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Abstract— A crucial problem in developing robotic exoskele-
tons lies in the design of physical connexions between the device
and the human limb it is connected to. Indeed, because in general
the human limb kinematics and the exoskeleton kinematics
differ, using an embedment at each connection point leads to
hyperstaticity. Therefore, uncontrollable forces can appear atthe
interaction port. To cope with this problem, literature suggests to
add passive mechanisms at the fixation points. However, empirical
solutions proposed so far suffer from a lack of proper analysis
and generality.
In this paper, we study the general problem of connecting two
similar kinematic chains through multiple passive mechanisms.
We derive a constructive method that allows to determine all
the possible repartitions of freed DoFs across the different
fixation mechanisms. It also provides formal proofs of global
isostaticity. Practical usefulness is illustrated through an example
with conclusive experimental results.

I. I NTRODUCTION

More and more exoskeletons are being designed by re-
searchers for a growing number of applications, ranging from
military applications [1] to rehabilitation [2].
For years, research has mainly focused on technological
aspects (actuators, embedment, energy...) and followed a
paradigm defined in [3]:”an exoskeleton is an external struc-
tural mechanism with joints and links corresponding to those
of the human body”. In other words, designing the kinematics
of an exoskeleton generally consists of trying to replicatethe
human limb kinematics. This brings a number of advantages:
similarity of the workspaces, singularity avoidance [4], one-
to-one mapping of joint force capabilities over the workspace.
The major drawback of this paradigm is that, in fact, human
kinematics is impossible to precisely replicate with a robot.
Indeed two problems occur: morphology drastically varies
between subjects and, for a given subject, the joints kinematics
is very complex and cannot be imitated by conventional robot
joints [5]. In fact, it is impossible to find any consensual
model of the human kinematics in the biomechanics literature
due to complex geometry of bones interacting surfaces. For
example, different models are used for the shoulder-scapula-
clavicle group [6].
Discrepancies between the two kinematic chains thus seem
unavoidable. Because of the connexions between multiple
loops, it generates kinematic compatibility problems. Indeed,
when connecting two-by-two the links of twokinematically

similar chains that are not perfectly identical, hyperstaticity
occurs. This phenomenon leads, if rigid models are used,
to the impossibility of moving and the appearance of non-
controllable (possibly infinite) internal forces. In practice,
though, rigidity is not infinite and mobility can be obtained
thanks to deformations. When a robotic exoskeleton and a hu-
man limb are connected, most likely, these deformations occur
at the interface between the two kinematic chains, caused by
the low stiffness of human skin and tissues surrounding the
bones [7].
Solutions found in the literature to cope with this problem
are of two kinds. In a first approach the exoskeleton design
can be thought in such a way that adaptation to human
limb kinematics is maximized. Robotic segments with ad-
justable length were thus developed, and pneumatic systems
were added to introduce elasticity in the robot fixations and
adaptability to variable limb section [8]. This minimizes the
kinematic differences, but drastically increases the complexity
of the device, leading to weight increase, stiffness limitations,
etc. Furthermore, again, it seems that perfect matching at any
instant is yet out of reach.
The second approach consists in adding passive DoFs to
connect the two kinematic chains. This was proposed back
in the 1970s in the context of passive orthoses, [9], [10].
The same principle was recently proposed for a one degree of
freedom device in [7], but the force transmission is analyzed
only in a plane, and relies on explicit equations derived for
a particular planar mechanism. It thus suffers from a lack
of generality and the author neglects all the off-plane forces
that unavoidably arise from the unmodeled lack of parallelism
between the human limb plane and the exoskeleton plane.
Rather, the constructive method proposed here applies to a
general spatial problem, which is properly formalized and then
solved thanks to a set of necessary and sufficient conditions
for global isostaticity (Section II). In Section III, the method
is applied to ABLE, a given active 4DoF arm exoskeleton. In
Section IV, experimental results illustrate the practicalinterest
of the approach.

