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Dedicated to Larry Zalcman,

with admiration and gratitude.

A SPECTRAL COCYCLE FOR SUBSTITUTION SYSTEMS AND

TRANSLATION FLOWS

ALEXANDER I. BUFETOV AND BORIS SOLOMYAK

Abstract. For substitution systems and translation flows, a new cocycle, which we call spectral

cocycle, is introduced, whose Lyapunov exponents govern the local dimension of the spectral mea-

sure for higher-level cylindrical functions. The construction relies on the symbolic representation

of translation flows and the formalism of matrix Riesz products.

1. Introduction

This paper is devoted to the spectral theory of substitution systems and translation flows and

continues the work started in [17, 18]. We focus on the local properties of spectral measures,

such as local dimension, Hölder property, and closely related questions of singularity and absolute

continuity. Our main construction is that of a new cocycle, which we call the spectral cocycle.

This spectral cocycle is related to our earlier work, in particular, to the matrix Riesz products,

used in [17] to obtain Hölder continuity of spectral measures for typical suspension flows over

non-Pisot substitution systems.

Our cocycle is defined over a skew product whose base is a shift transformation on a symbolic

space arising from the realization of the Teichmüller flow and the fibre is a torus of dimension

equal to the number of intervals in the associated interval exchange. Our main result, see (3.7),

(3.13) below, is a formula relating the pointwise dimension of the spectral measure and the point-

wise Lyapunov exponent of the cocycle. As a corollary, we obtain an inequality for the Lyapunov

exponent at almost every point and a sufficient condition for singularity of the spectrum. Analo-

gous results are obtained for suspension flows over S-adic systems, including classical substitution

systems as a special case.

In the Appendix, which is independent of the rest of the paper, we explain how a modification

of the argument from [18] proves Hölder continuity of spectral measures for typical translation

flows in the stratum H(1, 1).
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2. Background

2.1. Translation flows. Let M be a compact connected orientable surface. To a holomorphic

one-form ω on M one can assign the corresponding vertical flow h+t on M , i.e., the flow at

unit speed along the leaves of the foliation ℜ(ω) = 0. The vertical flow preserves the measure

m = i(ω ∧ ω)/2, the area form induced by ω. Let κ = (κ1, . . . , κσ) be a nonnegative integer

vector such that κ1 + · · · + κσ = 2ρ − 2. Consider the moduli space Mκ of pairs (M,ω), where

M is a Riemann surface of genus ρ and ω is a holomorphic differential of area 1 with singularities

of orders κ1, . . . , κσ . The moduli space Mκ is called the stratum in the moduli space of abelian

differentials.

The Teichmüller flow gs sends the modulus of a pair (M,ω) to the modulus of the pair (M,ω′),

where ω
′ = esℜ(ω) + ie−sℑ(ω); the new complex structure on M is uniquely determined by the

requirement that the form ω
′ be holomorphic. Veech [45] proved that the space Mκ need not

be connected; let H be a connected component of Mκ, and let ν be a probability measure on

H, invariant and ergodic under the Teichmüller flow gs. For ν-almost every Abelian differential

(M,ω), Masur [32] and Veech [43] independently proved that the flow h+t is uniquely ergodic.

There are many equivalent definitions of translation surfaces, see, e.g., [33, 52]. The form ω

provides a flat metric on M \ Σ, where Σ is the set of singularities, the zeros of ω. Moreover, at

the zero of order κj one gets a cone singularity, with the total angle 2π(κj + 1).

2.2. Interval exchange transformations and suspensions over them. There is a deep

connection between translation flows and interval exchange transformations, discovered by Veech

[42, 43]. We recall it briefly; for more details see, e.g., the surveys by Viana [49], Yoccoz [50],

and Zorich [52]. Let A = {1, . . . ,m} be a finite alphabet, with m ≥ 2, and π an irreducible

permutation of A, i.e., π{1, . . . , k} 6= {1, . . . , k} for k < m. Given a positive vector λ ∈ R
m
+ ,

the interval exchange transformation (IET) f(λ, π) is defined as follows: consider the interval

I = [0,
∑m

i=1 λi), break it into subintervals

Ii = Ii(λ, π) =
[∑

j<i

λj,
∑

j≤i

λj

)
, 1 ≤ j ≤ m,

and rearrange the intervals Ii by translation according to π:

x 7→ x+
∑

π(j)<π(i)

λj −
∑

j<i

λj, x ∈ Ii.

For m = 2 the IET is just a circle rotation (modulo identification of the endpoints of I), and it

can be viewed as the first return map of a linear flow on a torus T
2. Similarly, for m ≥ 3 by

a singular suspension (with a piecewise-constant roof function, constant on each subinterval Ii),

the IET can be represented as a first return map of a translation flow on a suitable translation

surface to a carefully chosen Poincaré section, a line segment I, see [42, 43]. Conversely, given a

translation surface, one can find a horizontal segment I in such a way that the first return map
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of the vertical flow to I is an IET. Precise connection between the two systems is given by the

zippered rectangles construction of Veech [43].

2.3. Rauzy-Veech-Zorich induction and the corresponding cocycles. A fundamental tool

in the study of IET’s and translation flows is the Rauzy-Veech algorithm, also called Rauzy-Veech

induction, introduced in [42, 39]. Let π be an irreducible permutation, and suppose that (λ, π) is

such that λm 6= λπ−1(m). Then the first return map (what is sometimes called “inducing” whence

the term “induction”) of f(λ, π) to the interval

(
0,

m∑

i=1

λi −min{λπ−1(m), λm}
)

is an irreducible IET on m intervals as well, see, e.g., [49, 50, 31]. If λm < λπ−1(m), we say

that this is an operation of type “a”; otherwise, an operation of type “b”. The Rauzy graph is

a directed labeled graph, whose vertices are permutations of A = {1, . . . ,m} and the edges lead

to permutations obtained by applying one of the operations. The edges are labeled “a” or “b”

depending on the type of the operation. The Rauzy class of a permutation π is the set of all

permutations that can be reached from π following a path in the Rauzy graph. This defines an

equivalence relation on the full permutation group. For almost every IET (with respect to the

Lebesgue measure on R
m
+ , that is, for almost all length vectors), the algorithm is well-defined for

all times into the future, that is, we never get into a “draw” λm = λπ−1(m), and obtain an infinite

path in the Rauzy graph, corresponding to the IET. Veech [43] proved that, conversely, every

infinite path in the Rauzy graph arises from an IET in a such a way.

In the ergodic theory of IET’s it is useful to consider an acceleration of the algorithm. Zorich

induction [51] is obtained by applying the Rauzy-Veech induction until the first switch from a

type “a” to a type “b” operation, or vice versa. Sometimes other versions of the algorithm and

accelerations are used, e.g., the one considered by Marmi, Moussa, and Yoccoz [31].

Let (λ′, π′) be obtained from (λ, π) by a step of the Rauzy-Veech induction, and let fI = f(λ, π).

Write Ij = Ij(λ, π) and let Jj = Ij(λ
′, π′) be the intervals of the exchange fJ = f(λ′, π′). Denote

by ri the return time for the interval Ji into J under fI , that is, ri = min{k > 0 : fkI (Ji) ⊂ J}.
From the definition of the induction procedure it follows that ri = 1 for all i except one, for which

it is equal to 2. Represent I as a Rokhlin tower over the subinterval J and its induced map fJ ,

and write

(2.1) I =
⊔

i=1,...,m, k=0,...,ri−1

fkI (Ji).

By construction, each of the “floors” of our tower, that is, each of the subintervals fkI (Ji) is a

subset of a unique subinterval of the initial exchange, and we define an integer n(i, k) by the
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formula

(2.2) f jI (Ji) ⊂ In(i,k).

Let BR(λ, π) be the linear operator on R
m given by the m ×m matrix [n(i, j)]. This matrix is

easily shown to be unimodular. Given a Rauzy class R, the function BR : Rm
+ ×R → GL(m,R)

yields the Rauzy-Veech, or renormalization cocycle. If, instead, we apply the Zorich induction

algorithm, the same procedure yields the Zorich cocycle.

One can consider the Rauzy-Veech and Zorich induction algorithm also on the set of zippered

rectangles; these can be represented as bi-infinite paths in the Rauzy graph. A remarkable fact is

that, after an appropriate renormalization, the Rauzy-Veech map (λ, π) 7→ (λ′, π′) and the Zorich

map (λ, π) 7→ (λ′′, π′′) can be seen as the first return maps of the Teichmüller flow on the space

of zippered rectangles, with respect to carefully chosen Poincaré sections, see, e.g., [49, Section

2.10] and [50, Section 11.3].

Remark. The zippered rectangles construction provides natural bases for the absolute and

relative homology groups H1(M \Σ,R) and H1(M,Σ,R); in particular, Rm may be identified with

H1(M,Σ,R). The Rauzy-Veech cocycle can then be represented as acting on the cohomology

groups H1(M \ Σ,R) and H1(M,Σ,R), as shown by Veech [43] (see also [49, Section 2.9]).

2.4. Markov compacta and S-adic systems. The Rauzy-Veech and Zorich induction and co-

cycles already provide a powerful symbolic framework for the study of IET’s and translation flows,

which was used by many authors. However, to get a symbolic representation, or measurable con-

jugacy for these systems, an additional step is needed, which was done by Bufetov [15], using the

theory of Markov compacta. For the background on Markov compacta and Bratteli-Vershik trans-

formations, see the original papers [46, 47, 48]. A Markov compactum is the space of infinite paths

in a Bratteli diagram. When the Bratteli diagram is equipped with a Vershik ordering, one gets

a “transverse,” or “adic” map, which is now usually called the Bratteli-Vershik transformation.

We will call a Bratteli diagram with a Vershik ordering a Bratteli-Vershik diagram.

More recently an essentially equivalent framework of S-adic transformations was developed,

see [11, 12, 13] and references therein. We use it in [18] and in this paper as well; therefore, we

do not present the background on Markov compacta here.

Let A = {1, . . . ,m} be a finite alphabet; denote by A+ the set of finite (non-empty) words

in A. A substitution is a map ζ : A → A+, which is extended to an action on A+ and AN by

concatenation. The substitution matrix is defined by

(2.3) Sζ(i, j) = number of symbols i in the word ζ(j).

Notation 2.1. Denote by A a set of substitutions ζ on A with the property that all letters appear

in the set of words {ζ(a) : a ∈ A} and there exists a ∈ A such that |ζ(a)| > 1.
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Let a = (ζn)n≥1 be a sequence of substitutions on A. Substitutions, extended to A+, can be

composed in the usual way as transformations A+ → A+. Denote

ζ [n] := ζ1 ◦ · · · ◦ ζn, n ≥ 1.

Given a sequence of substitutions a, denote by Xa ⊂ AZ the subspace of all two-sided sequences

whose every subword appears as a subword of ζ [n](b) for some b ∈ A and n ≥ 1. Let T be the left

shift on AZ; then (Xa, T ) is the (topological) S-adic dynamical system. We refer to [11, 12, 13] for

the background on S-adic shifts. A sequence of substitutions is called primitive if for any n ∈ N

there exists k ∈ N such that Sn · · · Sn+k is a matrix with strictly positive entries. This implies

minimality of the S-adic shift, see [11, Theorem 5.2]. (Note that in [11] this property is called

weak primitivity, however, in [12, 13] the term “primitive” is used, as we do.) In many cases a

stronger property holds, and it will be one of our basic assumptions:

(A1) There exists a finite word ζW = ζw1 . . . ζwk
in the alphabet A which appears in the sequence

a infinitely often, for which the substitution matrix SζW is strictly positive.

