactive behaviors’’ of the Methods, a typical example

of the education type of interaction is the therapist-patient

relationship in physical rehabilitation. For instance, during

poststroke neurorehabilitation [14], a therapist will help the stroke

survivor to move the arm or the hand adequately, but will decrease

motion assistance while the recovery progresses. Haptic interfaces

for sport training and rehabilitation robots aim at emulating this

behavior. Even if the ‘‘passive mode’’ used in first stage, where the

arm is moved by the robot, is similar to an assistance scheme, the

‘‘active mode’’ in which robot is only correcting patient

movements ‘‘just-as-needed’’ is similar to an education scheme

[41,42,63,64].

In fact, a recent model of motor learning in humans provides a

suitable tool to adapt assistance provided in rehabilitation robots

and sport trainers. In this model [25,65,66], force, impedance and

trajectory are adapted to minimize motion instability, error and

effort. Error minimization ensures that the task will be performed

successfully if the human user is not able to do so, but effort

minimization makes the robot ‘lazy’ so that the human has to do as

much as he or she can. Interestingly, the computational model,

based on the gradient descent of a cost function similar to Equ.(1),

yields an efficient adaptive controller [28] (briefly described in the

Learning section of the Results) that can be implemented on

rehabilitation and sport robots [67]. Assuming that the patient

focusses on his or her performance, he or she will, together with

the robot trainer, perform according to the education behavior of

Equ.(6).

Educational interaction, where robot is active and corrected by

the teacher through motor interaction can further be found in [68]

where the user helps a humanoid robot reproducing a movement

(previously recorded) to refine its gesture by kinaesthetic teaching,

or in [69] where a robot learns how to perform a collaborative

manipulation task through demonstration using a haptic interface.

Similarly, Ikemoto et al. [70] developed an algorithm dedicated to

robot learning through physical interaction with humans.

Co-activity. There are many divisible tasks where robots or

humans interact without needing to know what each other is

doing, and incidentally interact and succeed in the common task.

In fact, separating tasks in independent but complementary

subtasks where each of the robot or the human performs well, is in

many cases an efficient way to perform joint actions, as no

negotiation thus sensory exchange is required, enabling safe and

simple solutions without inference.

For example, the Acrobot robot assistant for bone surgery [71],

which constrains surgeon’s motion to a predefined region,

facilitates surgery without knowledge of the surgical task. Such

situations typically arise when the task is decomposed into subtasks

carried out by independent controllers. Similarly, simple assistive

devices developed to help manufacturing, e.g., to compensate

gravity during tool or parts manipulation, use co-activity, as they

just compensate load in the vertical direction using actuators or

spring systems while leaving the movements on the plane

unrestrained.

Some robots that at first sight appear to rely on a competitive

scheme, are actually only using a co-activity scheme, and lead to a

fight between the partners because of the divisible and antagonistic

nature’s task. For example, the electroactive polymers (EAP)

actuated arm robot [72] that was able to win a wrestling match

against a human opponent for the AMERAH challenge (Arm

wrestling Match of EAP Robotic Arm Against Human) only tries

to minimize its own error without considering human action.

Collaboration. A very limited number of projects have tried

to implement interaction beyond simple cooperation, by intro-

ducing role switching and continuously adapting interaction, thus

allowing robots to collaborate with humans. Collaboration

examples include the experiments reported in [20], during which

robot behavior is continuously adapted to the human partner, and

the study [21], where role distribution is negotiated.

Recent work has presented a method in which the robot’s

assistance level, and thus also its role, are continuously adapted

according to an estimate of human’s disagreement level [73] or to

the magnitude of the partner’s contribution, together with a formal

Figure 5. Determination of motor interaction behavior. First the
underlying task is determined (green squares). For interactive tasks then
the exchanges between the agents determine the type of interaction
behavior (blue boxes).
doi:10.1371/journal.pone.0049945.g005
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analysis of human-robot force cooperation [74]. Another collab-

oration example consists of implementations of hand-shaking with

a robot, because handshake is typically mutual (as illustrated by

the fact that a weak and passive hand is felt as weird). A hand

shaking robot system providing realistic experiences was developed

using a hidden Markov model-based approach that allows the

robot to estimate human intentions and adapt its behavior [75].