II. GENERAL METHODOLOGY

The main question addressed in this paper is: given a
proposed exoskeleton structure designed to (approximately)
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replicate a human limb kinematic model, how to connect it
to the human limb while avoiding the appearance of uncon-
trollable forces at the interface? The answer takes the formof
a set of passive frictionless mechanisms used to connect the
robot and the subject’s limb that allows to avoid hyperstaticity.

A. Problem formulation

We consider two different serial chains with multiple cou-
plings as illustrated in Fig. 1. One represents a human limb
H and the other the robot structureR.

Fig. 1. Schematic of two serial chains parallel coupling

The base body of the exoskeleton is supposed to be attached
to a body of the human subject. This common body is denoted
R0 ≡ H0. The robot and the limbs are supposed to be
connected throughn fixations. Each fixation is a mechanismL i

for i ∈ {1, ..,n} consisting in a passive kinematic chain which
connects a human bodyHi to a robot bodyRi . Mechanisms
L i are supposed to possess a connectivityl i . Recall that
connectivity is the minimum and necessary number of joint
scalar variables that determine the geometric configuration of
the L i chain [11]. Typically,L i will be a nonsingular serial
combination of l i one DoF joints. The fixation can be an
embedment (l i = 0) or can release several DoFs, such that:

∀i ∈ {1, ..,n} , 0≤ l i ≤ 5 . (1)

Indeed choosingl i ≥ 6 would correspond to complete freedom
betweenHi and Ri which would not make any practical
sense in the considered application where force transmission
is required.
BetweenRi−1 and Ri , on the robot side, there is an active
mechanismRi which connectivity is denotedr i . Similarly,
betweenHi−1 andHi on the human side, there is a mechanism
H i of connectivity hi . Note that, due to the complexity of
human kinematichi is not always exactly known, and literature
from biomechanics provides controversial data on this point.
For example, the elbow is often modeled as a one DoF joint,
but in reality a residual second DoF can be observed [12].
Our goal is to design mechanismsL i with i ∈ {1, ..,n} in
such a way that on one side, all the forces generated by the
exoskeleton on the human limb are controllable and on the
other side, there is no possible motion for the exoskeleton
when the human limb is still. We shall thus consider in the

next that the human limbs are virtually attached to the base
body R0. This represents the case, when the subject does not
move at all. The resulting mechanism, depicted in Fig. 2, is
denotedSn.

Fig. 2. Studied problem with a fixed human limb

A proper design for the passive mechanismsL i shall guarantee
that, in the absence of any external forces, both:

∀i ∈ 1· · ·n, SnTi = {0} and (2a)

∀i ∈ 1· · ·n, SnWL i→0 = {0} , (2b)

whereSnTi is the space of twists describing the velocities of
robot bodyRi relative toR0 when the whole mechanismSn

is considered andSnWL i→0 is the space of wrenches (forces
and moments) statically admissible transmitted through the L i

chain on the reference bodyR0, when the whole mechanism
Sn is considered.
Equation (2a) expresses the fact that the mobility of any robot
body connected to a human limb should be null, which is
required since the human member is supposed here to be
still. Moreover, Eq. (2b) imposes that, considering the whole
mechanism, there can be no forces of any kind exerted on
the human limb. Indeed, since the actuators are supposed to
apply null generalized forces, the presence of any force at
the connection ports would be an uncontrollable force due to
hyperstaticity. In the next Eq. (2) is referred as theglobal
isostaticity condition.

B. Conditions on the twist space ranks

At first, one can notice the recursive structure of the consid-
ered system: if we nameSi the sub-mechanism constituted by
the bodiesR0 to Ri , the chainsR0 to Ri andL0 to L i , we can
representSi recursively fromSi−1, as in Fig. 3, wheremi−1

Fig. 3. Recursive structureSi of the system

is the connectivity ofSi−1. In this convention,S0 represents a



zero DoF mechanism. Using this recursive representation one
can establish the following proposition:
Proposition 1: The conditions (2) are equivalent to :

∀i ∈ 1· · ·n, dim(TSi−1 +TRi +TL i ) = 6 and (3a)

