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ABSTRACT

The fundamental diagram links average speed to density 
or traffic flow. An analytic form of this diagram, with its com-
prehensive and predictive power, is required in a number 
of problems. This paper argues, however, that, in some as-
sessment studies, such a form is an unnecessary constraint 
resulting in a loss of accuracy. A non-analytical fundamen-
tal diagram which best fits the empirical data and respects 
the relationships between traffic variables is developed in 
this paper. In order to obtain an unbiased fundamental di-
agram, separating congested and non-congested obser-
vations is necessary. When defining congestion in parallel 
with a safety constraint, the density separating congestion 
and non-congestion appears as a decreasing function of the 
flow and not as a single critical density value. This function 
is here identified and used. Two calibration techniques – a 
shortest path algorithm and a quadratic optimization with 
linear constraints – are presented, tested, compared and 
validated.
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1.	INTRODUCTION
Traffic flow theory is the basis for understanding, 

controlling and predicting the movements of vehicles. 
It deals with variables at different levels of aggregation 
in time or space and determines relations between 
them [1]. 

The most popular, simplest and oldest relation in 
the traffic flow theory is the fundamental speed-den-
sity relationship. Its history and developments are 
described in [2–3]. The graphical representation of 
the relationship between any two of these variables is 
called the fundamental diagram (FD). It describes how 
speed decreases with density – this decrease is due 
to safety reasons. 

An analytical FD allows an easier representation of 
traffic phenomena and is often necessary in at least 
three cases: when relations between car-following 
models and the FD are investigated [4]; when consid-
ering a stochastic traffic flow model, which leads to 
specifying a stochastic FD and making analytical as-
sumptions about its form and the form of its random 
fluctuations [5]; when constructing explicit solutions to 
the Lighthill-Whitham-Richards (LWR) traffic flow mod-
el [6].

In other cases, however, such as with macroscopic 
traffic simulation models or assessment studies [7], an 
analytic FD is not necessary. Furthermore, recent sen-
sor approaches, such as floating vehicle data (FCD) or 
similar means, have a wide spatial coverage regarding 
their measurements but do not provide information 
about traffic state variables such as flow or density. 
An already calibrated FD is used for the estimation of 
these variables ([8] and [9]). The use of an analytical 
FD does not allow the estimation of state variables for 
high speeds since the FD curve often has a very flat 
branch near free-flow speeds. Using an empirical FD 
allows to take into account all data and to have more 
accurate values for different speeds.

In this contribution, the proposed speed-density re-
lationship is neither analytic nor a set of analytic func-
tions, but just the function which best fits the data.

To respect the traffic flow theory, it is mandatory 
to have a decreasing speed as a function of density. 
When density increases, the average space headway 
between two consecutive vehicles decreases, there-
by decreasing the space gap. A decreasing speed 
must accompany this decreasing gap; otherwise, the 
stopping distance (which increases with the speed) 
becomes unsafe. Appendix A shows that, when de-
fining congestion in parallel with a safety constraint, 
the density separating congestion and non-conges-
tion is, most often, a decreasing function of the flow. 
This function generalizes the critical density value; it  
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With a global form being somewhat restrictive, a 
set of piecewise linear regressions that is able to re-
produce the capacity drop is successfully proposed in 
[23].

Kerner [24] argued that congestion includes two 
different traffic phases: the synchronized traffic (when 
the downstream front is fixed at a bottleneck) and the 
wide moving jam. This reduces the scope of use of the 
FD, which should be used only in cases where the con-
gestion structure is near the one prevailing when the 
FD has been calibrated. 

Forerun by Daganzo & Geroliminis [25], who pro-
vided empirical evidence for the existence of an ur-
ban-scale FD, many promising approaches and ap-
plications explore network-scaled relations between 
vehicle density and space mean flow – called macro-
scopic fundamental diagram [15, 26].

In this paper, an empirical fundamental relation-
ship is reworked to ensure that speed decreases with 
density. Until recently, a low computational cost was 
required, but nowadays computers perform fast cal-
culations, even with a great number of parameters. 
When a large number of parameters is justified and 
does not decrease the robustness of the model, there 
is no justification for calibrating a simplified model us-
ing only a few parameters, which implies a loss of infor-
mation. Building an FD which best fits the data leads 
inevitably to increased accuracy. 

3.	TYPE OF DATA AND THE CALIBRATION 
PROCESS 

3.1	 Type of data used for calibrating an FD

Data for calibrating an FD consists either of trajec-
tory data [27] or of loop data by vehicle at some points, 
or of loop data aggregated for a time period (flow, oc-
cupancy and possibly average speed). 

The first category of data enables comprehension 
of phenomena and accurate preprocessing in order to 
remove the noise. The second category allows speci-
fying FDs by length of vehicle [28] and acutely study-
ing the variability. Data of the third category are more 
commonly available and used. 

The fundamental equation of traffic flow establish-
es the relationship between the three main macroscop-
ic variables – flow, speed and density. If a relationship 
is established between any two of the variables, the 
relationship of the third one can be controlled by the 
following equation:

Q K Vs$= 	 (1)

where K is the density, Q is the flow and Vs is the space 
mean speed. 

impacts the fundamental diagram. Additionally, it 
should be noted that, for high flows, the safety con-
straint might be not complied with.

The only constraint used to build the non-analyti-
cal FD in this paper is to respect the assumption that 
speed decreases when density increases. 

In this paper, the use of the FD and the state of the 
art are presented in Section 2. The type of data and 
the calibration methodology are presented in Section 
3. Two approaches are explored for determining the 
FD. In the first one, the shortest path approach (SPA, 
Section 4) gives the congested and non-congested 
speeds related to the flow; the non-congested speed 
is constrained to decrease when the flow increases, 
whereas, in congestion, speed is constrained to in-
crease with the flow. In the second one, a decreasing 
speed related to density is obtained due to an algo-
rithm – the linear quadratic optimization with linear 
constraints (QOLC, Section 5). 