Property (A1), of course, implies primitivity. It also implies unique ergodicity of the S-adic

shift, see [11, Theorem 5.7]; in fact, this goes back to Furstenberg [23, (16.13)].

We will also assume that the S-adic system is aperiodic, i.e., it has no periodic points. (A

minimal system that has a periodic point, is obviously a system on a finite space, and we want

to exclude a trivial situation.) Checking aperiodicity may require some work, even for a single

substitution.

Further, we need the notion of recognizability for the sequence of substitutions, introduced in

[13], which generalizes bilateral recognizability of B. Mossé [35] for a single substitution, see also

Sections 5.5 and 5.6 in [38]. By definition of the space Xa, for every n ≥ 1, every x ∈ Xa has a

representation of the form

(2.4) x = T k
(
ζ [n](x′)

)
, where x′ ∈ Xσna, 0 ≤ k < |ζ [n](x0)|.

Here σ denotes the left shift on A
N, and we recall that a substitution ζ acts on AZ by

ζ(. . . a−1.a0a1 . . .) = . . . ζ(a−1).ζ(a0)ζ(a1) . . .

Definition 2.2. A sequence of substitutions a = (ζj)j≥1 is said to be recognizable if the repre-

sentation (2.4) is unique for all n ≥ 1.

The following is a special case of [13, Theorem 4.6] that we need.

Theorem 2.3 ([13]). Let a = (ζj)j≥1 ∈ A
N be such that every substitution matrix Sζj has maximal

rank m and Xa is aperiodic. Then a is recognizable.

There is a canonical correspondence between (one-sided) Bratteli-Vershik diagrams with m

vertices on each level and sequences of substitutions a = (ζj)j≥1 on the alphabet A = {0, . . . ,m−
1}, discovered by Livshits [30].
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Theorem 2.4 ([13, Theorem 6.5]). Let σ ∈ A
N be a recognizable sequence of substitutions. Then

the S-adic shift (Xa, T ) is almost topologically conjugate, hence measurably conjugate in case the

system is uniquely ergodic, to the corresponding Bratteli-Vershik system.

2.5. Symbolic representation of IET’s and translation flows. Let H be a connected com-

ponent of a stratum and R the Rauzy class of a permutation corresponding to H. Veech [43]

constructed a measurable map from the space V(R) of zippered rectangles corresponding to the

Rauzy class R, to H, which intertwines the Teichmüller flow on H and a renormalization flow Pt

that Veech defined on V(R). Section 4.3 of [15] gives a symbolic coding of the flow Pt on V(R) on

a space of 2-sided Markov compacta with a Vershik ordering. Using the canonical correspondence

with sequences of substitutions, we obtain a map

(2.5) ZR : (V(R), ν̃) → (Ω,P )

to a probability space of 2-sided sequences of substitutions (ζj)j∈Z ∈ A
Z, defined almost every-

where. Here ν̃ is the pull-back of ν, an invariant and ergodic map under the Teichmüller flow

on H. The first return map of the flow Pt for an appropriate Poincaré section is mapped by

ZR to the shift map σ on (Ω,P ). This correspondence maps the Rauzy-Veech cocycle over the

Teichmüller flow into the renormalization cocycle associated with the sequence of substitutions.

More precisely, the substitution ζ1 in the symbolic representation of [15] can be “read off” the

Rokhlin tower (2.1), (2.2) of one step of the Rauzy-Veech induction:

(2.6) ζ1 : i 7→ n(i, 0) . . . n(i, r1 − 1), i = 1, . . . ,m.

Thus we obtain

BR(λ, π) = [n(i, j)]mi,j=1 = S
t
ζ1 .

We will be using the following notation for this cocycle:

(2.7) A(a) := S
t
ζ1 ; A(a, n) := A(σn−1a) · . . . · A(a),

where a = (ζj)
∞
j=1 is the positive side of a sequence of substitutions from Ω.

A zippered rectangle R ∈ V(R) determines a suspension flow over an IET, isomorphic to

the translation flow on a flat surface. The symbolic coding ZR induces a map defined for a.e.

R ∈ V(R), from the corresponding flat surface M(R) to a suspension over the S-adic space Xa.

Moreover this map takes the IET into the S-adic system (Xa, T ), whereas the piecewise-constant

roof function of the suspension is determined by the left side of the sequence (ζj)
0
j=−∞. The

justification for transition from the Bratteli-Vershik coding of [15] to the S-adic framework is

provided by Theorems 2.4 and 2.3, in view of the fact that the matrices of the Rauzy-Veech

cocycle are unimodular, see [43, 44], hence have maximal rank. We denote by Ω+ the projection

of Ω to the “positive side” and by P+ the projection of the measure P to Ω+. The property (A1)

holds for P+-almost every a ∈ Ω+, see Veech [43].
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2.6. Cylindrical functions. Suppose that the S-adic system (Xa, T ) is uniquely ergodic, with

the unique invariant probability measure by µ. Consider the partition of Xa into cylinder sets

according to the value of x0: Xa =
⊔

a∈A[a]. Denote by (X~s
a
, ht, µ̃) the suspension flow over

(Xa, µ, T ), corresponding to a piecewise-constant roof function determined by ~s ∈ R
m
+ . We have

a union, disjoint in measure:

X
~s
a
=
⋃

a∈A
[a]× [0, sa],

and define a Lip-cylindrical function by the formula:

(2.8) f(x, t) =
∑

a∈A
11[a](x) · ψa(t), with ψa ∈ Lip[0, sa],

where Lip is the space of Lipschitz functions.

3. Statement of main results

3.1. Definition of the spectral cocycle. We proceed to the main construction of the paper.

Let ζ be a substitution on A with a substitution matrix having non-zero determinant. Consider

the toral endomorphism ξ 7→ Stζ ξ (mod Z
m), ξ ∈ T

m = R
m/Zm, induced by the transpose

substitution matrix. Suppose that

ζ(b) = ub1 . . . u
b
|ζ(b)|, b ∈ A.

Definition 3.1. Define a matrix-valued function Mζ : R
m →Mm(C) (the space of complex m×m

matrices) by the formula

(3.1) Mζ(ξ) = [Mζ(ξ1 . . . , ξm)](b,c) :=
( ∑

j≤|ζ(b)|, ub
j=c

exp
(
−2πi

j−1∑

k=1

ξub
k

))
(b,c)∈A2

, ξ ∈ R
m.

Note that Mζ is Z
m-periodic, so we obtain a continuous matrix-function on the torus, which we

denote, by a slight abuse of notation, by the same letter: Mζ : T
m →Mm(C).

Remark 3.2. The matrix Mζ already appeared (with a different notation) in [17, (4.15)] in the

framework of generalized matrix Riesz products. It is also closely related to the Fourier matrix

B(k) from the recent papers of Baake et al. [4, 6, 7]. More precisely, B(k) is the restriction of

Mζ to the line {ξ = k~s, k ∈ R}, where ~s is the Perron-Frobenius eigenvector of Stζ . This leads

to a cocycle on the line R, used to study the diffraction spectrum of a single substitution, see

Section 4.3 below for a more detailed discussion.

Example 3.3. Let A = {1, 2, 3},

ζ(1) = 121321, ζ(2) = 2231, ζ(3) = 31123.
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Denoting zj := e−2πiξj , j ≤ 3, we obtain

Mζ(ξ1, ξ2, ξ3) = Mζ(z1, z2, z3) =




1 + z1z2 + z11z
2
2z3 z1 + z21z2z3 z21z2

z22z3 1 + z2 z22
z3 + z1z3 z21z3 1 + z21z2z3


 .

Observe that Mζ(ξ) is a matrix-function whose entries are trigonometric polynomials in m

variables, with the following properties: (i) Mζ(0) = Stζ , (ii) all the coefficients are 0’s and 1’s,

(iii) in every row, any given monomial appears at most once, (iv) the maximal degree of the

entries in j-th row equals |ζ(j)|−1, (v) the substitution is uniquely determined by Mζ . The most

important property is

(3.2) Mζ1◦ζ2(ξ) = Mζ2(S
t
ζ1ξ)Mζ1(ξ),

which is verified by a direct computation.

Consider the skew product transformation G : Ω+ × T
m → Ω+ × T

m defined by

G(a, ξ) =
(
σa,Stζ1ξ (mod Z

m)
)
, where a = (ζn)n≥1 and ξ ∈ T

m = R
m/Zm.

Definition 3.4. Let M (a, ξ) = Mζ1(ξ), where a = (ζn)n≥1. Then

(3.3) M
Ω
((a, ξ), n) := M (Gn−1(a, ξ)) · . . . · M (a, ξ)

is a complex matrix cocycle over the skew product system (Ω+ × T
m,P × νm,G), where νm is the

Haar measure on T
m.

The following is immediate from definitions and (3.2):

Lemma 3.5. (i) The spectral cocycle is an extension of the Rauzy-Veech cocycle in the form (2.7),

namely,

MΩ((a, 0), n) = A(a, n).

(ii) We have

M
Ω
((a, ξ), n) = Mζ[n](ξ).

It follows from (ii) that the spectral cocycle behaves consistently with a “telescoping” operation

of replacing a finite sequence of substitutions by their composition; in particular, applying the

Zorich acceleration algorithm we obtain the spectral cocycle that is an extension of the Zorich

cocycle.

Introduce the pointwise upper Lyapunov exponent of our cocycle, corresponding to a given

vector ~z ∈ C
m:

(3.4) χ+
a,ξ,~z := lim sup

n→∞

1

n
log ‖M

Ω
((a, ξ), n)~z‖.
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We also consider the pointwise upper Lyapunov exponent (which is independent of the matrix

norm):

χ+
a,ξ := lim sup

n→∞

1

n
log ‖M

Ω
((a, ξ), n)‖.

Let λ be the Lyapunov exponent of the Rauzy-Veech cocycle, which exists by ergodicity of the

Teichmüller flow:

(3.5) λ = lim
n→∞

1

n
log ‖A(a, n)‖ for P+-a.e. a ∈ Ω+.

Observe that for all ξ ∈ T
m the entries of the matrix M

Ω
((a, ξ), n) are not greater than the

corresponding entries of the positive A(a, n). It follows that

χ+
a,ξ ≤ λ for P+-a.e. a ∈ Ω+.

Notice that

(3.6) χ+
a,ξ ≥ 0 for all a ∈ Ω+ and ξ ∈ T

m,

because of the special property of substitutions ζj appearing in the Rauzy-Veech induction [43, 44];

one can check with the help of (2.6) that

|detMζj (ξ)| ≡ 1, ξ ∈ T
m, for all j ∈ N,

and the norm of m × m matrix is not smaller than the m-th root of the absolute value of its

determinant.

3.2. Statement of results. Our main result is a formula expressing the lower local dimension of

spectral measures in terms of the Lyapunov exponents of the spectral cocycle. Recall that, given

a probability measure-preserving flow ht on a space X and a test function f ∈ L2(X) the spectral

measure σf is a finite positive Borel measure on R defined by

σ̂f (−t) =
∫ ∞

−∞
e2πiωt dσf (ω) = 〈f ◦ ht, f〉, t ∈ R,

where 〈·, ·〉 denotes the inner product in L2.

We are interested in fractal properties of spectral measures. One of the commonly used local

characteristics of a finite measure ν on a metric space is the lower local dimension defined by

d(ν, ω) = lim inf
r→0

log ν(Br(ω))

log r
.

Alternatively, it can be thought of as the best possible local Hölder exponent, i.e.:

d(ν, ω) = sup{α ≥ 0 : ν(Br(ω)) = O(rα), r → 0}.