∀i ∈ 1· · ·n, dim(TSi−1 ∩TRi ) = 0 and (3b)

dim(TSn) = 0 , (3c)

where TSj =
Sj Tj is the space of twists describing the

velocities ofR j relative toR0, whenSj is considered isolated
from the rest of the mechanism (then it is different fromSnTj ),
TRi is the space of twists produced byRi – i.e. the space
of twists of Ri relative toRi−1 if they were only connected
throughRi , TL i is the space of twists produced byL i i.e. the
space of twists ofRi relative toR0 if they were only connected
throughL i . �

The demonstration can be found in Appendix A.
Remarkably, conditions (3) involve the space of twists gener-
ated byRi andL i when taken isolated, which is of great help
for design purposes. In the next, we convert these conditions
into constraints on the connectivitiesr i = dim(TRi ) and l i =
dim(TL i ). To do so, we suppose that kinematic singularities are
avoided. In other words, summing the subspaces of twists will
always lead to a subspace of maximum dimension given the
dimensions of individual summed subspaces. This hypothesis
will lead to determine how many DoFs shall be included
in the passive fixation mechanismsL i . Of course as it is
usual in mechanism design, when a particular design is finally
proposed, it will be necessary to verifya posteriori the
singularity avoidance condition.

C. Conditions on connectivities

At first, let’s compute the connectivity ofSi . One has:

TSi = TL i ∩ (TRi +TSi−1) , (4)

which directly results from the space sum law for serial chains
and the intersection law for parallel chains (see [13]). Fur-
thermore, since for any vector subspacesA andB, dim(A)+
dim(B) = dim(A+B)+dim(A∩B), one gets:

mi = dim(TL i )+dim(TRi +TSi−1)−dim(TL i +TRi +TSi−1)

= dim(TL i )+dim(TRi )+dim(TSi−1)−dim(TRi ∩TSi−1)

−dim(TL i +TRi +TSi−1).

If condition (3) is respected and under full rank asumption,
one gets:

mi = l i + r i +mi−1−6 (5)

Finally, usingm0 = 0, this recursive equation simplifies to:

mi =
i

∑
j=1

(l j + r j)−6.i . (6)

Therefore, from Eq. (3a), noticing that any vector subspaces
A,B andC of a vector spaceE, dim(A+B+C)≤ dim(A)+
dim(B)+dim(C), it is necessary that:

∀i ∈ 1· · ·n, mi−1+ r i + l i ≥ 6, or :
i

∑
j=1

(l j + r j)≥ 6.i (7)

Moreover, since ifA and B are two vector subspaces ofE
and dim(A)+dim(B) > dim(E), then A ∩B 6= {0}, Eq. (3b)
imposes that:

∀i ∈ 1· · ·n, mi−1+ r i ≤ 6 or :
i−1

∑
j=1

(l j + r j)+ r i ≤ 6.i (8)

Finally, the last condition (3c) leads to:

mn = 0 or :
n

∑
j=1

(l j + r j) = 6.n (9)

Notice that (9) provides the total number of DoFs to be freed
for the mechanismSn, while (7) gives the minimal value (to
prevent from hyperstaticity in the sub-mechanismsSj ) for l j

and (8) provides the maximal one (to prevent from internal
mobility in Sj ).
Thanks to these three last necessary conditions, we are able
to calculate the different possible solutions for distributing the
additional passive DoFs over the structure:
• the possible choices forl1 are such that 5≥ l1 ≥ 6− r1.
• for each choice ofl1, the possible choices forl2 are such

that 5≥ l2 ≥ 12− r1− r2− l1.
This leads to a tree that groups all the admissible combinations
for l i , as illustrated in Fig (4).

Fig. 4. Tree of possible solutions for the number of passive DoFs to add at
every fixation point

Out of this tree, all the possible combinations of connectivities
for the fixations are given. Of course, the selection among
these solutions is to be made depending on the exoskeleton
kinematics. Generally speaking, an important aspect to be
considered is the force transmission: through any linear or
rotational DoF that is not freed by the fixation mechanism, a
force or a moment will be transmitted to the human limb,
which is surrounded by soft tissues. Therefore, typically,
transmitting moments aroundPi would lead to locally deform
the tissues which in turn can generate discomfort. The next
section illustrates, on a concrete spatial example involving two
fixations, how to integrate this kind of considerations in the
design of fixation mechanisms.