Section 6 is dedicated to validation and transfer-
ability. Then, some conclusions and perspectives are 
outlined. 

Two appendices are dedicated to the density 
threshold separating congestion and non-congestion 
– the first one in relation with the safety constraint and 
the second one in relation with a particular FD (Under-
wood, [10]). These appendices show that this density 
threshold is a decreasing function of the flow. 

2.	THE USE OF THE FUNDAMENTAL 
DIAGRAM 
According to Coifman [11], “much of traffic flow 

theory depends on the existence of a fundamental 
relation between flow, Q, density, K, and space mean 
speed, V.” In first-order traffic models, an FD is used in 
conjunction with a conservative equation, initial con-
ditions and conditions on demand [12] [13]. In classi-
cal second-order models [14], the FD is included in a 
speed equation that takes into account dynamic space 
and time effects. The new family of second-order mod-
els, the generic second-order modeling (GSOM), com-
bines a first-order model with the dynamics of driv-
er-specific attributes [15]. 

A number of analytical speed-flow or speed-densi-
ty relationships have been proposed and calibrated, 
including by Greenshields [16], Greenberg [17], Edie 
[18], Underwood [10] and May [19]. These models, 
however, do not take into account certain phenomena 
such as spontaneous congestion, random variations, 
capacity drop and hysteresis, that are described in 
[20], [21]. A functional form for the FD, based on gen-
erative functions applied on an inverse of a general-
ized space interval, is proposed in [22]. This functional 
form is the solution of a system of constraints (speed 
decreases with density; a concave flow density rela-
tionship...). 
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Density K in Equation 1 is replaced in Equation 6 by 
the ratio .Leff l

x
+  It is not really the spatial density 

required by the traffic flow theory, but it is suitable for a 
lot of traffic models which only simulate what happens 
at the beginning or at the end of sections.

3.2	 Calibration of the fundamental diagram

Data used in the following sections consist of 
six-minute records of average speed and flow (Qi, Vi), 

with i as the time index; density Ki is derived as .V
Q

i

i  
Data were collected in 2009–2010 on the A1 motor-
way linking Paris to Lille, in the north of France. The 
speed-density or speed-flow relationships are calibrat-
ed using a dual loop detector on a section situated at 
4 km from the city of Lille. The speed there was limited 
to 110 km/h as on other urban motorways in France; 
since traffic operators wanted to reduce this speed lim-
it to 90 km/h, an ex-ante assessment of this measure 
was made [7], where fundamental diagrams, as close 
as possible to the data, were required to facilitate the 
comparison between the simulated new scheme and 
the empirical data. This was the motivation for this 
paper. On this road section, the motorway has five 
lanes in each direction. The relationships presented 
here are calibrated for the third lane, from Paris to-
wards Lille. We used data from the year 2010. After 
the elimination of empty periods (six-minute periods 
without vehicles) and irrelevant data (speed < 2 km/h 
or speed > 200 km/h, or traffic flow ≥ 320 vehicles/ 
6 minutes), 58,000 six-minute data were used out of 
the 87,600 of total data.

The curve corresponds to the generalized exponen-
tial model Q V K e ( / )

f
K K0$ $= - a

 with Vf=111.9 km/h, 
K0=36.8, a=1.48.

Drivers might adapt their speed with respect to 
their time headway, it being linked to the flow, which 
is in a certain unit and is the inverse of the average 
time headway. The data used to calibrate a speed-flow 

The space mean speed is computed when the 
speed vj is available for every vehicle j on the whole 
section – the space mean speed is their harmonic 
speed average.

When only flow and density are available, the space 
mean speed is defined as their ratio. 

When data come from a dual loop detector, the 
spot speed of vehicle j when it reaches the detector is 
marked as vj; although these spot speeds are different 
from the previous definition, their harmonic average is 
used for the space mean speed:

V Q v
1 1 1

s jj

Q

1
=

=
/ 	 (2)

When data come from a loop detector giving only 
flow and occupancy x, and if an estimation of the av-
erage length of vehicles is available, a relation anal-
ogous to Equation 1 arises. Indeed, let l be the length 
of the loop detector and Lj be the length of vehicle j; 
each vehicle j passes the sensor during a time equal 

to v
L l

j

j +
, vj is the spot speed of vehicle j at the de-

tector; occupancy (for one time unit) is the sum of the 
passage times of vehicles passing the detector – their 
number, in a time unit, is the traffic flow Q:

v
L l

j

j

j

Q

1
x =

+
=
/ 	 (3)

Let Leff be the effective average of lengths Lj, 

weighted by .v
1

j

L Q
V

v
L

eff
s

jj

Q
j

1
$=

=
/ 	 (4)

implies

L l Q
V

v
L

Q
Vl

eff
s

j

j

j

Q
s

1
$ $ x+ =

+
=

=
/ 	 (5)

thus

Q L l
V

eff
s $ x= + 	 (6)
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Figure 1 – Speed-flow FD for motorway A1: plotted empirical data corresponds to the third lane, January-June 2010
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–– Due to individual or contextual (meteorology,...) 
reasons, some drivers avoid high speeds (at free-
flow) but have a common behavior at capacity. This 
speed reduction implies an increase of the flow/
speed ratio (thus of density) which vanishes when 
the flow increases to capacity.
At a given flow q, the empirical dataset (qi, vi) 
leads to a dataset in the (flow x density) space 

, .q q k v
q

i i i

i= =a k  For a given flow q, the splitting 

of the k v
q

i i
=a k  in two parts – round Kfree(q) and  

Kcongested(q) – is optimal (i.e., the deviation is 
minimum) when the threshold on ki is equal to 

( ) ( )
.