For example, the lower local dimension is zero at a point mass and is infinite outside the compact

support of a measure.
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Next we define the class of test functions under consideration. Recall that H is a connected

component of the moduli space of Abelian differentials on a surface of genus g ≥ 2, equipped

with a probability measure ν, invariant and ergodic under the Teichmüller flow gs. We fix a

symbolic representation of the Teichmüller flow as described in Section 2.5. Under this symbolic

representation, the vertical flow on the flat surface becomes the suspension flow over an S-adic

system. So, for ν-a.e. flat surface (M,ω), corresponding to a pair (a, ~s), with a ∈ Ω+ and ~s ∈ R
m
+ ,

almost every point on M is mapped into a pair (x, t), where x ∈ Xa (the S-adic space) and

t ∈ [0, sx0 ]. Our test functions will be Lip-cylindrical functions of the form (2.8) in this symbolic

representation.

Theorem 3.6. Let ν be a probability measure on H, invariant and ergodic under the Teichmüller

flow gs. For ν-almost every Abelian differential (M,ω) the following holds. Let (M,ω) correspond

to a pair (a, ~s), with a ∈ Ω+ and ~s ∈ R
m
+ . Let f(x, t) =

∑
a∈A 11[a](x) · ψa(t) be a Lip-cylindrical

function and σf the spectral measure of f for the suspension flow (X~s
a
, µ̃, ht), which is measurably

isomorphic to the vertical translation flow on (M,ω). Fix ω ∈ R (the spectral parameter), let

ξ ∈ T
m be such that

ξ = ω~s (mod Z
m),

and set

~z = (ψ̂a(ω))a∈A.

Suppose that the upper Lyapunov exponent of the spectral cocycle at (a, ξ), corresponding to the

vector ~z is positive: χ+
a,ξ,~z > 0. Then

(3.7) d(σf , ω) = 2−
2χ+

a,ξ,~z

λ
.

If χ+
a,ξ,~z ≤ 0, then

d(σf , ω) ≥ 2.

Fix ~s ∈ R
m
+ . Theorem 3.6 shows that the cocycle M

Ω
(ω~s, n) controls the behaviour of spectral

measures for the suspension flow (X~s
a
, µ̃, ht). Here and below we consider ω~s as a point on the

torus (mod Z
m).

As a special case of Lip-cylindrical functions, consider simple cylindrical functions, of the form

f(x, t) =
∑

a∈A ba11[a](x), that is, ψa(ω) = ba11[0,sa]. Then

(3.8) ~z = (ψ̂a(ω))a∈A =

(
ba(1− e−2πiωsa)

2πiω

)

a∈A
=: Γω

~b, for ω 6= 0,

and for ω = 0 we have ~z = Γ0(~b) = ~b. Let ~ej be the j-th unit coordinate vector in C
m.
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Corollary 3.7. Suppose that we are under the assumptions of Theorem 3.6, and let ~s ∈ R
m
+ .

Consider the suspension flow (X~s
a
, µ̃, ht).

(i) Let ω ∈ R \⋃a∈A(s
−1
a · Z). For any ~b ∈ C

m there exists j ≤ m such that

card
{
c ∈ C : χ+

a,ω~s,Γω(~b+c~ej)
< χ+

a,ω~s

}
≤ 1,

and hence for all perturbations of ~b along the j-th direction, except possibly one, the simple cylin-

drical function f corresponding to it, satisfies

d(σf , ω) = 2−
2χ+

a,ω~s

λ
, assuming χ+

a,ω~s > 0.

(ii) For Lebesgue-a.e. ~b ∈ C
m, the simple cylindrical function f corresponding to ~b satisfies

d(σf , ω) = 2−
2χ+

a,ω~s

λ
for Lebesgue-a.e. ω ∈ R, such that χ+

a,ω~s > 0.

Recall that χ+
a,ω~s ≥ 0 by (3.6). It would be interesting to determine under what conditions the

Lyapunov exponents χ+
a,ω~s are strictly positive.

Corollary 3.8. Suppose that we are under the assumptions of Theorem 3.6, and let ~s ∈ R
m
+ .

Then for a.e. a the following hold.

(i) we have

(3.9) χ+
a,ω~s ≤

1

2
λ for Lebesgue-a.e. ω ∈ R,

but

(3.10) χ+
a,ω~s ≥

1

2
λ for σf -a.e. ω ∈ R.

(ii) If the flow (X~s
a
, µ̃, ht) has a non-trivial absolutely continuous component of the spectrum,

then χ+
a,ω~s =

1
2λa for Lebesgue-a.e. ω ∈ R.

Remark 3.9. In the paper [18] we proved Hölder continuity of spectral measures for almost every

translation flow in the stratum H(2), essentially via showing that there exists ε > 0 such that

(3.11) χ+
a,ω~s ≤ λ− ε for all ω 6= 0, for a.e. ~s.

Although this is much weaker than the estimate in (3.9) for a single ω, the difference is that (3.11)

is obtained for all non-zero spectral parameters, rather than for Lebesgue-almost all.
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3.3. Higher-level cylindrical functions. Cylindrical functions used so far in this paper do not

suffice to describe the spectral type of the flow completely. Rather, we need functions depending

on an arbitrary fixed number of symbols. Fix ℓ ≥ 1. Cylindrical functions of level ℓ depend on

the first ℓ edges of the path representing a point in the Bratteli-Vershik representation. In the

S-adic framework, we say that f is a Lip-cylindrical function of level ℓ if

(3.12) f(x, t) =
∑

a∈A
11ζ[ℓ][a](x) · ψ(ℓ)

a (t), with ψ(ℓ)
a ∈ Lip[0, s(ℓ)a ],

where

~s (ℓ) = (s(ℓ)a )a∈A := S
t
ζ[ℓ]
~s.

This representation depends on the notion of recognizability for the sequence of substitutions,

see Definition 2.2, as will be explained in the next section. The following is an extension of

Theorem 3.6 to the case of higher-order cylindrical functions.

Theorem 3.10. Let ν be a probability measure on H, invariant and ergodic under the Teichmüller

flow gs. For ν-almost every Abelian differential (M,ω) the following holds. Let (M,ω) correspond

to a pair (a, ~s), with a ∈ Ω+ and ~s ∈ R
m
+ . Let f(x, t) =

∑
a∈A 11ζ[ℓ][a](x)·ψ

(ℓ)
a (t) be a Lip-cylindrical

function of level ℓ and σf the spectral measure of f for the suspension flow (X~s
a
, µ̃, ht). Fix ω ∈ R,

let ξ ∈ T
m be such that

ξ = ω ~s(ℓ) (mod Z
m),

and set

~z = (ψ̂(ℓ)
a (ω))a∈A.

Suppose that the upper Lyapunov exponent of the spectral cocycle at (a, ξ), corresponding to the

vector ~z is positive: χ+
a,ξ,~z > 0. Then

(3.13) d(σf , ω) = 2−
2χ+

a,ξ,~z

λ
.

If χ+
a,ξ,~z ≤ 0, then

d(σf , ω) ≥ 2.

This theorem has corollaries that are exact analogues of Corollaries 3.7 and 3.8 for the higher-

level cylindrical functions.

4. Suspensions over S-adic systems

The results of the previous section are deduced from more general results, obtained for suspen-

sions over an individual S-adic system, satisfying some natural assumptions. As a special case,

we obtain results for classical substitution systems.

Suppose we are given a sequence of substitutions a = (ζj)j≥1 ∈ A. We continue to use the

notation Sζ for the substitution matrix of ζ, see (2.3). Observe that Sζ1◦ζ2 = Sζ1Sζ2 . In this
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section we do not assume that det Sζ 6= 0, allowing degenerate substitution matrices. We will

sometimes denote

Sj := Sζj and S
[n] := Sζ[n].

We will also consider subwords of the sequence a and the corresponding substitutions obtained

by composition. We write

Sq = Sn · · · Sℓ for q = ζn . . . ζℓ.

We will be using matrix 1-norm; recall that it equals the maximal absolute column sum of the

matrix. Thus,

‖Sζ‖1 = max
a∈A

|ζ(a)|,

by the definition of the substitution matrix.

Recall that, given a sequence of substitutions a, we denote by Xa ⊂ AZ the subspace of all

two-sided sequence whose every subword appears as a subword of ζ [n](b) for some b ∈ A and

n ≥ 1. Let T be the left shift on AZ; then (Xa, T ) is the (topological) S-adic dynamical system.

We restate our basic standing assumption in the current notation:

(A1) There is a word q which appears in a infinitely often, for which Sq has all entries strictly

positive.

For random sequences of substitutions, a stronger condition (A1′), which provides a certain

regularity of appearances of the “good word” q, holds by the Ergodic Theorem, see Lemma 4.2

below:

(A1′) For any ε > 0 there exists n0 = n0(ε) such that for all n ≥ n0 the word q, with Sq

strictly positive, appears as a subword of ζ⌊n(1−ε)⌋+1, ζ⌊n(1−ε)⌋+2, . . . , ζn.

As explained in Section 2.4, condition (A1) implies that (Xa, T ) is minimal and uniquely

ergodic. Let µ be the unique invariant Borel probability measure for the system (Xa, T ). Consider

(X~s
a
, µ̃, ht), the suspension flow over (Xa, µ, T ), corresponding to a piecewise-constant roof function

determined by ~s ∈ R
m
+ . The second basic assumption is the existence of the Lyapunov exponent

for the non-stationary Markov chain:

(A2) The following limit exists:

(4.1) λa := lim
n→∞

1

n
log ‖S[n]‖ <∞.

Definition 4.1. Given a substitution ζ, we consider the complex matrix-valued function Mζ(ξ)

defined on R
m and on the torus Tm by formula (3.1). For a sequence of substitutions a = (ζn)n≥1,

let

Ma(ξ, n) := Mζn

(
S
t
ζ[n−1]ξ

)
· . . . · Mζ2(S

t
ζ1ξ)Mζ1(ξ), n ≥ 1.
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Under the assumption det(Sζj ) 6= 0, j ≥ 1, the matrix Ma(ξ, n) may be viewed as a complex

matrix cocycle on the torus T
m over the non-stationary toral endomorphism Eζn : Tm → T

m at

time n, where Eζ(ξ) = Stζξ (mod Z
m).

Similarly to the previous section, we consider the pointwise upper Lyapunov exponent of our

cocycle, corresponding to a given vector ~z ∈ C
m:

(4.2) χ+
a,ξ,~z = lim sup

n→∞

1

n
log ‖Ma(ξ, n)~z‖,

as well as

χ+
a,ξ = lim sup

n→∞

1

n
log ‖Ma(ξ, n)‖.

Note that Ma(0, n) = St
ζ[n−1], and for all ξ the absolute values of the entries of Ma(ξ, n) are not

greater than those of St
ζ[n−1]. Therefore,

χ+
a,ξ ≤ λa, for all ξ ∈ T

m.

where λa is defined in (4.1). We need to add one more requirement on the sequence a.

(A3) We have

(4.3) lim
n→∞

1

n
log(1 + ‖Sn‖) = 0.

In the case of a “random” S-adic system, as in the previous section, these properties are deduced

with the help of the next lemma. Let Ω+ be a shift-invariant subspace of AN (see Notation 2.1),

with an invariant measure P+.

Lemma 4.2. Suppose that the following properties hold:

(C1) the system (Ω+, σ,P+) is ergodic;

(C2) the function a 7→ log(1 + ‖Sζ1‖) is integrable;

(C3) there is a word q admissible for sequences in Ω+, such that all entries of the matrix Sq

are positive and P+([q]) > 0.

Then conditions (A1′), (A2), and (A3) hold P+-almost surely.