III. A PPLICATION TO A GIVEN EXOSKELETON

A. ABLE: an upper limb exoskeleton for rehabilitation

ABLE (see Fig. 5) is a 4 axis exoskeleton that has been
designed by CEA-LIST [14] on the basis of an innovative
screw-and-cable actuation technology ([15]). Its kinematics
is composed of a shoulder spherical joint composed of 3
coincident pivots and a 1 DoF pivot elbow. The forearm,
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Fig. 5. Kinematics of ABLE

terminated by a handle, is not actuated. Details on this robot
can be found in [14].

B. Fixations design for ABLE

In this section, we apply general method proposed in Sec.
II to ABLE. We proceed in three steps:

Fig. 6. Schematic of the ABLE and human arm coupling

• compute the tree of possible values forl i
• choose among them a preferred solution by examining

force transmission properties and kinematic complemen-
tarity

• verify the full kinematic rank which is reported in Ap-
pendix B.

Firstly, since ABLE comprises an upper arm and a forearm,
we shall use two fixations (See Fig 6). The total number of
passive DoF to be added is given by Eq. (9):

n=2

∑
j=1

l j = 12−
n=2

∑
j=1

r j = 12− (3+1) ⇒ l1+ l2 = 8 (10)

Moreover, for the first fixation, Eq. (7) and (8) give:

6− r1 ≤ l1 ≤ 6 ⇒ 3≤ l1 ≤ 5 .

Since the total number of DoFs is fixed, the tree of possible
solutions consists here of three parallel branches wherel1 is
chosen between 3 and 5 andl2 = 8− l1. Possible couples for
(l1, l2) are (3,5), (4,4) and (5,3). Hereafter, these three options
are analyzed in order to choose a preferred design among
them.
• Case a: l1 = 3 and l2 = 5. In this case, bothS1 taken isolate
and S2 are isostatic, which corresponds to the most intuitive

way of achieving global isostaticity. Degrees of Freedom for
L1 have to be chosen complementary to those ofR1 in order
to satisfy the full rank assumption. SinceR1 is a ball joint
that generates three independent rotational velocities around
its centerM1, L1 must generate three independent velocities
at point M1. For example, three non coplanar translations
could be used forL1. However, in this case, the fixation
would transmit a null force,i.e. a pure couple. This seems
undesirable due to the torsion of the soft tissues that it would
create aroundP1 at the level of the attachment to the limb.
One could thus think of using forL1 a ball joint around
P1, but in this case, the full rank condition would not be
respected, becauseR1 and L1 would both generate the same
rotation around~z1 =

1
‖
−−−→
M1P1‖

−−−→
M1P1. Finally, a preferred solution

is to choose forL1 two pivot joints perpendicular to the
arm main axis~zarm, and one translation joint collinear~zarm

(see 8 for further definition ofPi , ~zarm and~zf orearm). In this
case, two forces perpendicular to~zarm and one moment around
~zarm can be exchanged between the exoskeleton and the arm
throughL1. Moreover, sinceS1 is isostatic, one hasm1 = 0.
ThereforeL2 needs to be designed in order to be kinematically
complementary toR2, which is a pivot of axis(M2,~z2) (See
Appendix for~z2 definition). In other words,L2 must generate
independently 2 rotations perpendicular to~z2 and 3 velocities
at pointM2. A natural solution is to choose a ball joint around
P2 and two translations in a plane perpendicular to~z2. The
resulting overall design is noted (a) and represented in Fig. 7.

P2
l2=3

P1
l1=5

Transmitted 

Forces/Torques

Case (c)

P2
l2=5

l1=3

P1

Case (a)

Human Arm

Robot Arm

P1

P2

l1=4 l2=4

Case (b)

Fig. 7. Considered possibilities for coupling ABLE to an human arm. Case
(a): ball joint alone atP1 and ball joint + 2 slides atP2; case (b): Universal
joint + 1slide atP1 and ball joint + 2 slides atP2; case (c) Ball joints with
slide at bothP1 andP2.