K q K q
2

free congested+
 This function decreases 

when q increases for the well-known Underwood 
FD [10] (see Appendix B). This is a clue for a de-
creasing density threshold.
The equations and the process giving the FD (with-
in the above constraints) are below. For readability, 
the width of each class is one unit, so there are 
qmax classes for a flow from 1 to qmax. The periods 
are grouped in a class according to their flow (sub-
script q). 
For every flow class q, let nq be the number of pe-
riods of the class, let Qq

j  and ,Vq
j  j=1…nq be the 

empirical flows and average speeds, respectively. 
Without any loss of generality, for every flow class 
q, the ,Q Vq

j
q
j_ i  pairs are assumed to be sorted 

when j varies from 1 to nq, according to the ratio 
Q
Vq

j
q
j

 (the first j corresponds to the smallest ratio). 
Let W ,q k

free  and W ,q k
congested  be the average of the em-

pirical speeds Vk
j  when density is smaller or great-

er than k, respectively.
Let nq,k be the number of class q periods with den-
sity smaller or equal to k. 
If considered that, for the flow class q, k is the den-
sity threshold separating congested and non-con-
gested periods, the empirical FD will consist of two 
values at the traffic flow q.
The average of non-congested empirical speeds is:

W n
V

, ,q k
free

q k

q
j

j

n

1

,q k

=
=
/ 	 (7)

The average of congested empirical speeds is: 

W n n
V

, ,q k
congested

q q k

q
j

j n

n

1,q k

q

= -
= +
/ 	 (8)

The measure of the scatter at the flow level q is 
the residual between the observed and modeled 
speeds; if the threshold separating congested and 
non-congested regimes were the density k(q) (typ-
ically, whatever is q, the critical density is kcrit) the 
measure of the scatter would be the following:

relationship often consists of flows (Qi) and average 
speeds (Vi) at a traffic detector for a set of periods i; 

density is estimated by the ratio .V
Q

i

i  
The FD generally does not synthesize the data 

properly because these data are, for different reasons, 
very scattered (see Figure 1). An important cause of 
variability arises from inhomogeneous conditions due 
to accelerations, transient states, platoons, “synchro-
nized” vehicles. In an inhomogeneous period, the ob-
served flow Q is partly obtained during non-congested 
sub-periods with low occupancy (i.e., low density) and 
partly during congested sub-periods with high occu-
pancy (i.e., high density).

To calibrate a speed-flow diagram, it is necessary to 
use a threshold for separating periods of non-conges-
tion and periods of congestion in the empirical data. 
Non-congested periods contribute to the calibration of 
the non-congested branch of the FD, where the speed 
Vfree(q) is a decreasing function of the flow, and the 
ratio ( ) ( )K q V q

qfree
free=  is increasing. Congested pe-

riods are used to calibrate the congested branch of 
the FD, where the speed Vcongested(q) increases with the 
flow – the ratio ( ) ( )K q q

q
V

congested
congested=  not being 

constrained to decrease.
The two branches of the FD meet at the point 

where the flow is maximum – the speed is then the 
critical speed, and the density (the capacity divided by 
the critical speed) is the critical density. The capacity 
might be taken as the highest traffic count observed; 
the critical speed is the average of harmonic mean 
speeds observed at periods of the highest traffic count.

When browsing the non-congested branch of the FD 
from zero flow to capacity, the ratio ( ) ( )K q V q

qfree
free=  

increases from zero to the critical density. Also, the 
critical density is generally used to separate congest-
ed and non-congested points. However, the lower flows 
are little concerned by the critical density. Nothing pre-
vents defining congestion (then separating congested 
periods from non-congested ones) not with a single 
critical density threshold, but with a threshold function 
of the flow k(q). This function is assumed to be monot-
onous – swinging is not explainable and should result 
from over-identification of the FD from the dataset.

When it comes to a density threshold function, 
there are several arguments for decreasing rather 
than increasing with the flow:

–– It results in a better numerical adjustment (see Re-
mark 2).

–– A parallel between the density required by a safe-
ty constraint, and the density threshold function 
shows that this function is decreasing, at least until 
the flow reaches a certain value (see Appendix A).
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Speed must decrease with density 
Equation 12 does not always imply a decreasing 

speed with density. Both parts of the FD, where the 
functions are monotonous, are examined below: 
1)	 The non-congested part
	 In this condition, the two last terms of Equation 12 

imply that, when q varies, the speeds W ,q k q
free
^ h  can 

be extended in a decreasing function related to the 
flow V(Q). It can be assumed that this function is 
continuous and differentiable and V’(Q) is deriv-
ative related to Q. With V(Q) decreasing, V’(Q) is 
negative (or null). The fundamental diagram says 
that Q is a function Q(K) of the density. Then the 
composition V(Q(K)) (i.e., V◦Q) can be formed, giv-
ing the speed related to the density. 
We show below that vice versa also applies, that 
speed also decreases with density (i.e., the con-

straint is satisfied). Indeed, as ( ) ( )K Q V Q
Q

=  is 
the density related to the flow, its derivative related 
to Q is:

'
'

K Q V Q Q V Q
V Q1

2$= -^ ^
^
^h h
h
h 	 (14)

As V’(Q) is negative, Equation 14 implies that K’(Q) 
is positive and Q’(K), the derivative of Q related to 
K, is also positive. Indeed, at every point K=k, the 
value of Q’(K) is the inverse of the value of K’(Q) 
at Q=q.
The derivative related to K of the compound func-
tion V◦Q is:

' 'dK
dV V KQ Q K$= ^ ^ ^hh h 	 (15)

	 It is negative because V'(Q(K)) is negative, where-
as Q’(K) is positive.

2)	 The congested part 
	 In this part, the two first terms, W .q k q

congested
1 1- -^ h  and 

,W ,q k q
congested
^ h  of Equation 12 are extended in an in-

creasing function (also marked as V(Q), assumed 
to be continuous and differentiable with V’(Q)≥0 
as well). This does not imply that the speed also 
decreases with density. Indeed, as V’(Q(K))≥0, 
K’(Q) given in Equation 14 is the sum of positive and 
negative terms, it is, therefore, not always negative. 
This is verified only if the following applies: 

( )' 'V Q KQ V Q V Q 1< >$ $ $=^ ^h h 	 (16)

This constraint is introduced in the SPA by remov-
ing the links between the nodes that do not respect 
this constraint.