For the proof, note that property (A2) for P+-a.e. a follows from (C1) and (C2) by the

Furstenberg-Kesten theorem on the existence of Lyapunov exponent. The a.s. validity of (A3) is

immediate from the Birkhoff-Khinchin Ergodic Theorem and (C2). Finally, the property (A1′)

for P+-a.e. a is a consequence of (C1), (C3), and the following standard fact.

Observation. Let (X,T, µ) be an ergodic measure-preserving system and A ⊂ X is measurable,

with µ(A) > 0. Then for µ-a.e. x ∈ X, for every ε > 0, there exists n0 = n0(x) such that

∀n ≥ n0, ∃ k ∈ [n(1− ε), n] ∩ N : T kx ∈ A.
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To verify the latter, it suffices to note that by the Ergodic Theorem, for a.e. x we have

n−1 ·#{k ∈ [0, n − 1] ∩ N : T kx ∈ A} → µ(A), as n→ ∞.

Now we state the main result for S-adic systems.

Theorem 4.3. Let a = (ζj)j≥1 ∈ A
N be a sequence of substitutions satisfying the conditions

(A1′), (A2), and (A3), such that the S-adic shift (Xa, T ) is aperiodic and a is recognizable. Let

~s ∈ R
m
+ and consider the suspension flow (X~s

a
, ht, µ̃) over the uniquely ergodic system (Xa, T, µ).

Let f(x, t) =
∑

j∈A 11[j](x) · ψj(t) be a Lip-cylindrical function and σf the corresponding spectral

measure. Fix ω ∈ R and let

ξ = ω~s (mod Z
m), ~z = (ψ̂j(ω))j∈A.

Suppose that χ+
a,ξ,~z > 0. Then

(4.4) d(σf , ω) = 2−
2χ+

a,ξ,~z

λa
.

If χ+
a,ξ,~z ≤ 0, then

(4.5) d(σf , ω) ≥ 2.

Notice that if χ+
a,ξ,~z > 0, then also λa ≥ χ+

a,ξ,~z > 0, so the formula in (4.4) is well-defined.

As a special case, we can consider a single primitive aperiodic substitution ζ, and Theorem 4.3

applies to suspension flows over the classical substitution dynamical system (Xζ , T ), see Sec-

tion 4.2 for more details.

The next two corollaries are very similar to the ones from the previous section, but since here

the setting is an individual S-adic system, we state them explicitly. Recall that simple cylindrical

functions have the form f(x, t) =
∑

a∈A ba11[a](x), that is, ψa(ω) = ba11[0,sa]. Then by (3.8):

~z = (ψ̂a(ω))a∈A =

(
ba(1− e−2πiωsa)

2πiω

)

a∈A
=: Γω

~b, for ω 6= 0,

and for ω = 0 we have ~z = Γ0(~b) = ~b. Let ~ej be the j-th unit coordinate vector in C
m.

Corollary 4.4. Let a = (ζj)j≥1 ∈ A
N be a sequence of substitutions satisfying the conditions

(A1′), (A2), and (A3), such that the S-adic shift (Xa, T ) is aperiodic and a is recognizable. Let

~s ∈ R
m
+ and consider the suspension flow (X~s

a
, ht, µ̃) over the uniquely ergodic system (Xa, T, µ).

(i) Let ω ∈ R \⋃a∈A(s
−1
a · Z). For any ~b ∈ C

m there exists j ≤ m such that

card
{
c ∈ C : χ+

a,ω~s,Γω(~b+c~ej)
< χ+

a,ω~s

}
≤ 1,
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and hence for all perturbations of ~b along the j-th direction, except possibly one, the simple cylin-

drical function f corresponding to it, satisfies

d(σf , ω) = 2−
2χ+

a,ω~s

λa
, assuming χ+

a,ω~s > 0.

(ii) For Lebesgue-a.e. ~b ∈ C
m, the simple cylindrical function f corresponding to ~b satisfies

d(σf , ω) = 2−
2χ+

a,ω~s

λa
for Lebesgue-a.e. ω ∈ R, such that χ+

a,ω~s > 0.

Corollary 4.5. Let a = (ζj)j≥1 ∈ A
N be a sequence of substitutions satisfying the conditions

(A1′), (A2), and (A3), such that the S-adic shift (Xa, T ) is aperiodic and a is recognizable. Let

~s ∈ R
m
+ . Then

(i) we have χ+
a,ω~s ≤ 1

2λa for Lebesgue-a.e. ω ∈ R, but χ+
a,ω~s ≥ 1

2λa for σf -a.e. ω ∈ R.

(ii) if χ+
a,ω~s <

1
2λa for Lebesgue-a.e. ω ∈ R, then for any cylindrical function f on X

a

ζ , the

spectral measure σf is purely singular;

(iii) if χ+
a,ω~s <

1
2λa for Lebesgue-a.e. ω ∈ R, and moreover, ω 7→ det

(
Ma(ω~s, ℓ)

)
is not constant

zero for all ℓ, then the flow (X~s
a
, µ̃, ht) has purely singular spectrum.

Corollaries 4.4 and 4.5 will be proven in Section 7. A sufficient condition for det
(
Ma(ω~s, ℓ)

)
6≡ 0

is det(S[ℓ]) 6= 0, since then det
(
Ma(ω~s, ℓ)

)
is a non-trivial trigonometric polynomial.

4.1. Recognizability and higher-level cylindrical functions. As already mentioned, we

need higher-order cylindrical functions to describe the spectral type of the flow. Recognizability

of a implies that

(4.6) Pn = {T i(ζ [n][a]) : a ∈ A, 0 ≤ i < |ζ [n](a)|}

is a sequence of Kakutani-Rokhlin partitions for n ≥ n0(a), which generates the Borel σ-algebra

on the space Xa. We emphasize that, in general, ζ [n][a] may be a proper subset of [ζ [n](a)].

Using the uniqueness of the representation (2.4) and the Kakutani-Rokhlin partitions (4.6), we

obtain for n ≥ n0:

µ([a]) =
∑

b∈A
S
[n](a, b)µ(ζ [n][b]), a ∈ A,

hence

(4.7) ~µ0 = S
[n]~µn, where ~µn =

(
µ(ζ [n][b])

)
b∈A

is a column-vector. Similarly to (4.7), we have that

(4.8) ~µn = Sn+1~µn+1, n ≥ n0.
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Let ℓ ∈ N. It follows from recognizability that the suspension flow (X~s
a
, µ̃, ht) is measurably

isomorphic to the suspension flow over the system (ζ [ℓ](Xσℓa), ζ
[ℓ] ◦T ◦ (ζ [ℓ])−1), with the induced

measure, and a piecewise-constant roof function given by the vector

~s (ℓ) = (s(ℓ)a )a∈A := (S[ℓ])t~s.

(If we think about the suspension flow as a tiling system, this procedure corresponds to considering

“supertiles” of order ℓ.) We have a union, disjoint in measure:

X
~s
a
=
⋃

a∈A
ζ [ℓ][a]× [0, s(ℓ)a ].

Note that this works correctly in terms of total measure of the space: by (4.7) we have

µ̃(X~s
a
) = 〈~µ0, ~s〉 = 〈S[ℓ]~µℓ, ~s〉 = 〈~µℓ, ~s(ℓ)〉.

Correspondingly, define f to be a Lip-cylindrical function of level ℓ if

f(x, t) = ψ(ℓ)
a (t), x ∈ ζ [ℓ][a], 0 ≤ t < s(ℓ)a ,

for some ψa ∈ Lip[0, s
(ℓ)
a ], a ≤ m. The union of cylindrical functions of all levels is dense in

L2(X~s
a
), see Lemma 7.1 below, hence the maximal spectral type of the flow may be expressed in

terms of their spectral measures.

For a generalization of Theorem 4.3 to the case of cylindrical function of level ℓ we need a

version of condition (A2):

(A2-ℓ)

lim
n→∞

1

n
log ‖Sℓ+1 · . . . · Sℓ+n‖ = λa.

Observe that condition (A2-ℓ) follows from (A2) if the substitution matrices are invertible, in

view of the inequalities

‖S1 · . . . · Sℓ+n‖ · ‖S1 · . . . · Sℓ‖−1 ≤ ‖Sℓ+1 · . . . · Sℓ+n‖ ≤ ‖(S1 · . . . · Sℓ)−1‖ · ‖S1 · . . . · Sℓ+n‖.

Theorem 4.6. Let a = ζ1 ζ2, . . . be a sequence of substitutions defined on A = {1, . . . ,m},
satisfying the conditions (A1′), (A2-ℓ), and (A3), such that the S-adic shift (Xa, T ) is aperiodic

and a is recognizable. Let ~s ∈ R
m
+ and consider the suspension flow (X~s

a
, ht, µ̃) over the S-adic

system (Xa, T, µ). For ℓ ∈ N let f(x, t) =
∑

j∈A 11ζ[j][a](x) ·ψ
(ℓ)
j (t) be a Lip-cylindrical function of

level ℓ and σf the corresponding spectral measure. Fix ω ∈ R and let ξ ∈ T
m be such that

ξ = ω~s(ℓ) (mod Z
m).

Further, define

~z = (ψ̂
(ℓ)
j (ω))j∈A.
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Suppose that χ+
a,ξ,~z > 0. Then

(4.9) d(σf , ω) = 2−
2χ+

a,ξ,~z

λa
.

If χ+
a,ξ,~z ≤ 0, then

(4.10) d(σf , ω) ≥ 2.

This theorem has corollaries that are exact analogues of Corollaries 4.4 and 4.5 for the higher-

level cylindrical functions.

4.2. Case of a single substitution. As a special case of an S-adic system, we can consider

a = (ζn)n≥1, where ζn ≡ ζ, a fixed primitive aperiodic substitution on A. Thus we obtain results

on the spectral measures of substitution R-actions as corollaries. We note that suspension flows

in this case have been studied as tiling dynamical systems on the line, with interval prototiles of

length sa, a ∈ A, see [10, 19, 41].

Assuming det(Sζ) 6= 0, consider the toral endomorphism

(4.11) Eζ : ξ 7→ S
t
ζξ (mod Z

m),

which preserves the Haar measure. Then the matrix-function from Definition 4.1 becomes

(4.12) Mζ(ξ, n) := Mζ

(
(Eζ)

n−1ξ
)
· . . . · Mζ(ξ) = Mζn(ξ)

and forms a complex matrix cocycle over the endomorphism (4.11). All the conditions (A1′),

(A2), (A3) clearly hold, so we obtain Theorems 4.3, 4.6, and the corollaries, specialized to the

case of a single substitution. Observe that now

λa = log θ1,

where θ1 is the Perron-Frobenius eigenvalue of the substitution matrix. In the case of a single

substitution we denote the pointwise upper Lyapunov exponents by χ+
ζ,ξ.

We note that in [17, Prop. 7.2] a lower bound for the local dimension of σf is obtained for sub-

stitution Z-actions, which is similar in spirit to the lower bound in (4.4) in the single substitution

case.

Now suppose that Sζ has no eigenvalues that are roots of unity. Then the endomorphism Eζ

of the torus T
m induced by Stζ is ergodic, and Furstenberg-Kesten Theorem [24] yields that the

top Lyapunov exponent exists and is constant almost everywhere:

∃χ(Mζ) = lim
n→∞

1

n
log ‖Mζ(ξ, n)‖ for a.e. ξ ∈ T

m.