Competition. It is hard to find examples of motor compe-

tition between humans and robots in the literature. We believe

that this is due to the taboo (as expressed by the first Asimov’s laws

of robotics) that ‘‘a robot may not injure a human being or,

through inaction, allow a human being to come to harm’’ [76].

This has limited research on the development of controllers

designed to physically beat humans, while robots are already

superior to humans in chess playing [77] and obviously in

memory.

While some studies have been made about robot-robot

competition, such as the football Robocup [78], human-robot

competitions are only planed, such as the football competition

projected in 2050. Recent military projects aimed at designing

robotic soldiers and mobile robotic platforms equipped with

weapons [79] will probably soon exhibit some ability to use their

firepower against opponents according to some competitive

scheme, even if ethical debate still rages over it [80],[81].

Simulation of simple motor interactions between two
humans

This section illustrates how our taxonomy can be used to

implement interactive tasks using optimal control. It presents a

simple simulation of two human agents rigidly fixed to a one

degree of freedom pointmass that they have to move from one

position to another, using various kinds of interactive behaviors

described in subsection ‘‘Taxonomy of interactive behaviors’’ of the

Materials and Methods. In this interactive agonistic task the two

subtasks correspond to the task itself.

The interaction between two agents the dyad can be seen under

a game theoretic framework. The type of interaction (game)

depends on the cost of each agent and also on the coupling

between them. In the case of cooperation or collaboration, when

there is perfect knowledge of the state, then the problem can be

transformed into an optimal control problem for each player [82],

whereas in the case of antagonistic tasks, the problem can be

considered as a utility-based non-cooperative game [83].

Details about the dynamics of the modelled agents, the

approach used to translate the cost functions defined in the Table

of Fig. 3 into a unified cost function for optimal control, as well as

the couplings used in the simulations, are given in the Materials

and Methods. The obtained results are presented next. Figures

where obtained through the simulation of dyad dynamic

interaction on MATLAB (MathWorksH) with the linear-quadratic

state-feedback regulator available in the Control System Toolbox.

Cooperation (assistance) vs. collaboration. To imple-

ment the assistance example, we consider that the metabolic cost is

much larger for the master than for the slave, and that the cost of

the error of the master is high for both master and slave (see

Materials and Methods for the numerical values used). On the

other hand, collaboration is defined similarly to a symmetric

cooperation but with a common will to reduce both errors and a

similar metabolic cost for the two agents.

Fig. 6 compares the object’s movement and the force profiles for

the cooperation vs. collaboration. Due to the smaller weight of

metabolic cost, the slave (in dashed blue) provides most of the

required amount of forces, e.g., the ratio of integrated square force

is 2.7 between slave and master. Increasing the difference between

both agent metabolic costs will accentuate the asymmetry in the

relation, but will also tend to increase the movement duration.

Figure 6. Cooperation (assistance) vs. collaboration. Left: the object trajectory is shown (plain line shows object displacement during a
collaboration whereas dotted lines during cooperation scenario). The object is initially placed at position 2 meter away from the target that should be
reached (position 0). Right: the forces applied by each agent on the object to make it reach the target position are shown on the right (plain lines
shows force profiles applied by the each partner during the collaboration whereas dotted lines shows the force profiles applied by the master and
the slave during an assistance scenario). Similar overall amount of force is needed in both cases, but the symmetric collaboration enables to reach the
target faster.
doi:10.1371/journal.pone.0049945.g006
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In the collaboration case (solid lines in Fig. 6) the two partners’

effort (i.e., the sum of the two integral of the square forces) are

similar, leading to a reduction of the individual effort (i.e.,

integrated square force) and to a 16% reduction of the time to

reach 95% of the movement distance, relatively to the coopera-

tion.

Education. The teacher attempts to concurrently minimize

his effort and reduce what he perceives from student’s error. Two

cases were simulated: one where the student is interested in the

completion of the task (higher cost of error for the student) and one

where the student is lazy, thus not really interested in error

minimization (low cost of error for the student) and saves his effort

through a higher weight of metabolic cost (see Materials and

Methods for the numerical values used).