The steps of the algorithm 
1)	 Initial step, for q=1
	 For the flow class q=1, nodes (q=1, Wfree, Wcongested, k) 

are reached at a cost depending only on k, equal to:

E

n V W V W1
,

, ,

q k q

q q
j

q k q
free

q
j

q k q
congested

j n

n

j

n

2

2 2

11 ,

,

q k q

qq k q

=

= - + -
= +=

b ` `
^

^ ^
^

^
l j j
h

h h
h

h
> H//

	 (9)

The clustering of the nq pairs in two classes – from 
1 to nq,kcrit and from nq,kcrit +1 to nq is not optimal 
for decreasing .E ,q k q

2
^ h  Additionally, the paper 

proposes to identify the solution of function k(q) 
(Equation 10) for the whole set of traffic flows:

minE n n E1
,SPA

k q
q q k q

q

q
2 2

1

max

=
=

a
^ ^k
h h/ 	 (10)

with two constraints: 

( ) ( )k k q k q k1max crit$$ $- 	 (11)

W W W W, , , ,q k q
congested

q k q
congested

q k q q k q
free free

1 1 1 1# ##- - - -^ ^ ^ ^h h h h 	 (12)

The minimization provides k(q), decreasing with q.
Remark 1. At a given flow, the level of k(q) impacts 

both Wq
congested and Wq

free. For instance, k(q) higher 
than the critical density implies that some periods 
(those the density of which is comprised between kcrit 
and k(q)) are no longer considered to be congested. 
Their speed is lower than the average non-congested  
speed and higher than the average congested speed. 
As these periods pass from congestion to non- 
congestion, this makes both Wq,,k(q)

congested and Wq,k(q)
free lower 

than  W ,q k
congested

crit and ,W ,q k
free

crit  respectively. In turn, if for 
all flows q the density thresholds k(q) are higher than 
the critical density, both branches of the empirical FD 
will be lower. The higher the density thresholds, the 
lower the empirical speeds for both branches.

The following are the observations made on the 
main features of this approach: the graph, the con-
straint of a decreasing speed related to density, the 
algorithm.

Nodes and links
The SPA leads to an approximation of the solu-

tion in qmax steps. The nodes are quadrupled (q, Wfree, 
Wcongested, k), where q is a flow class; k is a density 
kmin≤ k ≤ kmax; W

free and Wcongested are speed values, in-
cluded in specified discrete intervals, typically: Wfree, 
Wcongested, and k are integers, in the units specified by 
the user. This constraint avoids the creation of an in-
finite number of nodes. Then, it is recommended (not 
mandatory) to reduce the number of nodes created by 
adding the constraints:

( ) ( )
( ) ( )

V q W V q
V q W V q
W W<

min
congested

max,congested

min,free
free

max
congested free

# #

# # 	 (13)

where Vmin(q), Vmin,free(q), Vmax,congested(q), Vmax(q), kmin, 
kmax are specified by the user.
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at least one node in the highest traffic flow class, even 
if the number of periods which constitutes this class is 
low. This can be avoided either by:

–– 	eliminating the highest flow class(es),
–– 	grouping the highest flow classes into a single 

class,
–– 	simplifying Equations 7, 8, 9, 12, 17 and 18 and, 

in the final step of the algorithm, not distinguish-
ing the congested and non-congested speeds at  
q=qmax. 
Remark 2. Solving the problem with an increasing 

(instead of decreasing) density threshold would lead 
to lessening the adjustment: the deviation DSPA would 
increase from 0.35 to 0.4 km/h.

Remark 3. The same approach applies to estimat-
ing a density-flow relationship, which provides, in turn, 
a flow-density relationship. The roles of speed and 
density are inverted, and so are the roles of congestion 
and non-congestion.

Remark 4. The simplified form of this approach 
would apply to calibrate a speed-density relationship: 
instead of flow classes, density classes k are consid-
ered; for every density k(k>0) and admissible speed 
W, a node (W, k) is created; for every speed Z, 0≤Z≤W, 
a link is created between (W, k) and (Z, k+1); the 
cost of every link towards this node is ,n W Vk k

2-^ h
where nk is the number of observations of class k, and 

.V n
V

k
k
k
j

j

n

1

k

=
=
/

4.	SPEED-DENSITY RELATIONSHIP 
CALIBRATED BY QOLC

The estimated density K V
Q

i
i

i=  is generally lower 
than 80 vehicles/km. In this section, we built density 
classes of subscript k=1…m – here m=160, and the 
width of a density class is 0.5 vehicle/km. To each pe-
riod i, a density class k is assigned according to the 
value of Ki. Data become (Qj

k, V
j
k), the flow and average 

speed of the j-th period, the density of which belongs 
to class k.

( , , , )C q W W k n W W

n n W W
, ,

, ,

congested free
q k

free
k

free

k
congested

k

q

q q q
2

2

congested

$

$

= - +

+ - -^ _
_

h i
i

	 (17)

When W ,q k
free  or W ,q k

congested  are not defined, the node 
is removed.
It is easy to see that the optimization of Equation 
10 is equivalent to the optimization of the devia-
tion between the empirical speed averages (by flow 
class) and the FD speeds. This deviation is equal 
to the square root of the sum of Equation 17 for all 
flows q, divided by the total number of periods:

, , ,D n C q W W k1
SPA

congested free

q
= ^ h/ 	 (18)

	 Note that the speed averages might be replaced by 
their median in Equations 7–9 and 17.