Corollary 4.7. Suppose that the toral endomorphism Eζ is ergodic. Then

(i) the top Lyapunov exponent of the spectral cocycle satisfies χ(Mζ) ≤ 1
2 log θ1;

(ii) if χ(Mζ) <
1
2 log θ1, then for a.e. ~s ∈ R

m
+ , the flow (X~s

ζ , µ̃, ht) has purely singular spectrum.
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This corollary is immediate from Corollary 4.5. Indeed, the condition on the determinant in

part (iii) of that corollary holds automatically, since det(Sζ) 6= 0 by assumption. Note that, even

in the ergodic case, Corollary 4.5 is stronger, since it makes a claim about the flow under every

piecewise-constant roof function, and not just almost every, as follows from Corollary 4.7 and

Fubini’s Theorem. It would be interesting to find explicit examples of purely singular spectrum

using Corollaries 4.5 and 4.7.

Remark 4.8. (i) Corollaries 4.4 and 4.5 provide information about dimension of spectral mea-

sures and pointwise Lyapunov exponents, as well as a sufficient condition for singularity, for a

(geometric) substitution tiling on the line corresponding to the substitution ζ and the tile lengths

given by an arbitrary vector ~s ∈ R
m
+ . It is not hard to show that if ~s and ~s′ belong to the same

stable manifold of Eζ , that is, if

(4.13) lim
n→∞

En
ζ (~s− ~s′) = 0,

then the corresponding pointwise Lyapunov exponents are equal: χ+
ζ,ω~s = χ+

ζ,ω~s′, for any ω ∈ R,

and hence we have an equality for the dimension of spectral measures. In fact, by a theorem

of Clark and Sadun [19, Theorem 3.1] the two suspension flows (X~s
ζ , µ̃, ht) and (X~s′

ζ , µ̃, ht) are

topologically conjugate, provided (4.13) holds.

(ii) The Pisot case, when all the eigenvalues of Sζ , other than θ1, lie inside the unit circle,

has attracted much attention of the researchers. It is still an open problem, whether in the

general Pisot case the spectrum is pure discrete, but it is known that there is a large discrete

spectrum, dense on the line. Sadun [40] called a substitution “plastic” if arbitrary changes of tile

lengths (vector ~s ∈ R
m
+ ) result in a topologically conjugate system, up to an overall scale. Pisot

substitutions are plastic by the Clark-Sadun [19, Theorem 3.1], and more generally, “homological

Pisot substitutions” of [9].

4.3. Self-similar suspension flow; comparison with the work of Baake et al. Consider

the self-similar suspension flow over a substitution, when the vector ~s defining the roof function

is given by the Perron-Frobenius eigenvector of Stζ . In particular, this is the case of translation

flows along stable/unstable foliations for a pseudo-Anosov diffeomorphism. Then one gets

(4.14) Mζ(ω~s, n) := Mζ

(
θn−1
1 ω~s

)
· . . . · Mζ(θ1ω~s) · Mζ(ω~s).

Baake et al. [4, 6, 7] studied the diffraction spectrum of substitution systems in the self-similar

non-constant length case, with a goal of proving that the spectrum is pure singular. There is a

well-known connection between the diffraction and dynamical spectrum of a system, see [21, 26, 8],

so that the questions are closely related. Baake et al. work with (4.14) as a cocycle on R over the

infinite-measure preserving action ω 7→ θ1ω. They represent the diffraction measure as a matrix

Riesz product, using a weak-star limit of (4.14), appropriately normalized and viewed as a matrix

of densities of absolutely continuous measures. (We note that a similar generalized Riesz product



20 ALEXANDER I. BUFETOV AND BORIS SOLOMYAK

expression for the matrix of spectral measures for a substitution Z-action was given in [17, Lemma

2.2].) Building on this expression, Baake et al. obtain functional equations for the absolutely

continuous components of the diffraction measures, which under certain conditions, expressed

in terms of the upper Lyapunov exponents of (4.14), imply triviality of these components and

hence singularity of the spectrum. Earlier this approach was used in the constant length case,

in particular, for the Thue-Morse substitution and its generalizations [28, 5]. In comparison, our

proof of singularity is based on growth estimates of twisted Birkhoff integrals, which then yield

pointwise dimensions of spectral measures incompatible with a non-trivial absolutely continuous

component.

To be more specific, in the paper [4] estimates for the upper Lyapunov exponent of (4.14) at

almost every ω ∈ R were used to establish singularity of the diffraction measure for a non-Pisot

substitution on a two-letter alphabet, defined by 0 → 0111, 1 → 0, and in [6] this was extended

to the family of substitutions 0 → 01k, 1 → 0, with k ≥ 4. In the paper [7] a general primitive

substitution is considered. [7, Theorem 3.24] may be restated as a claim that if χ+
ζ,ω~s <

1
2 log θ1,

for Lebesgue-a.e. ω ∈ R, then the diffraction measure is singular. This can be deduced from

Corollary 4.5(ii). In the special case of self-similar flow, Corollary 4.5(i) is proved in [7, Theorem

3.29] directly.

The almost sure existence of the Lyapunov exponent for (4.14) is not clear, except in the Pisot

case and in the constant length case, see [7]. Considering the cocycle (4.12) on the torus we au-

tomatically obtain the existence of the Lyapunov exponent in the ergodic case almost everywhere

on T
m, but, of course, the set {ω~s (mod Z

m) : ω ∈ R} for a fixed ~s has Haar measure zero.

It should be mentioned that Queffelec [38] made extensive use of generalized matrix Riesz

products to represent spectral measures for constant length substitutions. Various classes of

Riesz products appeared in the description of the spectral type of measure-preserving systems in

other contexts, see e.g. [29, 14, 20, 1].

The rest of the paper is organized as follows. In the next section we obtain estimates relating the

growth of twisted Birkhoff integrals to the local behaviour of spectral measures. It is completely

general and applies to any measure-preserving flow. In Section 6 we prove Theorems 4.3 and 4.6,

and then derive Theorems 3.6 and 3.10. Section 7 contains the remaining proofs. Finally, in the

Appendix, Section 8, we verify Hölder continuity for a.e. translation flow in H(1, 1).

5. Spectral estimates

Let (Y, µ, ht) be a measure-preserving flow. For f ∈ L2(Y, µ), R > 0, ω ∈ R, and y ∈ Y let

GR(f, ω) = R−1

∥∥∥∥
∫ R

0
e−2πiωtf(hty) dt

∥∥∥∥
2

L2(Y )

and Sy
R(f, ω) =

∫ R

0
e−2πiωtf(hty) dt,



A SPECTRAL COCYCLE FOR SUBSTITUTION SYSTEMS AND TRANSLATION FLOWS 21

so that

GR(f, ω) = R−1

∫

Y
|Sy

R(f, ω)|2 dµ(y).

Let σf be the spectral measure for the flow, defined by
∫

R

e2πiωt dσf (ω) = 〈f ◦ ht, f〉L2 , t ∈ R.

It is well-known that

(5.1) GR(f, ω) =

∫

R

KR(ω − τ) dσf (τ), where KR(y) = R−1

(
sin(πRy)

πy

)2

, for y 6= 0,

and KR(0) := R, is the Fejér kernel for R, see e.g., [25, 2.2]. The following lemma is a minor

variation of a result by A. Hof [25, 2.2], and is a special case of [17, Lemma 3.1].

Lemma 5.1. Suppose that for some fixed ω ∈ R, α ≥ 0, fixed R ≥ 1, and f ∈ L2(Y, µ) we have

GR(f, ω) ≤ C1R
1−α.

Then

σf (Br(ω)) ≤ C1π
22αrα, for r = (2R)−1.

Proof. Note that | sinx| ≥ (2/π)|x| for |x| ≤ π/2, hence KR(y) ≥ 4R/π2 for |y| ≤ (2R)−1. Thus,

(5.1) implies σf (B 1
2R

(ω)) ≤ π2

4RGR(f, ω), and the desired estimate follows. �

The next lemma is also inspired by [25], however, there is a difference, since we are interested

in estimates for a fixed ω, whereas A. Hof considers uniform Hölder continuity on an interval.

Lemma 5.2. Suppose that for some fixed ω ∈ R, α ∈ (0, 2), r0 ∈ (0, 1), and f ∈ L2(Y, µ) we have

(5.2) σf (Br(ω)) ≤ C2r
α, for all r ∈ (0, r0).

Then

(5.3) GR(f, ω) ≤ C3R
1−α, for all R ≥ r

− 2
2−α

0 ,

where one can take

C3 = C2

(
1 +

2

π2(2− α)

)
+ π−2‖f‖22.

The “borderline case” of α = 2 is considered in the next lemma. The result is similar, but with

a logarithmic correction.

Lemma 5.3. Suppose that for some fixed ω ∈ R, r0 ∈ (0, e−1), and f ∈ L2(Y, µ) we have

(5.4) σf (Br(ω)) ≤ C̃2r
2, for all r ∈ (0, r0).

Then

(5.5) GR(f, ω) ≤ C̃3R
−1 lnR, for all R ≥ max{r−1

0 , er
−2
0 },
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where one can take

C̃3 = C̃2(1 + 2π−2) + π−2‖f‖22.

Observe that

KR(y) ≤





R, |y| ≤ 1
R ;

1
π2Ry2

, |y| > 1
R .

It follows that

(5.6) GR(f, ω) ≤ R · σf (B1/R(ω)) +
1

π2R

∫

|τ−ω|>1/R

dσf (τ)

(ω − τ)2
.

Proof of Lemma 5.2. Let R ≥ r
− 2

2−α

0 . By (5.2), the first term in (5.6) is not greater than C2R
1−α,

since R−1 ≤ r
2

2−α

0 ≤ r0. The integral in the second term can be rewritten, and then estimated, as

∫

|τ−ω|>1/R

dσf (τ)

(ω − τ)2
=

∫ R2

0
σf
(
{τ : R2 > |τ − ω|−2 ≥ t}

)
dt

= 2

∫ ∞

1/R
σf
(
{τ : R2 > |τ − ω|−2 ≥ x−2}

)
x−3 dx

= 2

∫ ∞

1/R
σf
(
{τ : R−1 < |τ − ω| ≤ x}

)
x−3 dx

≤ 2

∫ ∞

1/R
σf (Bx(ω))x

−3 dx

= 2



∫ R−

2−α
2

1/R
+

∫ ∞

R−
2−α
2


σf (Bx(ω))x

−3 dx.

The first integral in the last line may be estimated from above by

2

∫ R−
2−α
2

1/R
σf (Bx(ω))x

−3 dx ≤ 2C2

∫ ∞

1/R
xα−3 dx =

2C2R
2−α

2− α
.

In the second integral, we simply use that σf is a positive measure of total mass ‖f‖22 to obtain

2

∫ ∞

R−
2−α
2

σf (Bx(ω))x
−3 dx ≤ 2‖f‖22

∫ ∞

R−
2−α
2

x−3 dx = ‖f‖22 ·R2−α.

Combining these together with (5.6) yields (5.3). �
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Proof of Lemma 5.3. Let R ≥ max{r−1
0 , er

−2
0 }. By (5.4), the first term in (5.6) is not greater than

C̃2R
−1 ≤ C̃2R

−1 logR, where we used R ≥ r−1
0 ≥ e. The integral in the second term of (5.6) can

be estimated as follows (the change of variable is the same as in the proof of Lemma 5.2):
∫

|τ−ω|>1/R

dσf (τ)

(ω − τ)2
≤ 2

∫ ∞

1/R
σf (Bx(ω))x

−3 dx

= 2

(∫ 1/
√
logR

1/R
+

∫ ∞

1/
√
logR

)
σf (Bx(ω))x

−3 dx.