Fig. 7 compares the performance obtained with the hard

working student (solid lines) and with the lazy student (dashed

lines). With the hard working student the teacher needs to spend

only 0.75 of the student effort (measured by the integral of squared

force), while with the lazy student he spends 3.59 times as much

effort as the student. The movement is also 1.11 faster with the

hardworking student, because the teacher refuses to behave as

slave and forces the lazy student to participate.

Divisible antagonistic task. In this case, we simulated the

co-activity scheme with a simple divisible task using a different target

position for each agent, i.e., the subtasks are antagonistic. In order

to get a clear solving of the simulation, we defined one agent to be

stronger than the other through their metabolic costs (see

Materials and Methods for the numerical values used).

Fig. 8 illustrates that co-activity, because of the nature of the

task which is antagonistic, leads to important increase of the

energetic expenditures : force levels increase (up to 7N) and non

zero asymptotic forces appear (+/2 0.5N) even when one of the

subject’s target is reached (i.e., co-contraction), while the

movement duration increases by more than 20% compared to

the mean of reaching time obtained with the previous schemes.

Although the behavior may appear as a competition, this is a co-

active behavior. Due to the dominance of one subject the game did

not end up to an optimal solution for the system or a Nash

equilibrium (a state in which none of the two agents is willing to

unilaterally change her action) as could be expected in a non-

cooperative game.

Learning
This section illustrates how the cost functions determining the

behavior can lead to motor adaptation, and how the taxonomy

can be used to determine the control of a sport training robot step-

by-step.

Considering that control is realized as the addition of

feedforward (u) and feedback (v) motor commands:

w~uzv , ð8Þ

we have recently derived a learning law to adapt the feedforward

motor command (u) along a repeated movement [28] or in

arbitrary movements [84], such as to minimize error and effort

Equ.(1). For instance, if u is a linear function of a parameter vector

p, i.e.

u~Y(q, _qq)p, ð9Þ

(where q is the position vector and _qq its derivative), then the

gradient descent minimization of error and effort yields the

learning law

pnew~pzDp, Dp~YT (aezbDeD){c, a,b,cw0, ð10Þ

Figure 7. Cooperation: education scheme with hardworking or lazy student. Left: trajectory of the object during the two scenarios. Right:
profiles of force applied by each subject to complete the task during the two scenarios (plain lines for the scenario where the student is lazy and
mainly relies on the teacher to perform the task, dotted lines for the scenario where student is hardworking). Teacher strategy (cost function) remains
the same in the two scenarios. However, although the teacher tries to minimize his involvement in the task, when he is interacting with a lazy student
he is forced to provide a significant effort to bring the object on target.
doi:10.1371/journal.pone.0049945.g007
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which adapts the feedforward motor command as a function of

error e. This extended nonlinear adaptive controller can be used

to adapt force and mechanical impedance as demonstrated in

[28,84].

Interestingly, all the cost functions in Fig. 3 are formed of error

and effort terms, so can be used to learn the own dynamic model

or/and the dynamic model of the partner. For instance, if a

robotic trainer is used by a human subject to learn a physical task,

then the subject will likely modify his or her muscle activations

according to Equ.(10) [85,86]. If the training robot is controlled

and adapted using the same laws, this will yield the education

behavior in which the human will be assisted ‘‘only as needed’’.

Note that above cost function can be used with other learning

techniques such as reinforcement learning [87].

Finally, let us now describe step by step the design of control for

a sport training robot, by answering the questions of Fig. 5. The

control subtasks of the user and the robot are not independent, so

this is an interactive task. The sport trainer should not harm the

user, so this task is agonistic. As the robot has to help the user, so

their behaviors will be different and this is thus a cooperation.

Finally, we have explained above that the robot should be greedy

so as to yield good training, thus we are in the behavior’s

education type. We can thus implement above adaptive controller

on the robot in order to let it promote optimal training of the

human user.

Discussion

This paper has introduced a generic framework to describe,

analyze, generate and adapt motor interaction behaviors, consist-

ing of a classification of the tasks through which subjects interact,

and a taxonomy of motor interaction behaviors for two agents

such as human-human, human-robot and robot-robot. In this

framework, the partners’ roles can be determined by answering a

few simple questions as it was presented in Fig. 5. As the study of

interaction of a human with the environment and between

humans is complex, due to the redundancy brought by the two

actors and the possible influence of conscious/high-level processes,

and not much experimental material is yet available, we decided to

develop this framework using an axiomatic top-down approach.