2)	 Steps 2 to qmax
For q>1, links are created towards every node  
(q, Wfree, Wcongested, k), from existing nodes of the 
preceding flow level q-1 (q-1, Wf, Wc, k’), for any Wf 

greater or equal to Wfree, any Wc smaller or equal 
to Wcongested and any k’ greater or equal to k. These 
links have the same cost, depending only on q and 
k, equal to C(q, Wcongested, Wfree, k), as defined in 
Equation 17. 
When W ,q k

free  or W ,q k
congested  are not defined, the cost 

of the link is assigned to a very high value. When 
the flow class q-1 is empty, q-1 is replaced by q-2, 
etc.

3)	 Final step
The algorithm ends when the highest flow class is 
treated. The speed-flow relationship is provided by 
the path(s) leading to the nodes of minimal cost of 
the last step (q=qmax).
The number of nodes, then the memory and the 
time required for applying the algorithm, depend 
on the width of flow classes and on the size of the 
discrete sets used for speed and density.

3.3	 Results

Figure 2 shows the relationship obtained with 
the dataset used in this Section 3 for the year 2010 
(width of flow classes: 50 vehicles/hour, speed unit of  
1 km/hour, density unit 1 vehicle/km).

The optimization provides a deviation DSPA (be-
tween the empirical average speeds and the FD 
speeds) equal to 0.35 km/h.

The critical speed is 83 km/h; the critical density 
is 26 vehicles/km. For very low flows (less than 450  
vehicles/hour) there were no data for estimating the 
speed in congestion. The capacity (2,190 vehicles/hour) 
 comes from the maximum traffic count observed (219 
vehicles) in a six-minute period. This points to the main 
drawback of the approach: the algorithm aims to reach 
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Remark 5. Reversing the roles of speed and den-
sity, a density-speed relation can be calibrated. Then, 
speed classes are built, which should be in accor-
dance with [23], where constant-speed fluctuations 
are highlighted. The average of the empirical densities 
for a speed class v, marked as ,K v  replaces V k  used 
for density class k. To follow [23], this average may be 
replaced in (21) by the median of the (Kj

v, j) being such 
a period that its average speed is in class v.

In Figure 4, where the X-axis is density and the Y-ax-
is is speed, the QOLC speed-density relationship and 
the points derived from the SPA relationships were 
plotted concomitantly.

The following can be seen:
–– Small oscillations of the SPA speed for high densi-

ties (greater than 43 vehicles/km). These appear 
because the additional constraint of decreasing 
speed with density was not implemented. 

–– A probable underestimation of capacity in the 
QOLC approach.

–– A maximum density higher for the QOLC than for the 
SPA. Indeed, the SPA uses flow classes; each flow 
class including two sub-classes, the first one for 
the congested values (high densities), the second 
one for the non-congested values (low densities); 
the mean density of the first sub-class, since it is a 
mean, is always lower than the maximum density. 
This type of aggregation is not made in the QOLC.

–– Some differences between the SPA and QOLC 
speeds for medium and high densities. The 
SPA speeds are higher than the QOLC ones for  

The objective is to find the speed vector (Wk), de-
creasing with density k, the closest to the data. It is the 
solution for the quadratic programming problem with 
linear constraints:

minE W Vk k
j

j

n

k

m
2 2

11

k

= -
==
_ i// 	 (19)

with the following constraints:

W W k m W1 0for and<k k m1$ # $+ 	 (20)

where nk is the number of periods for the density class k.
This problem is solved using the software R® and 

SCICOS® packages [29]. If the empirical mean speed 
for class k is marked as ,V k  it is easy to see that re-
placing Vk

j  with V k  does not change Wk. Therefore 
Equation 19 can be replaced with:

minD n n W V1
QOLC k k k

k

m
2

1

2
= -

=
^ h/ 	 (21) 

The empirical speed average and the optimized 
speed are plotted by density class in Figure 3. There 
are very few differences between both curves.

The capacity of the road is derived as the maximum 
of products k.Wk whatever the density class k, 1≤k≤m. 
This maximum is reached when the density class k is 
25 veh/km; in this class, the average density, average 
speed and flow were K=25.2 vehicles/km; V=71.5 
km/h, thus, Q=1,802 vehicles/h. This critical densi-
ty is in accordance with the critical density of the first 
approach (26 vehicles/km). However, the capacity is 
lower than the one of the first approach (Q=2,179 ve-
hicles/h). Indeed, Wk is linked to the average and not 
to the maximum speed recorded in class k, it is the 
same for the product k.Wk. So, this technique underes-
timates the capacity.

The sensitivity of the results to the number of class-
es and to their width was tested with m=80 density 
classes of width 1 (instead of 0.5) vehicle/km; the 
optimized speeds remained very close (less than 0.7 
km/h) to the previous in most cases, except for density 
41–43 (the speed difference was 1.2 km/h), and for 
density 23 (the speed difference was 2.2 km/h).
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The validity of the non-analytic approach of this pa-
per is discussed below. This discussion is based on 
the deviation between the obtained FD and the em-
pirical speed average, by class of density in the QOLC 
method or by flow class in the SPA. These deviations 
are equal to DSPA or DQOLC, the quantities minimized 
in Equation 18 for the SPA approach and in Equation 21 
for the QOLC. The penultimate and ultimate columns 
of Table 1 give D for the QOLC and the SPA methods.

D must be low not only on the calibration dataset 
but also on other datasets. The results were validat-
ed on other datasets of the same section of the same 
motorway. Table 1 gives the results of the calibration, 
validation, and transferability of the FD. The calibra-
tion is based on the first six months of the year 2010 
(Table 1, line 1), the validation on the last six months 
of the same year (Table 1, line 2) or on the lane of the 
same section with the same lane number in the oppo-
site direction (line 3).

The transferability of the method is assessed by the 
values of D obtained by applying the same calibrated 
FD on the faster or slower lanes of the same motorway 
section (Table 1, lines 4 and 5) or on middle lanes of 
other close motorways (A22, A25, lines 6 and 7).