Note that
√
logR ≤ r0, so the first integral above can be estimated from above using (5.4):

2

∫ 1/
√
logR

1/R
σf (Bx(ω))x

−3 dx ≤ 2C̃2

∫ 1

1/R
x−1 dx = 2C̃2 logR.

For the second integral, we have

2

∫ ∞

1/
√
logR

σf (Bx(ω))x
−3 dx ≤ 2‖f‖22

∫ ∞

1/
√
logR

x−3 dx = 2‖f‖22 · logR.

Combining these together with (5.6) yields (5.5). �

The following remark is (essentially) taken from [25, 2.5].

Remark 5.4. (i) For all ω ∈ R we have σf ({ω}) = limR→∞R−1GR(f, ω), since R
−1KR tends to

zero uniformly outside any neighborhood of 0, and R−1KR(0) = 1.

(ii) Let dσf = hdx+d(σf )sing be the decomposition of the spectral measure into the absolutely

continuous and singular parts. Then

lim
R→∞

GR(f, ω) = h(ω) for Lebesgue-a.e. ω ∈ R.

6. Proof of the theorems

6.1. Twisted ergodic integrals and the spectral cocycle. Using the results from the previ-

ous section, we can obtain local bounds on the spectral measure from estimates of the growth of

twisted ergodic integrals

(6.1) S
(y)
R (f, ω) :=

∫ R

0
e−2πiωτf ◦ hτ (y) dτ.

Recall that we consider suspension flows over an S-adic system, with a roof function determined

by ~s = (sj)j∈A ∈ R
m
+ . Let f be a Lip-cylindrical function. This means, by definition, that there

are functions ψj ∈ Lip([0, sj ]) for j ∈ A, and f =
∑

j∈A fj, where

fj(x, t) =

{
ψj(t), t ∈ [0, sj ], if x0 = j;

0, else.
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By definition, (x, t) = ht(x, 0), with t ∈ [0, sx0 ], hence

|S(x,t)
R (f, ω)| =

∣∣∣
∫ R

0
e−2πiωτf ◦ hτ+t(x, 0) dτ

∣∣∣

=
∣∣∣
∫ R+t

t
e−2πiωτf ◦ hτ (x, 0) dτ

∣∣∣.

It follows that

(6.2)
∣∣∣S(x,t)

R (f, ω)− S
(x,0)
R (f, ω)

∣∣∣ ≤ 2‖f‖∞ · smax,

where smax = maxj∈A sj.

For a word v ∈ A+ denote by ~ℓ(v) ∈ Z
m its population vector whose j-th entry is the number

of j’s in v, for j ≤ m. We will need the tiling length of v = v0 . . . vN−1 defined by

(6.3) |v|~s := 〈~ℓ(v), ~s〉 = sv0 + · · ·+ svN−1
.

Fix x ∈ Xa and denote x[0, N − 1] = x0 . . . xN−1. For R ≥ smin = minj∈A sj, let N ≥ 1 be

maximal such that R̃ := |x[0, N − 1]|~s ≤ R. Then |R− R̃| ≤ smax, hence

(6.4)
∣∣∣S(x,0)

R (f, ω)− S
(x,0)

R̃
(f, ω)

∣∣∣ ≤ ‖f‖∞ · smax.

The combined error term in (6.2) and (6.4) is at most 3‖f‖∞ · smax, so it suffices to get bounds

on the growth of |S(x,0)

R̃
(f, ω)|, with R̃ = |x[0, N − 1]|~s.

Let ϕ : A → C be an arbitrary function (this is just a vector in C
m, but it is sometimes

convenient to view it as a function in the alphabet). For v = v0 . . . vN−1 ∈ A+ let

(6.5) Φ~s
ϕ(v, ω) =

N−1∑

j=0

ϕ(vj) exp(−2πiω|v0 . . . vj|~s).

In view of

f ◦ hτ (x, 0) = ψxn(τ − (sx0 + · · ·+ sxn−1)), for sx0 + · · ·+ sxn−1 ≤ τ < sx0 + · · ·+ sxn ,

a calculation yields

(6.6) S
(x,0)
R (f, ω) = Φ~s

ϕ(x[0, N − 1], ω) for R = |x[0, N − 1]|~s , where ϕ(j) = ψ̂j(ω).

In view of (6.5), for any concatenation of two words uv we have

(6.7) Φ~s
ϕ(uv, ω) = Φ~s

ϕ(u, ω) + e−2πiω|u|~s · Φ~s
ϕ(v, ω).

Denote

Φ~s
j(v, ω) = Φ~s

δj(v, ω),

where δj(i) = 1 whenever i = j, and else 0. Observe that

(6.8)
[
Φ~s
a(ζ

[n](b), ω)
]
(a,b)∈A2

· ~ϕ =
[
Φ~s
ϕ(ζ

[n](b), ω)
]
b∈A

,
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where
[
Φ~s
a(ζ

[n](b), ω)
]
(a,b)∈A2 is a matrix-function, and ~ϕ := (ϕ(a))a∈A and the right-hand side of

(6.8) are column vectors. Suppose that

ζj(b) = ub,j1 . . . ub,j|ζj(b)|, b ∈ A, j ≥ 1,

and let

(6.9) (M~s
[n](ω))(b, c) =

∑

j≤|ζn(b)|: ub,n
j =c

exp
[
−2πiω

(
|ζ [n−1](ub,n1 . . . ub,nj−1)|~s

)]
, n ≥ 1.

We then obtain, as in [18, Section 3.3]:

(6.10)
[
Φ~s
a(ζ

[n](b), ω)
]
(a,b)∈A2

= M~s
[n](ω) · . . . ·M~s

[1](ω).

The formula (6.9) may be rewritten using

(6.11) |ζ [n−1](ub,n1 . . . ub,nj−1)|~s = 〈ℓ(ζ [n−1](ub,n1 . . . ub,nj−1)), ~s〉 =

= 〈S[n−1]ℓ(ub,n1 . . . ub,nj−1), ~s〉 = 〈ℓ(ub,n1 . . . ub,nj−1), (S
[n−1])t~s〉 =

j−1∑

k=1

(
(S[n−1])t~s

)
ub,n
k

.

Equations (6.9), (6.10), and (6.11), together with the Definition 4.1 of the cocycle, imply

(6.12)
[
Φ~s
a(ζ

[n](b), ω)
]
(a,b)∈A2

= Ma(ξ, n), n ∈ N, for ξ = ω~s (mod Z
m).

6.2. Prefix-suffix decomposition and its consequences. By the definition of S-adic sequence

space, for x ∈ Xa and N ≥ 1, we have

(6.13) x[0, N − 1] = u0ζ1(u1)ζ
[2](u2) . . . ζ

[n](un)ζ
[n](vn) . . . ζ

[2](v2)ζ1(v1)v0,

where uj , vj , j = 0, . . . , n, are respectively proper suffixes and prefixes of the words ζj+1(b), b ∈ A.

The words uj , vj may be empty, but at least one of un, vn is nonempty; furthermore, we have

(6.14) min
b∈A

|ζ [n](b)| ≤ N ≤ 2max
b∈A

|ζ [n+1](b)|.

We will need upper and lower bounds for N in terms of n. Denote by C = Ca,ξ,ε > 1 a generic

constant, which may depend only on a, ξ, and ε, but may differ from line to line. It follows from

condition (A2) that for every ε > 0 there exists C = Ca,ε such that

(6.15) Ce(λa−ε)j ≤ ‖S[j]‖1 ≤ Ce(λa+ε)j for all j ∈ N.

Recall that |ζ [n](b)| is a column sum of the matrix S[n]. Thus, (6.14) and (6.15) yield, for every

ε > 0 and n ∈ N:

(6.16) N ≤ 2max
b∈A

|ζ [n+1](b)| = 2‖S[n+1]‖1 ≤ Ce(λa+ε)n.

The lower bound for N is obtained in the next lemma, with the help of condition (A1′).
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Lemma 6.1. For every x ∈ Xa and ε > 0 there exists C = Ca,ε > 1, such that for all N ≥ 1:

(6.17) N ≥ C−1e(λa−ε)n,

where n ∈ N is from (6.13).

Proof. We have N ≥ minb∈A |ζ [n](b)| by (6.14). Recall that |ζ [n](b)| is a column sum of the

matrix S[n]. We have S[j+1] = S[j]Sj+1 for all j ∈ N. Every substitution matrix Sj = Sζj has non-

negative integer entries, with at least one positive entry in each column. Thus minb∈A |ζ [j+1](b)| ≥
minb∈A |ζ [j](b)| for all j. By assumption, the matrix Sq has only strictly positive entries, with

|q| = |ℓ|, hence
(6.18) ‖S[j]‖1 = max

b∈A
|ζ [j](b)| ≤ min

b∈A
|ζ [j+ℓ](b)|, whenever a = ζ1 . . . ζj q ζj+ℓ+1 . . .

Let ε′ > 0 be such that (λa − ε′)(1 − ε′) ≥ (λa − ε). By the assumption (A1′), we have

that there exists n0 = n0(ε
′,a) such that for all n ≥ n0 the word q appears as a subword of

ζ⌊n−nε′⌋+1, ζ⌊n−nε′⌋+2, . . . , ζn. Then by (6.18) and (6.15) we have

N ≥ min
b∈A

|ζ [n](b)| ≥ C−1e(λa−ε′)n(1−ε′) ≥ C−1e(λa−ε)n, for n ≥ n0(ε,a),

and by increasing the constant C we can make sure that (6.17) holds for all N ∈ N. �

Recall that χ+
a,ξ,~z is the pointwise upper Lyapunov exponent of the cocycle at ξ , corresponding

to a given vector ~z; see (4.2) for the definition.

Lemma 6.2. For every ϕ : A → C and every ε > 0, we have for all x ∈ Xa and N ≥ 1,

(6.19)
∣∣Φ~s

ϕ(x[0, N − 1], ω)
∣∣ ≤ C1N

(χ+
a,ξ,~z

+ε)/λa ,

where ξ = ω~s (mod Z
m), ~z = (φ(a))a∈A, and C1 = C1(a, ξ, ϕ, ε).

Proof. All constants in the proof may depend on a, ξ, ϕ, and ε, but not on n and N . In view of

Lemma 6.1, it is enough to show that for every ϕ : A → C and every ε > 0, we have for all x ∈ Xa

and N ≥ 1, ∣∣Φ~s
ϕ(x[0, N − 1], ω)

∣∣ ≤ Ce(χ
+
a,ξ,~z

+ε)n,

where n and N are related by (6.14) and ξ = ω~s (mod Z
m). By (6.13) and (6.5), we have

∣∣Φ~s
ϕ(x[0, N − 1], ω)

∣∣ ≤
n∑

j=0

(∣∣Φ~s
ϕ(ζ

[j](uj), ω)
∣∣ +
∣∣Φ~s

ϕ(ζ
[j](vj), ω)

∣∣
)

≤ 2
n∑

j=0

‖Sj+1‖1 ·max
b∈A

∣∣Φ~s
ϕ(ζ

[j](b), ω)
∣∣.(6.20)

Here we used that |uj |, |vj | ≤ maxb∈A |ζj+1(b)| = ‖Sj+1‖1. Now, by (6.20), (6.12), and (6.8),

(6.21)
∣∣Φ~s

ϕ(x[0, N − 1], ω)
∣∣ ≤ 2

n∑

j=0

‖Sj+1‖1 · ‖Ma(ξ, j)~z‖1.
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By the definition of the upper Lyapunov exponent,

‖Ma(ξ, j)~z‖1 ≤ Ce(χ
+
a,ξ,~z

+ε/2)j , for all j ≥ 0.