• Case b: l1 = 4 and l2 = 4. Note that in this case,S1 taken
isolate is a 1 DoF mechanism, while onlyS2 is isostatic. We
consider solution (a), for which one DoF must be added toL1

and one must be removed fromL2. ConcerningL1, keeping
freed the 3 DoF liberated for the isostatic solution (a), it seems
preferable to choose, for the extra freed DoF, the rotation
aroundz1. Indeed, this will cancel the local tissue torsion due
to moment transmission around~z1. As a result,S1 is now
a 1 DoF mechanism consisting of a pivot around(M1,~z1).
ConcerningL2, the DoF to be removed from the solution (a)
shall not degrade the dimension ofTS1 +TR2 +TL2. It seems
preferable to keep the freed three rotations aroundP2 and only
one translation along the forearm axis~zf orearm. Indeed, again,
this choice avoids any torsion aroundP2. Furthermore, it is



shown in Appendix B that singular configurations of this solu-
tion, noted (b) and represented in Fig. 7 are easily identifiable
and far away from nominal conditions of operation.
• Case c: l1 = 5 and l2 = 3. Similarly to solution (a), this
combination will necessary lead to transmit at least one torsion
moment around~zf orearm, as illustrated in Fig. 7 (solution (c)).
Therefore, the finally preferred solution is (b).
Note that with solution (b), generating a moment to the human
upper arm around~zarm is obtained by applying opposite pure
forces perpendicular to~zarm at P1 and to~zf orearm at P2 (see

Fig. 8. Transmitting a moment around the upper arm axis with solution (b)
(left) and (c) (right)

Fig. 8). Interestingly, this reproduces the method used by
physical therapists to assist patients in generating internal
rotations of the shoulder without torsion to the tissue. As a
price, the full extension configuration, whenM1, P1 and P2

are aligned, is singular, as detailed in the Appendix B. This
configuration can be easily avoided by limiting the range of
the elbow extension.

C. Fixations realization

The two fixations mechanisms are finally identical. They
shall generate three independent rotations and one translation
along the limb. The mechanism used to realize this function

Fig. 9. Fixation simplification and realization (rear and front)

consists of three successive pivot joints which axis coincide
and one slider whose axis is parrallel to human limb (see Fig
9).
The fixations were dimensionned differently: one to allow
forearm pronosupination and the other not to collide with
arm tissues. As a result, possible motions left by the passive
fixations have the ranges defined in Table I.
These fixations were both fitted with one force sensor placed
on the base (ATI Nano43 6-axis Force/Torque sensor) allowing
us to reconstruct the three forces and three torques components

DoF Arm Fixation Forearm Fixation
Rotation1 (⊥ to the limb axis) 360◦ 360◦

Rotation2 (⊥ to the limb axis) 90◦ 90◦

Rotation3 (around the limb axis) 110◦ 110◦

Translation 100mm 100mm

TABLE I

at P1 andP2 respectively.
For the experiments presented in the next section, in order to
compare the forces involved with and without DoF liberation,
the fixations were also equipped with removable metallic
pins, allowing us to quickly lock the passive DoF without
detaching the subject from the exoskeleton. These fixations

Fig. 10. The two fixations on the exoskeleton

were mounted on the 4 DoF ABLE exoskeleton. Arm fixation
is placed near the elbow, just under the triceps. Forearm
fixation is placed near the wrist. Thermoformable materials
were also used to create two splints perfectly adapted to human
morphology. These splints are serially connected to the last
fixation body. Wrist splint was specifically created to lock
the wrist flexions which are not studied here. Only passive
pronosupination is allowed.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