Deviations are very small on the calibration set as 
well as on the validation datasets; this validates the 
methods. The calibration of the FD is rarely transfer-
able to the other lanes of the motorway, or to the same 
lane of other motorways. This is not surprising. Since 
the objective is to be the closest to the data, a new 
calibration is needed for each lane. 

6.	CONCLUSION
We developed a methodology in this paper to es-

tablish a fundamental diagram which best fits the 
data, free of any analytical form, considering just the 
assumption that drivers adapt their speed to their 

densities between 20 and 40 vehicles/km, then 
lower for densities greater than 40 vehicles/km 
(congestion). 

Are these differences explainable?
1)	 	There is a possible explanation for lower SPA 

speeds at high densities (beyond 40 vehicles/km): 
when flows are low, high-density thresholds have 
been used for specifying the congestion. A low SPA 
FD speed is in accordance with Remark 1 of Sec-
tion 4 – the higher the density thresholds, the low-
er the empirical speeds for both FD branches.

2)	 	There is no direct explanation for high SPA FD 
speeds at higher flows (densities between 20 and 
40 vehicles/km): the density thresholds used are 
no longer high, which makes the SPA FD speeds 
not lowered, but this does not explain why they are 
higher than the QOLC FD speeds. Much lower den-
sity thresholds should have been used to make the 
SPA and QOLC FD speeds equal. This highlights the 
sensitivity of the SPA FD speeds to these density 
thresholds. It is both a benefit and a danger for the 
calibration of a speed-flow FD. This can contribute 
to feeding the debate on the still sensitive subject 
of the fundamental diagram.

5.	VALIDATION AND TRANFERABILITY
The assessment of the FD is based on the deviations 

between the FD and empirical data. For a speed-densi-
ty relationship (and a density class pattern), the mean 
squared error (MSE) is given according to the value 

,E
n

2
 where E2 is given in Equation 19. E cannot be low-

er than the value obtained when ,W Vk k=  the empir-

ical speed average. In this case, ,n
E2

 computed on 
the calibration dataset is equal to 7.6 and 8.5 km/h for 
the QOLC and the SPA approaches, respectively.

Table 1 – Deviation (in km/h) between the average empirical speed and the FD speed

Line Section Lane1 Year No of 6' Periods
Deviation [km/h] 

QOLC4 SPA
1* A1.D12 3rd/5 January–June 2010 23,406 0.7 0.3
2 A1.D1 3rd/5 July–December 2010 35,306 1.4 1.1
3 A1.D2 3rd/5 2010 58,216 1.8 1.9
4 A1.D1 2nd/5 2010 58,417 7.9 2.8
5 A1.D1 4th/5 2010 58,888 12.2 4.7
6 A1.D1 3rd/53 2010 52,405 7.4 4.3
7 A22 3rd/5 2010 61,038 7.2 4.8
8 A25 3rd/5 2009 42,919 5.3 4.7

1 Lane 1 is the fastest and lane 5 is the slowest. 
2 Mark  A1.D1 indicates the motorway number A1 in direction 1 (toward Borth). D2 means the opposite direction.  
3 The sensor is located at 2 km upstream. 
4 The width of density classes is 1 vehicle/km. 
* Calibration set.
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function of the flow. Such a function rightly reduces 
the importance of the critical density and impacts the 
FD speeds related to the flow. In the case of a den-
sity threshold decreasing from a high value (at very 
low flows) to the critical density (at capacity), both FD 
congested and non-congested speeds are increased. 
Besides, at low flows, periods whose empirical density 
is between the critical density and the threshold func-
tion are no longer considered to be congested. This is 
consistent with a definition of congestion based on an 
extended safety constraint. In every case, it would be 
sensible to first carefully check the results, to derive 
the critical density, the free-flow speed and the capac-
ity, and to check these values with the same parame-
ters obtained by other methods. 

A correct free-flow speed is obtained with both 
methods, the QOLC and the SPA. Both methods could 
be used, achieving the main objective of this research, 
which is to give a fundamental diagram relationship, 
free of any analytical form but with respect to the traf-
fic flow phenomena.
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UNE APPROCHE GUIDEE PAR LES DONNEES POUR 
ESTIMER LE DIAGRAMME FONDAMENTAL

RESUME

Le diagramme fondamental  relie la vitesse moyenne, 
la concentration et le débit du trafic. Nombre de problèmes 
requièrent une forme analytique pour ce diagramme, parce 
qu’une telle forme est susceptible d’apporter un potentiel 
de compréhension et de prédiction. Nous pensons cepen-
dant que dans certaines études d’évaluation, une forme 
analytique n’est pas nécessaire et peut même occasionner 
une perte de précision. Nous développons ici un diagramme 
fondamental non analytique, qui transcrit au plus près les 
données empiriques, en respectant les relations qui existent 
entre les variables du trafic. Pour éviter un biais, nous sépar-
ons les données en et hors congestion.  Avec une définition 
de la congestion fondée sur un seuil proportionnel à celui 
utilisé dans la contrainte de sécurité, la concentration qui 
sépare congestion et non-congestion apparaît comme une 
fonction décroissante du débit – et non comme une sim-
ple valeur de concentration critique. Nous identifions cette 

distance headway (i.e., to the inverse of density) or to 
their time headway (i.e., to flow). The objective of this 
research is to minimize the loss of information due to 
the use of an analytic form when it is not required. Two 
methodologies have been tested: a quadratic optimi-
zation with linear constraints (QOLC) and a shortest 
path algorithm (SPA).

Analytic FDs have a comprehensive and a predic-
tive power, which is required in a number of problems: 
regarding car-following [4], with stochastic models [5], 
construction of explicit solutions of traffic flow models 
[6]. However, as only few parameters are calibrated 
for determining the whole relation between speed and 
density, some loss of information appears between the 
empirical data and the analytic FD. This loss can be 
drastic for certain problems, such as estimating traffic 
state variables (the flow) from empirical FCD speeds. 
This issue occurs when FCD or Bluetooth sensors re-
place the common traffic loops. The relationship be-
tween speed and flow that an analytic FD provides at 
high speeds is too flat and not so accurate to be in-
verted, which is necessary to obtain the flow from the 
speed. For this problem, or for an ex-ante assessment 
of a traffic management strategy, the power of the an-
alytic FD is not needed; it is better to use an FD close 
to data.