Now we obtain from (6.21) and (4.3), for appropriate constants:

∣∣Φ~s
ϕ(x[0, N − 1], ω)

∣∣ ≤ C ′
n∑

j=0

ejε/2e(χ
+
a,ξ,~z

+ε/2)j ≤ C ′′e(χ
+
a,ξ,~z

+ε)n,

completing the proof. �

6.3. Proof of the lower bound in Theorem 4.3. We will obtain uniform estimates of

|S(x,t)
R (f, ω)| (which, of course, imply the L2-estimate) from above, and then apply Lemma 5.1.

By (6.6) and (6.19), we have for ε > 0, N ≥ 1, and R̃ = |x[0, N − 1]|~s ≥ Nsmin:

|S(x,0)

R̃
(f, ω)| = |Φ~s

ϕ(x[0, N − 1], ω)|

≤ C ·N (χ+
a,ξ,~z

+ε)/λa

≤ C · (R̃/smin)
(χ+

a,ξ,~z
+ε)/λa .

Recall that ~z = (ψ̂a(ω))a∈A, where ψa are the “components” of the test function f , given by (2.8),

and ξ = ω~s (mod Z
m). In view of (6.2) and (6.4), the last inequality yields, for ε > 0:

|S(x,t)
R (f, ω)| ≤ C · ‖f‖∞ · (R/smin)

(χ+
a,ξ,~z

+ε)/λa + 3‖f‖∞ · smax, for all R ≥ smin.

Now Lemma 5.1 implies that for all ε > 0,

σf (Br(ω)) ≤ C̃ ·max
{
r2−2(χ+

a,ξ,~z
+ε)/λa , r2

}
, for all 0 < r ≤ (2smin)

−1,

whence

(6.22) d(σf , ω) ≥ min
{
2−

2χ+
a,ξ,~z

λa
, 2
}
,

as desired. �

6.4. Proof of the upper bound in Theorem 4.3. We need to prove the reverse inequality to

(6.22), assuming χ+
a,ξ,~z > 0, which is equivalent to showing that, for every ε̃ > 0,

(6.23) lim sup
r→0

σf (Br(ω))

r2−γ+ε̃
≥ 1, where γ =

2χ+
a,ξ,~z

λa
.

Suppose that (6.23) is false for some ε̃ > 0. Then σf (Br(ω)) ≤ r2−γ+ε̃ for all r > 0 sufficiently

small. Thus we are in a position to apply Lemma 5.2, which yields

GR(f, ω) = R−1

∫

X~s
a

|S(x,t)
R (f, ω)|2 dµ̃(x, t) ≤ C ′ · R1−(2−γ+ε̃),
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or equivalently,

(6.24)

∫

X~s
a

|S(x,t)
R (f, ω)|2 dµ̃(x, t) ≤ C ′ ·Rγ−ε̃,

for all R > 0 sufficiently large. In order to get a contradiction, it is enough to get an appropri-

ate lower bound for |S(x,t)
R (f, ω)| which holds on a set of positive measure, and this measure is

estimated from below. This will be our goal.

By the definition of the pointwise upper Lyapunov exponent of the cocycle at ξ, corresponding

to a vector ~z, for any ε > 0 there exists an infinite set N ⊂ N such that

‖Ma(ξ, n)~z‖1 ≥ e(χ
+
a,ξ,~z

−ε)n, ∀n ∈ N .

In view of (6.12), replacing N by a subsequence if necessary, we obtain that

(6.25) ∃ b ∈ A :
∣∣∣Φ~s

ϕ(ζ
n(b), ω)

∣∣∣ ≥ e(χ
+
a,ξ,~z

−ε)n, ∀n ∈ N .

Lemma 6.3. Suppose that the sequence of substitutions a satisfies (A1) and (A2). Then for any

ε > 0 there exists n0 = n0(a, ε) such that for all b ∈ A,

(6.26) µ
(
ζ [n][b]

)
≥ e−(λa+ε)n, ∀ n ≥ n0.

Proof. Recall that ~µ0 = S[n]~µn, see (4.7). Thus,

1 = ‖~µ0‖1 = ‖S[n]~µn‖1 ≤ ‖S[n]‖ · ‖~µn‖1,

and the assumption (A2), or (4.3), yields, for n sufficiently large:

(6.27) ‖~µn‖1 ≥ ‖S[n]‖−1 ≥ e−(λa+ε)n.

Recall also that ~µn = Sn+1~µn+1 for n ≥ n0, see (4.8). Now it follows from the assumption (A1)

that

~µn ∈ SqR
m
+ ,

for n sufficiently large, where Sq is a fixed matrix having strictly positive entries and R
m
+ is the

cone of non-negative vectors. Therefore, the ratios of components of ~µn are uniformly bounded,

and hence (6.27) yields the desired (6.26). �

Fix b ∈ A from (6.25). We will take

R = Rn = |ζ [n](b)|~s, n ∈ N .

This will be our sequence Rn → ∞ for which we will obtain a lower bound for GRn(f, ω). For

n ∈ N and τ ∈ [0, Rn) consider the set

(6.28) En,τ :=
⋃

t∈[0,τ ]
ht

({
(x, 0) : x ∈ ζ [n][b]

})
⊂ X

~s
a
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(recall that {ht}t∈R is our suspension flow). From recognizability of a it follows that the union in

(6.28) is disjoint, and we obtain by the definition of the measure µ̃ and Lemma 6.3:

(6.29) µ̃(En,τ ) = τ · µ
(
ζ [n][b]

)
≥ τ · e−(λa+ε)n.

Suppose that (x, t) ∈ En,τ . Recall that (6.2) and (6.4) imply

∣∣∣S(x,t)
Rn

(f, ω)− S
(x,0)

R̃
(f, ω)

∣∣∣ ≤ 3‖f‖∞ · smax,

where R̃ = |x[0, N − 1]|~s and N ∈ N is maximal for which R̃ ≤ Rn. By (6.6),

S
(x,0)

R̃
(f, ω) = Φ~s

ϕ(x[0, N − 1], ω).

By construction, there exist words u, v, w such that

uv = ζ [n](b), vw = x[0, N − 1], where max{|u|~s, |w|~s} ≤ τ,

hence

max{|u|, |v|} ≤ τ/smin.

By (6.7),

∣∣S(x,t)
Rn

(f, ω)
∣∣ ≥

∣∣Φ~s
ϕ(x[0, N − 1], ω)

∣∣ − 3‖f‖∞ · smax

≥
∣∣Φ~s

ϕ(ζ
[n](b), ω)

∣∣ −
∣∣Φ~s

ϕ(u, ω)
∣∣−
∣∣Φ~s

ϕ(w,ω)
∣∣ − 3‖f‖∞ · smax.(6.30)

By Lemma 6.2, for n ∈ N sufficiently large:

(6.31)
∣∣Φ~s

ϕ(u, ω)
∣∣ ≤ C1 · |u|(χ

+
a,ξ,~z

+ε)/λa ≤ C̃1 · τ (χ
+
a,ξ,~z

+ε)/λa ,

and similarly for
∣∣Φ~s

ϕ(w,ω)
∣∣. Recall that the constants depend on a, ε, ~s, ξ, ϕ, but not on N , n, or

R. By the hypothesis of positivity of the Lyapunov exponent, assume that χ+
a,ξ,~z > ε > 0 without

loss of generality. Then by (6.30), (6.31), and (6.25), for n ∈ N sufficiently large:

∣∣S(x,t)
Rn

(f, ω)
∣∣ ≥ e(χ

+
a,ξ,~z

−ε)n − 2C̃1 · τ (χ
+
a,ξ,~z

+ε)/λa − 3‖f‖∞ · smax.

We obtain for n ∈ N sufficiently large:

(6.32)
∣∣S(x,t)

Rn
(f, ω)

∣∣ ≥ (1/2) · e(χ
+
a,ξ,~z

−ε)n,

assuming

τ = c2 · exp
(
nλa ·

χ+
a,ξ,~z − ε

χ+
a,ξ,~z + ε

)
,



30 ALEXANDER I. BUFETOV AND BORIS SOLOMYAK

for an appropriate small constant c2 > 0. It follows from (6.32) and (6.29) that

J :=

∫

X~s
a

|S(x,t)
Rn

(f, ω)|2 dµ̃(x, t) ≥ (1/4) · e2(χ
+
a,ξ,~z

−ε)n · µ̃(En,τ )

≥ (1/4) · e2(χ
+
a,ξ,~z

−ε)n · τ · e−(λa+ε)n

=
c2
4

· exp
[
n
(
2(χ+

a,ξ,~z − ε) + λa ·
χ+
a,ξ,~z − ε

χ+
a,ξ,~z + ε

− (λa + ε)
)]

=
c2
4

· exp
[
n(2χ+

a,ξ,~z − ε′)
]
,

for some ε′ > 0, which tends to zero whenever ε tends to zero. Recall that

Rn = |ζ [n](b)|~s ≤ smax · ‖S[n]‖1 ≤ e(λa+ε′)n,

for large n, hence

J ≥ c2
4

·Rn
(γ−ε′)/(λa+ε′), where γ =

2χ+
a,ξ,~z

λa
,

for n sufficiently large, contradicting (6.24), if ε′ > 0 is sufficiently small. The proof of the theorem

is complete. �

6.5. Proof of Theorem 4.6. Let x ∈ Xa, and recall that by the recognizability assumption, we

have the unique representation (2.4) for n = ℓ, that is, x = T iζ [ℓ](x′) for some x′ ∈ Xσℓa and

0 ≤ i < |ζ [ℓ](x′0)|. For a Lip-cylindrical function of level ℓ,

f(x, t) =
∑

j∈A
11ζ[j][a](x) · ψ

(ℓ)
j (t), with ψ

(ℓ)
j ∈ Lip[0, s

(ℓ)
j ],

holds

f ◦ hτ
(
ζ [ℓ](x′), 0

)
= ψ

(ℓ)
x′

n

(
τ −

∣∣x′[0, n − 1]
∣∣
~s(ℓ)

)
, for

∣∣x′[0, n − 1]
∣∣
~s(ℓ)

≤ τ <
∣∣x′[0, n]

∣∣
~s(ℓ)
.

This implies

S
(ζ[ℓ](x′),0)

R̃
(f, ω) = Φ~s(ℓ)

ϕ (x[0, N − 1], ω) for R̃ =
∣∣x′[0, N − 1]

∣∣
~s(ℓ)

, where ϕ(a) = ψ̂(ℓ)
a (ω),

which is the analogue of (6.6). After that, the proof proceeds exactly as in Theorem 4.3. �

Proof of Theorems 3.6 and 3.10. As written in the statement of Theorem 3.6 and explained in

the Introduction, for ν-almost every Abelian differential (M,ω), there is a pair (a, ~s), with a ∈ Ω+

and ~s ∈ R
m
+ , such that the vertical translation flow on (M,ω) is measurably isomorphic to the

suspension flow (X~s
a
, µ̃, ht). This follows by a combination of [15, Section 4.3] and Theorem 2.4.

To this end, we need to verify recognizability of the sequence of substitutions a almost surely, with

respect to the measure P+, the projection of the push-forward of ν by the symbolic coding to the

positive coordinates. Theorem 2.3 provides sufficient conditions for recognizability, which hold

in our case (almost surely). Indeed, the substitution matrices Sζj , arising from the Rauzy-Veech



A SPECTRAL COCYCLE FOR SUBSTITUTION SYSTEMS AND TRANSLATION FLOWS 31

induction, are unimodular [43], hence have maximal rank. Aperiodicity of Xa (almost surely)

follows from the fact that admissible words in Ω+ arise from walks in the Rauzy graph, which

is aperiodic, so that the number of admissible words of length n tends to infinity with n. Every

admissible word appears in a ∈ Ω+ with probability one.