An articulated mannequin was used for the experiment.
Its arms possess 5 passive DoFs (a ball joint shoulder, a
pivot elbow and a pronosupination). Analyzing the interaction
force and torque variations at the interfaces during the same
movement with isostatic fixations and without (locked case)
will allow us to evaluate their impact on preventing the
appearance of uncontrolled forces but also to quantify them
roughly.
The mannequin was thus placed in the exoskeleton and at-
tached through the fwo fixations. The thermoformable splints
allow to avoid any looseness in the fixation and increase the
contact stiffness (no foam needed).
During the experiments, the exoskeleton imposes a controlled
trajectory, with a constant speed, to the mannequin arm. The
experiment consists in a serie of six simple point-to-point
movements (with a limited range of motion) to the same
target but reached with different joints movements (thanks



Fig. 11. Mannequin connected to the ABLE exoskeleton

to arm redundancy). Target was reached at constant and low
speed (0.05 m/s) to limit inertial forces. Due to the rigidity
of the mannequin surface, the movement amplitude on every
exoskeleton joint was limited to a 15◦ maximum range of
motion in order not to destroy force sensors whose maximum
allowable value is about 36N. Indeed when exoskeleton is
connected to human limb, thanks to skin and muscles de-
formations, the hyperstatic force level applied on the human
kinematic structure (the bones) is reduced.
The use of a mannequin controlled by exoskeleton allows to
obtain a perfect repeatability during the experiments. This is
really representative of co-manipulation cases where the robot
generates a controlled motion by applying forces, as during
robotic rehabilitation or movement assistance for impaired
people.

B. Results and discussions

Principal results are presented below. In Fig. 12, we plotted
the undesired force absolute value and mean moment averaged
norm during the experiments, for the two sensors, averaged
across the six movements (moments are computed at the
rotation center of the fixation). We can observe on the arm
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fixation a decrease in the undesired force (Fx) level and
the undesired torques level by approximatively 95%. For
the forearm fixation, an approximative 96% decrease can be
observed for the undesired force and moment components. In
Fig. 13, the norm of the components (Fy andFz)corresponding
to the components transmitted by the passive fixations is
presented. The exoskeleton ability to transmit forces to the
subject is not altered. Note that the percentage of hyperstatic
force level decrease achieved by the fixations resulting from
our methodology and the obtained numerical value of the
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hyperstatic forces have to be interpreted. Indeed, due to the
mannequin arm smallness (see Fig. 11) and it body suface
rigidity, hyperstatic force level is higher than the one occuring
during a comanipulation between the exoskeleton and a human
subject.

V. CONCLUSION

In this paper we presented a methodology aimed at design-
ing the kinematics of fixations between an exoskeleton and a
human member. Thanks to this method, we realized isostatic
fixations for a 4 DoF exoskeleton and experimentally verified
their benefit on minimizing uncontrollable hyperstatic forces
at the human robot interface and thus on a fine control of
the interaction forces. These results show that the provided
solution avoids hyperstaticity but also adapts to large variations
of the human limb geometry without requiring a complex
adaptable robot structure.

APPENDIX

A. Demonstration of Proposition 1
1) Conditions (3) are sufficient:[(3)⇒ (2)].
We here suppose that conditions (3) are verified.
Because inSn, Ri−1 is connected on one side toR0 through
Si−1 and on the other side toRi throughRi (see Fig. 3), one
has:

∀i ∈ {1. . .n}, SnTi−1 =
Si−1 Ti−1∩

[

TRi +
SnTi

]

, (11)

which is a recursive relationship forSnTi . Recalling that, by
assumption,SnTSn = {0} (condition 3c) andTSi−1 ∩TRi = {0}
(condition 3b), this recursive law trivially leads to (2a).
Furthermore, the kinemato-static duality principle applied to
the loop(R0 → Ri−1 → Ri → R0) in Fig. 3 writes:

∀i ∈ {1. . .n}, dim(SiWL i→0)+dim(TSi−1 +TRi +TL i ) = 6 .
(12)

Thanks to condition (3a), this leads to:

∀i ∈ {1. . .n}, SiWL i→0 = {0} . (13)

Considering again the systemSi depicted in Fig. 3, and recall-
ing thatL i andRi are serial chains, one has,∀i ∈ {1. . .n}:

SiWL i→0 =
Si WL i→i =

Si WRi→i =
Si WRi→i−1 = {0} . (14)

Therefore, statically speaking, the multi-loop systemSi−1 is
in the same state when included inSi than when isolated from
the rest of the mechanism.