However, some of the behaviors described, in particular the

education behavior, are directly based on a successful computa-

tional model [25] that resulted in a novel interactive controller for

robots [28]. While there are multiple ways to represent motor

interaction behaviors, our taxonomy enables us to characterize a

wide range of interactive strategies in a simple and extendible

approach. This was illustrated by classifying existing human-robot

interaction behaviors, and by generating control of typical human-

human motor interactions. The concrete application of our

description for the design of robot’s behaviors will have to address

practical issues that are out of the scope of this paper, whose goal is

to define the framework and taxonomy. In particular, as for other

optimization frameworks, the mathematical solution may require

care of the computational aspects.

From a mathematical point of view, our framework embraces a

utility-based Game Theoretic approach, using a set of cost

functions to organize, understand and reproduce human motor

behaviors of interactions with partners. Once the nature of the

underlying task has been characterized, existence and uniqueness

of a Nash equilibrium are established from Game Theory. As soon

as the task has been formulated, the utility function of each player

is chosen based on the assumption that the players will work

towards the objective of the task, thus guaranteeing the rationality

assumption of the participating players. Game Theory methods

yield distributed decision making, allowing players to have

different utility functions, and providing the tools to characterize

the existence and uniqueness of a Nash equilibrium. It also

provides tools to analyze and describe the performance of the

system as a whole, though this could also be provided by

alternative methods such as Lyapunov stability, contraction

Figure 8. Co-activity during a divisible antagonistic task, with a subject stronger than the other. Left: trajectory of the object during the
competition (green), with in red stronger subject’s target position and in blue the weaker subject’s one. Right: force profile applied by each subject
during the completion of the task. The stronger subject (red) is able to force the other (blue) to follow him, which leads to non-zero terminal ‘‘co-
contraction’’ (level of applied force is non-null at the end of the task).
doi:10.1371/journal.pone.0049945.g008
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mapping or passivity theory. Furthermore, an analysis of the flow

exchanges between subjects (using for example a Bond graph

representation of the system [88]) could be used to identify the

roles of each partner and thus, the nature of the interaction.

For simplicity, our framework omitted noise in the perception of

own and partner’s error or energy expenditure, though these may

be key factors to explain switchings between multiple strategies

[88] that can occur during a task completion. Similarly, we did not

consider how the history of interaction may influence a current

interaction behavior [89] and subject’s prediction capability.

The taxonomy of this paper and its simple approach based on

cost functions to describe interacting agents could also be used in

different fields, other than motor interaction between a human

and a robot. In neuroscience and medicine for instance, it could

help interpreting pathological interactive motor behaviors (e.g.,

autistic behavior) through simulations of altered perception of the

partners’ action or one own action. Replacing ‘‘motor error’’ by

the ‘‘market share to gain’’ and ‘‘energy expenditure’’ by

‘‘investments’’ could bring a clear formalism of company strategies

and policies [90]. While these fields have used Game Theory, our

taxonomy provides a fine characterization of the different roles

which is not explicitly contained in general Game Theory. Finally,

the simplicity of the adopted mathematical framework makes it

suitable for use in philosophy and experimental psychology,

offering computational tools for experiments, simulations and

validations in the field of theory of action.

Materials and Methods

Simulation model
To illustrate how the cost functions of Fig. 3 can generate

interactive behaviors, we simulate two human agents i~1,2
moving a pointmass m along a single axis according to the applied

forces f1 and f2. Interaction between the agents is realized through

the application of forces on the rigid object.