For the calibration of the FD, sampling is an im-
portant task with regard to the clustering variable as 
well as the number and size of classes. Depending on 
whether we consider the speed-density or the speed-
flow relationship of the FD, density or flow classes are 
built. Using density classes does not enable us to have 
the exact value of the road capacity. Indeed, in the 
QOLC approach, the class corresponding to the criti-
cal density contains not only periods at capacity, but 
also periods with simultaneously a lower flow and a 
lower speed; this makes the average flow of the peri-
ods composing this class lower than the capacity. On 
the other hand, in the SPA, using flow classes results 
in an easy capacity identification – the capacity corre-
sponds to the highest empirical flow class.

Furthermore, the optimization method can be ex-
tended to more constraints, such as the concavity of 
a flow-density FD, which is required in the first-order 
LWR traffic flow model and in the GSOM models.

The QOLC or SPA results consist of as many pa-
rameters as the number of classes. It is well known 
that the fewer the parameters, the more significant 
they are. But the quantity of data (in this case, 58,000 
six-minute periods) allows the calibration of a high 
number of parameters, even if the traffic variables are 
not fully independent. A calibrated FD can be used on 
other periods of the same section, or on a symmetric 
section; elsewhere, other calibrations are necessary.

Within the SPA, congested and non-congested peri-
ods might be separated either according to a constant 
density threshold (the critical density) or to a threshold 
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[21]	 Zhang HM. A mathematical theory of traffic hystere-
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[22]	 Castillo J, Benítez F. On the functional form of the 
speed-density relationship I: General theory. Transpor-
tation Research Part B: Methodological. 1995;29(5): 
373-389.

[23]	 Li J, Zhang HM. Fundamental Diagram of traffic flow. 
New identification scheme and further evidence 
from empirical data. Transportation Research Re-
cords, Journal of the Transportation Research Board. 
2011;2260: 50-59.

[24]	 Kerner BS. Three-phase theory of city traffic: Moving 
synchronized flow patterns in under-saturated city traf-
fic at signals. Physica A: Statistical Mechanics and its 
Applications. 2014;397: 76-110.

[25]	 Daganzo CF, Geroliminis N. An analytical approxi-
mation of the macroscopic fundamental diagram. 
Transportation Research Part B: Methodological. 
2008;42(9): 771-781.

[26]	 Ji Y, Xu M, Li J, van Zuylen HJ. Determining the Mac-
roscopic Fundamental Diagram from Mixed and Par-
tial Traffic Data. Promet – Traffic & Transportation. 
2018;30(3): 267-279. Available from: https://traffic.
fpz.hr/index.php/PROMTT/article/view/2406/ [Ac-
cessed 29 August 2018].

[27]	 Lu XY, Varaiya P, Horowitz R, Skabardonis A. Fundamen-
tal Diagram modeling and analysis based NGSIM data. 
In: 12th IFAC Symposium on Control in Transportation 
Systems, 2009, Redondo Beach, California, USA.

[28]	 Coifman B. Jam occupancy and other lingering prob-
lems with empirical fundamental relationships. Trans-
portation Research Records, Journal of the Transpor-
tation Research Board. 2014;2422: 104-112.

[29]	 Goldfarb D, Idnani A. A numerically stable dual method 
for solving strictly convex quadratic programs. Mathe-
matical Programming. 1983;27: 1-33.

fonction, puis l’utilisons. Deux techniques de calibrage -  
un algorithme de plus court chemin, et une optimisation 
quadratique avec contraintes linéaires  - sont ici présentées, 
testées, comparées et validées.

MOTS-CLEFS

non-analytique; calibrage; données empiriques; algorithme 
du plus court chemin; programmation quadratique convexe; 
contrainte de sécurité; fonction de concentration critique;
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Equations 24, 25 and 28 are defined when: 

Q T u Q T u1 1 0$ $ $ $a aD = + - - -^ ^ ^ ^h h h h 	 (29)

The roots of the equation D=0 are

Q T u T uQ1 1and1 2
$ $
a a= + -^ ^ ^ ^hh hh 	 (30)

When considering a=0.6, there are three possibili-
ties, according to u.

a) case u>1
This is the common case: when T=1 second, C=6m/
s2, L=4m, then u=1.15. In that case, Q2<0 and Q1>0. 
Equation 29 – and, in turn, the safety constraint – are 
satisfied when

Q Q0 1# # 	 (31)

The safety constraint is not satisfied when traffic flows 
are higher.
When Q<Q1, Equations 24, 25 and 28 are defined 
and the derivative 28 is negative. This means that 
K1(Q) is decreasing from a

L  (in this case, 150  
vehicles/km) at Q=0 until a positive value of

,L u
u

2 1$
$a

+^ h  reached when Q=Q1 (thus, with the given 

parameters, until 0.04 vehicle/m or 40 vehicles/km for  
Q1=0.279 vehicle/second, i.e., 1,004 vehicles/hour).

b) case u=1
' ,K Q^ h given by Equation 28 is still negative, thus 

K1(Q) is still decreasing from L
a  (in this case, 150  

vehicles/km) at Q=0 until the value .L4
a  (in this case, 

37.5 vehicles/km) at .Q Q T1 2
a= = (this corresponds 

to 0.3 vehicle/second, i.e., 1,080 vehicles/hour). The 
safety constraint is not satisfied when traffic flows are 
higher.

c) case u < 1
Equation 29 is satisfied when

Q Q Q Qor when1 2# $ 	 (32)

From Equation 28, ,K Q'
1 ^ h is negative or null when:
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Q T u1N 2$
a= -^ h the root of the numerator of the first 

term of Equation 33 is defined below. Equation 33 is sat-
isfied when simultaneously:

–– the numerator of 33 is negative, i.e.,

Q Q> N 	 (34)

–– the numerator of 33 is, in absolute value, lower the 
denominator; it comes, passing to the squares:
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Appendix A. Density related to flow with regard to a 
safety constraint

Let V be the velocity of a vehicle, C its maximum 
deceleration, T its reaction time, H its distance head-
way (between its front bumper and the front bumper of 
the prior vehicle).