Thus, we are position to apply Theorem 4.3, provided the conditions (A1′), (A2), and (A3)

hold for P+-a.e. a ∈ Ω+, and this is a consequence of Lemma 4.2. Note that (C1) and (C3) in

the latter lemma follow by the fundamental results of Veech [43], and condition (C2) holds by a

theorem of Zorich [51]. This concludes the derivation of Theorem 3.6.

Theorem 3.10 follows from Theorem 4.6 in exactly the same way. �

7. Proof of other results

Proof of Corollary 4.4. (i) The claim follows from (4.4) and the following elementary fact:

For any sequence of complex m ×m matrices {An}n≥1, there exists a coordinate basis vector

~ej such that

lim sup
n→∞

(n−1 log ‖An~ej‖) = lim sup
n→∞

(n−1 log ‖An‖).

(ii) Since Ma is continuous on T
m, the pointwise upper Lyapunov exponents are measurable

functions, and hence the sets
{
(ω,~b) ∈ R× C

m : χ+

a,ω~s,Γω
~b
< χ+

a,ω~s

}

are measurable for all ~s ∈ R
m
+ . Part (i) implies that for a.e. ω, the set

{
~b ∈ C

m : χ+

a,ω~s,Γω
~b
< χ+

a,ω~s

}

has Lebesgue measure zero, and so the desired claim follows by an application of Fubini’s Theorem

and Theorem 4.3. �

We will need the following

Lemma 7.1. Let a be a primitive sequence of substitutions on A and ~s ∈ R
m
+ . Then the collection

of Lip-cylindrical functions of level ℓ, for all ℓ ∈ N, is dense in L2(X~s
a
, µ̃).

Proof. By the recognizability of a, the sequence

{T i(ζ [ℓ][a]) : a ∈ A, 0 ≤ i < |ζ [ℓ](a)|}, ℓ ≥ ℓ0,

is a sequence of Kakutani-Rokhlin partitions that generates the Borel σ-algebra on the substitution

space, see [13]. It follows that the collection of functions of the form

(7.1) f(x, t) =
∑

a∈A

∑

0≤i<|ζ[ℓ](a)|
11T i(ζ[ℓ][a])(x) · ψ

(ℓ)
i,a(t), where ψ

(ℓ)
i,a ∈ L2

[
0, sζ[ℓ](a)i

]
, ℓ ≥ ℓ0,

is dense in L2(X~s
ζ , µ̃). Here ζ

[ℓ](a)i is i-th letter of ζ [ℓ](a). The function f in (7.1) can be expressed

as

f(x, t) =
∑

a∈A
11ζ[ℓ](x) · ψ(ℓ)

a (t),
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where for all a ∈ A,

ψ(ℓ)
a (t) = ψ

(ℓ)
i,a

(
t−

∣∣ζ [ℓ](a)[1, i − 1]
∣∣
~s

)

whenever ∣∣ζ [ℓ](a)[1, i − 1]
∣∣
~s
≤ t <

∣∣ζ [ℓ](a)[1, i]
∣∣
~s
, 0 ≤ i < |ζ [ℓ](a)| − 1.

Here we are using the notation

v[1, i] = v1 . . . vi, for v ∈ An, n ≥ i.

Clearly, ψ
(ℓ)
a ∈ L2

[
0, |ζ [ℓ](a)|~s

]
, a ∈ A, hence f is an L2-cylindrical function of level ℓ. It remains to

approximate ψ
(ℓ)
a , a ∈ A, by Lipschitz functions to obtain a desired approximating Lip-cylindrical

function of level ℓ. �

Corollary 7.2. Let a be a primitive sequence of substitutions on A and ~s ∈ R
m
+ . If for every

Lip-cylindrical function f of level ℓ, for all ℓ sufficiently large, the spectral measure σf is singular

with respect to the Lebesgue measure, then the flow (X~s
a
, µ̃, ht) has purely singular spectrum.

Proof. This is immediate from Lemma 7.1 and the following standard result (the proof for Z-

actions is in [38, Chapter 2]; the proof for R-actions is similar): given a finite measure-preserving

system, if fn → f in L2, then the spectral measures σfn converge to σf in total variation. �

Proof of Corollary 4.5. (i) Suppose that χ+
a,ω~s >

1
2λa for ω ∈ A ⊂ R, where L1(A) > 0. By

Corollary 4.4(ii), there exists a non-zero function f ∈ L2 such that d(σf , ω) < 1 for ω ∈ A. But

then

lim sup
r→0

σf (Br(ω))

2r
= +∞, ω ∈ A,

contradicting the well-known fact that limr→0
ν(Br(ω))

2r < ∞ Lebesgue-a.e. for any finite positive

measure ν, see e.g. [34, Theorem 2.12(i)].

To prove the second statement, note, see e.g. [22, Prop. (10.12)], that σf , being a measure on

the line, has upper Hausdorff dimension at most one, i.e.

dim∗
H(σf ) = inf{s : d(σf , ω) ≤ s for σf -a.e. ω} ≤ 1.

It follows that d(σf , ω) ≤ 1 for σf -a.e. ω, and hence χ+
a,ω~s ≥ 1

2λa for σf -a.e. ω.

(ii) Let f ∈ L2(X~s
a
) be Lip-cylindrical such that χ+

a,ω~s <
1
2λa for Lebesgue-a.e. ω ∈ R. We want

to show that σf is singular. Indeed, let σf = h · L1 + (σf )sing, with h ∈ L1(R), be the Lebesgue

decomposition. Then by Theorem 4.3:

d(σf , ω) ≥ 2−
2max{0, χ+

a,ω~s,~z}
λa

≥ 2−
2max{0, χ+

a,ω~s}
λa

> 1,

for Lebesgue-a.e. ω ∈ R. But this implies

lim
r→0

σf (Br(ω))

2r
= 0
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for Lebesgue-a.e. ω ∈ R, hence h = 0 a.e.

(iii) Let f be a Lip-cylindrical function of level ℓ. By Theorem 4.6,

d(σf , ω) ≥ 2−
2max{0, χ+

a,ω~s (ℓ)}
λa

.

Under the assumption detMa(ω~s, ℓ) 6≡ 0, it follows that {ω ∈ R : detMa(ω~s, ℓ) = 0} is countable,

since it is the set of zeros of a non-trivial trigonometric polynomial. Thus, we have for a.e. ω, by

the definition of the cocycle,

Ma(ω~s
(ℓ), n) = Ma(ω~s, n+ ℓ) · Ma(ω~s, ℓ)

−1,

and hence χ+
a,ω~s (ℓ) = χ+

a,ω~s < λa/2. Then we deduce as in part (ii) that σf is purely singular, and

Corollary 7.2 implies the desired claim. �

8. Appendix: on the Hölder property for the spectrum of translation flows in

genus two

Here we return to translation flows on flat manifolds, see Section 1.1, and consider the vertical

flow h+t . Katok [27] proved that the flow h+t is never mixing. Under additional assumptions on

the combinatorics of the abelian differentials, weak mixing for almost all translation flows has

been established by Veech in [44] and in full generality by Avila and Forni [2] (for genus ≥ 2).

Weak mixing means that spectral measures for test functions of mean zero are continuous, and it

is a natural question (raised by Ya. Sinai in a personal communication) whether one can obtain

quantitative estimates for the modulus of continuity for the spectral measures. The first result in

this direction was obtained in [18]; here we extend it to obtain the following.

Theorem 8.1. There exists γ > 0 such that for almost every, with respect to the Masur-Veech

measure, abelian differential (M,ω) on a surface of genus 2, the following holds. For any B > 1

there exist constants C = C(ω, B) and r0 = r0(ω, B) such that for any Lipschitz function f on

M , for all x ∈ [B−1, B] and r ∈ (0, r0) we have

σf ([x− r, x+ r]) ≤ C‖f‖L · rγ .

Proof. As is well-known, the moduli space of abelian differentials on a surface of genus 2 is a

disjoint union of two strata: H(2), corresponding to ω with one zero of order two, and H(1, 1),

corresponding to ω having two simple zeros. Theorem 8.1 was proved in [18] for the case of H(2),

and here we indicate how a modification of the proof yields the result for the stratum H(1, 1).

The translation flow on the surface can be realized as a suspension flow over an interval ex-

change transformation (IET), see Section 2.2. Let H be a stratum of the moduli space of abelian

differentials on a surface of genus g ≥ 2. The symbolic representation of a.e. translation flow as a

suspension over a Bratteli-Vershik system was obtained in [15], see Section 2.5 for more details.
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Now let us restrict ourselves to the stratum H(1, 1), which corresponds to the Rauzy class of the

IET with permutation (5, 4, 3, 2, 1). By the Avila-Viana Theorem [3], the Rauzy-Veech cocycle in

this case is known to have a simple Lyapunov spectrum θ1 > θ2 > θ3 = 0 > θ4 = −θ2 > θ5 = −θ1.
However, according to Veech [44], see also [2], the vector of “heights” for the suspension flow

over the IET necessarily belongs to the subspace H(π), which is invariant under the cocycle

and depends only on the permutation. In fact, the space H(π) is the sum of the stable and

unstable subspaces for the cocycle (orthogonal to the central space with respect to the natural

inner product). Thus the restriction of the cocycle to the sequence of invariant subspaces H(π)

has only non-zero Lyapunov exponents θ1 > θ2 > −θ2 > −θ1.
It is important to note that the Masur-Veech measure on the stratumH(1, 1) is taken under this

correspondence to a measure absolutely continuous with respect to the product of the measure

P+ on Ω+ (see Section 2.5 for the definition) and the Lebesgue measure on the set of possible

height vectors in the subspace H(π) defining the suspension. Thus the desired statement follows

from a modified [18, Theorem 4.1] on suspension flows over random BV-transformations.

Everything in the statement of [18, Theorem 4.1] remains unchanged, except that the assump-

tion (a) on the Lyapunov spectrum: θ1 > θ2 > 0 > θ3 > . . . is replaced by

(a′) the Lyapunov spectrum satisfies

θ1 > θ2 > 0 = θ3 > . . . ,

and in the conclusion “Lebesgue-a.e. vector ~s,” which determines the roof function, is replaced by

“Lebesgue-a.e. vector ~s in the subspace spanned by the stable and unstable Oseledets subspaces”

(thus excluding the zero exponent). The proof carries over verbatim. The only additional obser-

vation needed is that the equation [18, (9.1)] still holds, since the the decomposition of the vector

~s with respect to the Oseledets basis [36] does not contain the term from the central subspace.

We thus continue with the proof using the coordinates with respect to the two positive Lyapunov

exponents to exclude the “bad set,” without any further changes. �
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[13] Berthé, Valérie; Steiner, Wolfgang; Thuswaldner, Jörg M.; Yassawi, Reem; Recognizability for sequences of

morphisms. Ergodic Theory Dynam. Systems 39 (2019), no. 11, 2896–2931.

[14] Bourgain, Jean. On the spectral type of Ornstein’s class one transformation. Israel J. Math. 84 (1993), 53–63.

[15] Bufetov, Alexander I. Limit theorems for suspension flows over Vershik’s automorphisms. Russian Mathematical

Surveys 68 (2013), no. 5, 789–860.

[16] Bufetov, Alexander I. Limit theorems for translation flows. Annals of Mathematics 179 (2014), no. 2, 431–499.

[17] Bufetov, Alexander I.; Solomyak, Boris. On the modulus of continuity for spectral measures in substitution

dynamics, Adv. Math. 260 (2014), 84–129.
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