Arm dynamics of one agent. A simple model of the arm

dynamics can be developed by assuming that the pointmass m is

moved along the axis by the combined action of all muscles of

agent i represented by the force fi(t), thus:

fi~m€ppi ð11Þ

fi(t) is computed from the control signal ui(t) using the model of

[91], where t is the time. This muscle model is a second-order

linear filter, that can be written as two first-order filters by using an

auxiliary variable gi(t)

t1i _ggi(t)zgi(t)~ui(t),

t2i
_ff i(t)zfi(t)~gi(t),

ð12Þ

where t1iw0, t2iw0 are the time constants for agent i. Let pi(t) be

the ‘hand’ position of agent i at time t, vi(t) the corresponding

velocity, and m the ‘arm’ mass. Using the discrete-time

transformation t~1,2 . . . T

_pp(t)?
p(tzDt){p(t)

Dt
, _vv(t)?

v(tzDt){v(t)

Dt
,

_ff (t)?
f (tzDt){f (t)

Dt
, _gg(t)?

g(tzDt){g(t)

Dt
,

the dynamics of one agent moving the mass m are:

pi(tzDt)~pi(t)zvi(t)Dt,

vi(tzDt)~vi(t)zfi(t)Dt=m,

fi(tzDt)~(1{Dt=t2i)fi(t)zgi(t)Dt=t2i,

gi(tzDt)~(1{Dt=t1i)gi(t)zui(t)Dt=t1i:

ð13Þ

Defining the error to the target p�i as ei(t)~pi(t){p�i , the dynamic

equation pi(tzDt)~pi(t)zvi(t)Dt becomes:

ei(tzDt)~ei(t)zvi(t)Dt: ð14Þ

Representing the current state of the discrete-time system for each

agent i manipulating the same object as

xi(t)~ e(t) v(t) fi(t) gi(t)ð ÞT ð15Þ

(because in our simulations the different subjects are applying

forces on one single rigid object and thus e1(t)~e2(t)~e(t) and

v1(t)~v2(t)~v(t)), the state of each agent i yields

xi(tz1)~Aixi(t)zBiui(t) ð16Þ

with

Ai~

1 Dt 0 0

0 1 Dt=m 0

0 0 1{Dt=ti2 Dt=ti2

0 0 0 1{Dt=ti1

0
BBB@

1
CCCA,Bi~

0

0

0
Dt

ti1

0
BBBBB@

1
CCCCCA
:

The linear optimal gains Li can be found via a Linear-Quadratic

regulator (LQR), thus the input ui(t) is given by

ui(t)~Lixi(t): ð17Þ

For a linear system with white Gaussian noise optimal gains Li

could be computed using Linear-Quadratic-Gaussian (LQG)

control (though this is considered out of the scope of this paper).

The cost function for each agent i consists of the quadratic

function

Ji~
XT

t~1

xT
i (t)Qi(t)xi(t)zuT

i (t)Ri(t)ui(t) ð18Þ

where

Qi(t)~

wei(t) 0 0 0

0 wvi(t) 0 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA and Ri(t)~wui(t):

The optimal gain at time t is given by

Lt~(BT StBzRt)
{1BT StA, ð19Þ

where St is the solution to the associated discrete-time Riccati

equation:
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AT StAStA
T StB(BT StBzRt)

{1BT StA~Qt ð20Þ

provided (A,B) is controllable, Rt is positive definite and Qt is

semi-positive definite.

Dyad’s dynamics. The state-space equation of both agent

yields

x1(tz1)~A11x1(t)zA12x2(t)zB1u1(t)

x2(tz1)~A22x2(t)zA21x1(t)zB2u2(t)

where xi is the state vector of agent i and A11, A12, A21, A22 are

defined below. Hence

x(tz1)~Ax(t)zBu(t) ð21Þ

with

x(t)~
x1(t)

x2(t)

� �
,u(t)~

u1(t)

u2(t)

� �
,A~

A11 A12

A21 A22

� �
,B~

B1 0

0 B2

� �
:

This representation allows treatment of a general class of problems

with different initial positions, errors, velocities, etc. For interac-

tion through a rigid body

A~

1 Dt 0 0 0 0 0 0

0 1 Dt=m 0 0 0 Dt=m 0

0 0 1{ Dt
t12

Dt
t12

0 0 0 0

0 0 0 Dt
t11

0 0 0 0

0 0 0 0 1 Dt 0 0

0 0 Dt=m 0 0 1 Dt=m 0

0 0 0 0 0 0 1{ Dt
t22

Dt
t22

0 0 0 0 0 0 0 1{ Dt
t21

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

, B~

0 0

0 0

0 0
Dt

t11
0

0 0

0 0

0 0

0 Dt
t22

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

: ð22Þ

In A we can identify

A11~

1 Dt 0 0

0 1 Dt=m 0

0 0 1{ Dt
t12

Dt
t12

0 0 0 Dt
t11

0
BBBB@

1
CCCCA, A12~

0 0 0 0

0 0 Dt=m 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA,

A21~

0 0 0 0

0 0 Dt=m 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA, A22~

1 Dt 0 0

0 1 Dt=m 0

0 0 1{ Dt
t22

Dt
t22

0 0 0 Dt
t21

0
BBBB@

1
CCCCA:

such that the interaction is realized through the non-zero

component in A21 and A12. The cost function Ji(t) for each

agent is again given by

Ji(t)~
XT

t~1

x(t)T Qi(t)x(t)zui(t)
T Ri(t)ui(t), ð23Þ

where Qi(t) describes the kind of interaction and Ri(t) the

strategy.

As aforementioned, since the task involves the interaction

between two agents, a utility-based game theoretic framework

could be employed in order to analyze the behavior of the agents

as a dyad, and also the performance of each agent. However, in a

joint cooperative or collaborative task the optimal strategy for the

two agents can be determined using optimal control on the joint

cost for the task’s implementation.

Simulation parameters. The simulations shown in the

Results use a mass of 1 kg, T:7s and

t11:t12:t21:t22:0:04. The components in the diagonal of

the R matrix were: R1:R2:5. Let the cost function Qi of agent i

be defined as the diagonal matrix:

Qi:diag(qei
,qvi

,qfi
,qgi

,qej
,qvj

,qfj
,qgj

) ð24Þ

with j~1 if i~2 and j~2 if i~1.

Tuning the values of the elements of Qi allows to directly modify

the values of the gains a,b,c,d used in all the cost functions of the

framework to define the different interactive kinds: ai:fqei
,qvi
g,

bi:fqfi
,qgi
g, ci:fqej

,qvj
g and di:fqfj

,qgj
g. Thus, simulating the

different interaction cases is performed by tuning the values of Qi.

For example, to simulate the assistance behavior, the slave

motion is defined by the cost function V1(t)~c1êe2
2(t)zd1ûu2

2(t) and

the master behavior by V2(t)~a2e2
2(t)zb2u2

2(t). The slave, only

interested in minimizing the master error and energy will thus

have very small cost values for fqe1
,qv1
g:a1 (the cost of his own

trajectory and velocity error) and (fqf1
,qg1
g:b1 (the cost of his

own force) and high cost values for fqe2
,qv2
g:c1 (the cost of his

own trajectory and velocity error) and (fqf2
,qg2
g:d1. The master

will only care for his own trajectory and energy and thus will have

a Q matrix characterized by null values for fqe1
,qv1
g:c2 and

fqf1
,qg1
g:b2.

The simulation of the divisible antagonistic task shown in the

Results uses the same mathematical framework previously defined.

However the simulation model is adapted to allow the use of two

different errors, by adding an offset on one of the position feedback

through Equ. 21.

Then, for each case:

N Assistance:

– slave: Q1~diag(0:1,0:1,0:00002,0:0001,8,8,2:1,5:1)

– master: Q2~diag(0,0,0,0,8,8,2:1,0)

N Collaboration:

– partner 1: Q1~diag(9,6:1,0:02,2:41,4:76,4:76,0,0)

– partner 2: Q2~diag(0,0,0,0,9,6:1,0:02,2:71)

N Education:

– teacher: Q1~diag(0:1,0:1,7:3,7:1,4:76,4:76,0,0)

– lazy student: Q2~diag(0,0,0,0,4:76,4:76,20:2,9:2)

– hardworking student: Q2’~diag(0,0,0,0,11:24,11:24,4:2,5:2)

N Co-activity (divisible antagonistic task):

– subject: Q1~diag(100,0:1,100,100,0,0,0,0)

– stronger subject: Q2~diag(0,0,0,0,100,0:1,1,1)
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Figures shown in Results were generated by simulating the

detailed dyad’s dynamic on MATLAB (MathWorksH), through the

use of the linear-quadratic (LQ) state-feedback regulator for

discrete-time state-space system.
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