∀i ∈ {2. . .n}, SiWL i−1→0 =
Si−1 WL i−1→0 ,



which, together with (13) recursively leads to condition (2b).

2) Conditions (3) are necessary :
[

(3)⇒ (2)
]

.

Firstly, if condition (3c) is not verified, thenSnTn = TSn 6= {0}.
In this case, (2a) is not satisfied.
Secondly, if (3b) is not verified, then∃i, (TRi ∩TSi−1) 6= {0}.
Thanks to Eq. (11), this leads to:

∃i ∈ {1· · ·n}, SnTi−1 6= {0} , (15)

which directly contradicts (2a).
Thirdly, if (3a) is not verified, i.e.:

∃i, dim(TSi−1 +TRi +TL i )≤ 6 , (16)

then ∃i, SiWL i→0 6= {0}, meaning thatSi taken isolate is
hyperstatic. Obviously, adding the rest of the mechanism
to build Sn, which consists of adding a parallel branch
to Si betweenR0 and Ri will not decrease the degree of
hyperstaticity. Therefore∃i, SnWL i→0 6= {0}, which contradicts
condition (2b).

B. Singularity analysis for ABLE and the two proposed
fixation mechanisms
We study the mechanism depicted in Fig. 14:R1 is a ball
joint which center isM1; L1 is composed of a ball joint which
center isP1 (with

−−−→
M1P1 = l1.

−→z1 and l1 6= 0) and a slide along
(P1,

−−→zarm); R2 is a pivot joint which axis is(M2,
→
x2); L2 is

composed of a ball joint which center isP2 (with
−−−→
M2P2 = l2.

−→z2

and l2 6= 0) and a slide along(P2,
−−−−→zf orearm).

In order to find the singular configurations of this system, we
use the necessary and sufficient conditions (3).

Fig. 14. Kinematics of ABLE + its fixations. The plane of the figure,
perpendicular to~x1, is defined byM1, P1 andP2 while M2 is off the plane.

1) Examination of Condition (3a)

• For i = 1, (3a) writesdim(TR1 +TL1) = 6.

At point P1, velocities allowed byL1 belong to the vector
subspaceTL1 = span{t1, t2, t3, t4} and the velocities allowed
by R1 belong toTR1 = span{t5, t6, t3}, with

t1 = (x1
T 03

T)T, t3 = (z1
T 03

T)T, t5 = (x1
T − l1.y1

T )T

t2 = (y1
T 03

T)T, t4 = (03
T zarm

T )T, t6 = (y1
T l1.x1

T )T

ThusTR1 +TL1 = span{t1, ..., t6}. Defining

t ′5 =
(t6− t2)

l1
= (03

T x1
T )T and t ′6 =

(t1− t5)
l1

= (03
T y1

T )T ,

we can easily show that
[

t1 t2 t3 t4 t ′5 t ′6
]

= A [t1 t2 t3 t4 t5 t6]

with det(A) = 1
l21

. Since l1 6= 0, τ1 = {t1, .., t6} is a basis of

R6 if and only if τ2 =
{

t1, .., t4, t ′5, t
′
6

}

is a basis ofR6. Let’s
consider nowai ∈ R, i ∈ {1, ..,6} such that:

a1t1+a2t2+a3t3+a4t4+a5t
′
5+a6t

′
6 = 0 (17)

It is trivial to show thata1 = a2 = a3 = 0, a4dz = 0, a6 +
a4dy = 0 anda5+a4dx = 0 where−−→zarm = dx

−→x1 +dy
−→y1 +dz

−→z1 .
If dz 6= 0 then a6 = a5 = a4 = 0. Therefore,τ2 and τ1 are
bases ofR6. Otherwise, there exists a non null combination
of ai that verifies (17) which means thatτ2 andτ1 are not free
anymore. Condition (3a) is thus verified fori = 1 if and only
if −−→zarm.

−→z1 6= 0. This is equivalent toα1 6= ±π
2 and this is a

singular value to be avoided. In the rest of the study we will
thus consider that−−→zarm.