Assuming that an object falls from the prior vehicle, 
the following driver is able to avoid it if his stopping dis-

tance V V T2
2

$ $C +  is lower than the distance headway 
minus the length L of the prior vehicle. The constraint 
is even heightened or generalized when the stopping 
distance is lower than the headway, multiplied by a co-
efficient a lower than 1, and when L includes a safety 
distance:

V V T L H2
2

$
$ $# aC + +  	  (22)

“Non-congestion” can be defined as periods when, 
for a certain a, Equation 22 is valid.

Taking the meter as the space unit (instead of the 
kilometer) makes .H K

1=  Then, using the relation 
Q=K.V:

K
Q

K
Q T

L K
Q

Q T K L K K

Q
Q T K L K

2

2

2 0

2

2

2
2

2
2

+

+

$ $

$

$
$ $ $ $

$
$ $ $

#

#

#

a

a

a

C

C

C

+ +

+ +

+ - +^ h

	 (23)

According to ,Q T L
Q

22
2

$ $ $aD C= - -^ h  the qua-
dratic equation associated to Equation 23 has either no 
root, when D<0, then drivers cannot respect the con-
straint, or, when D≥0, has two roots, K1(Q) and K2(Q), 
relating density to flow:

K Q L
a Q T

21 $
$ D

=
- +^ ^h h

	 (24)

K Q L
a Q T

22 $
$ D

=
- -^ ^h h 	 (25)

For these roots, the stopping distance just com-
plies with the constraint. When Q is near zero, 

( )K L01 .
a and ( )K 0 02 . . When Q=0, the root K1(Q) 

convenes for the congested branch of the FD. By  
continuity, K1(Q) convenes any Q. We assume that 
when K2(Q)≤K≤K1(Q), there is no congestion, i.e., the 
generalized safety constraint is complied with. This 
assumption says that the function K1(Q) replaces the 
critical density. Its variations are studied below.
Let u be such that 

u T L22 2$ C= 	 (26)

Then

Q T u T Q2 2 2 2$ $ $aD = - -^ h 	 (27)

The derivative of K1(Q) related to Q is 
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mathematical proof that the function 
( ) ( )K q K q

2
free congested+

 is decreasing. A graphical ap-
proach, with a sufficiently small resolution step, is 
good enough as well.

This relationship has only two parameters; it reduc-
es, after two changes of scale (in distance and in time), 
to the unique negative exponential curve V=exp(-K):

–– The unit of length, instead of 1km is set to K
1
crit  

km; in this new unit the critical density is equal 
to 1. In this unit, speeds must be multiplied by 
Kcrit. In particular, the free speed Vf is replaced by
W V Kf f crit$=

–– The unit of time, instead of 1 hour, is set to W
1

f
 

hour; in this new unit the speeds are divided by 

;W f in particular the free speed becomes W
W

1
'f

f =
All Underwood curves are homothetic to the nega-

tive exponential curve, hence homothetic to each oth-
er. Here we plot the FD for Vf=110 km/h and Kcrit=26 
vehicles/km.

Equality 35 is reordered in

Q T u u Q T u1
1

2 02 2 2
2$ $

$
$

$
a- -
-

^ c ^h h m 	 (36)

The roots of the quadratic equation associated 
with Equation 36 are Q0=0 and Q T u1

2
4 2$

$ a= -^ h . As

; ;Q
Q

uQ
Q

u 1 11
2 1

N

2

2

4
(( = += + and

Q
Q

u Q Q Q Q Q1
1 1 0 < < < <N

N
1

0 1 2 4&(= - =
	 (37)

When Q≥Q4, Equations 29 and 32–36 are satisfied, as 
well as the safety constraint 23. Then, from Equation 28, 
K Q'

1 ^ h is negative and K1(Q) decreases with Q.
When Q2≤Q≤Q4, Equations 29 and 32 and the safety 
constraint 23 are satisfied. Equation 34 remains satis-
fied, Equations 33, 35 and 36 are reversed, K Q'

1 ^ h  is 
positive and K1(Q) increases with Q.
When Q1≤Q≤Q2, 32 is not verified; the safety con-
straint 23 is not complied with.
When Q≤Q1, 32, 29 and the safety constraint 23 are 
satisfied; as Equation 34 is reversed, Equation 33 re-
mains satisfied, K Q'

1 ^ h  is negative; K1(Q) decreases 
with Q.

Appendix B. A decreasing density threshold, in the  
Underwood fundamental diagram 

Whatever the FD, the value of the function 
( ) ( )K q K q

2
free congested+

 is greater at q=0 than at q=qmax.  
Indeed, for very low flows, the density on the congested 
branch of the FD is much higher than twice the critical 
density. This does not mean that this function always 
decreases between q=0 and q=qmax. But it is the 
case at least for a well-known fundamental diagram, 
the Underwood speed-density relationship [10], which 
is ,V V e /

f
K Kcrit$= -  where Vf is the free speed (valid at 

q=0) and Kcrit the critical density. The resulting flow is 

Q K V K V e /
f

K Kcrit$ $ $= = - 	 (38)

Inverting this relationship, two density-flow relation-
ships Kfree(q) and Kcongested(q) are obtained; although 
no analytic form is available, there is a (tedious)  
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Figure 5 – Graphical decrease of the threshold in the 
Underwood exponential model