−→z1 6= 0.

• For i = 2, (3a) writesdim(TS1 +TR2 +TL2) = 6.

We know thatTS1 = TR1 ∩TL1. Let’s considert ∈ TL1 andt ′ ∈
TR1. One has:

∃(α1,α2,α3,α4) such that t =
4

∑
i=1

αi ti (18)

∃(α ′
1,α ′

2,α ′
3,) such that t ′ = α ′

1 t5+α ′
2 t6+α ′

3 t3(19)

Using−−→zarm.
−→z1 6= 0, one easily gets:

t = t ′ ⇔ α1 = α2 = α4 = α ′
1 = α ′

2 = 0 . (20)

or:
t = t ′ ⇔ t = α3 t3 = α ′

3 t3 . (21)

In other words, at pointP1:

TS1 = TR1 ∩TL1 = span({t3}) = span({(z1
T 03

T)T}) . (22)

We know write twists at pointP2. We get:TS1 = span({t7}),
TR2 = span({t8}) andTL2 = span({t9 t10 t11 t12}), with:

t7 = (z1
T l sinθ1x1

T)T , t8 = (x2
T − l2 y2

T)T , t9 = (x2
T 0T)T

t10 = (y2
T 0T)T , t11 = (z2

T 0T)T , t12 = (0T zf orearm
T)T,

where
−−→
P1P2 =: l~zandθ1 :=

(

−̂→z1 ,
−→z
)

measured around~x1. Thus

TS1 +TR2 +TL2 = span({t7, t8, t9, t10, t11, t12}).
Suppose first that sinθ1 = 0. Then, denoting−→z1 = z1x.

−→x2 +
z1y.

−→y2 +z1z.
−→z2 , one gets:

t7 = z1xt9 + z1yt10 + z1zt12 (23)

In this particular case,{t7 .. t12} is not a basis, which identifies
a second singular configuration, whenM1, P1 and P2 are
aligned. In the rest of the study we will thus assume that this



singular configuration is also avoided, that is: sinθ1 6= 0.
Defining

t ′7 =
(t7−z1xt9−z1yt10−z1zt12)

l sinθ1
= (0T x1

T)T ,and

t ′8 =
(t10− t8)

l2
= (0T y2

T)T ,

we get
[

t ′7 t ′8 t ′9 .. t ′12

]

=B. [t7 t8 .. t12] with det(B) = −1
l2 sinθ1

6=

0. Thusτ3 = {t7 .. t12} is a basis ofR6 if and only if τ4 =
{t ′7 .. t ′12} is a basis ofR6. Lets’s considerbi ∈R, i ∈ {1, ..,6}
such that:

b1t
′
7+b2t

′
8+b3t9+b4t10+b5t11+b6t12 = 0 . (24)

It comes easily thatb3 = b4 = b5 = 0 andb1t ′7+b2t ′8+b6t ′12=

0 which is equivalent tob1
−→x1 + b2

−→y2 + b6
−−−−→zf orearm=

−→
0 . The

necessary and sufficient conditions to have a non-null triplet
b1,b2,b6 verifying the previous equation is that−→x1,

−→y2,
−−−−→zf orearm

are coplanar. This identifies a third singularity, which, again,
is supposed to be avoided in the rest of the study.
2) Examination of the condition (3b)

• For i = 1, sinceTS0 = {0}, one directly getsdim(TS0 ∩
TL1) = 0.

• For i = 2, it is necessary to verify thatdim(TS1 ∩TL2) = 0.
Let’s considert ∈ TS1 and t ′ ∈ TL2. One has:

∃α1 ∈ R / t = α1t7
∃α ′

1,α ′
2,α ′

3,α ′
4 ∈ R / t ′ = α ′

1t9+α ′
2t10+α ′

3t11+α ′
4t12 .

One easily shows thatt = t ′ is equivalent to:
{

α1l sinθ1
−→x1 +α ′

4
−−−−→zf orearm=

−→
0

(α1z1x+α ′
1)
−→x2 +(α1z1y+α ′

2)
−→y2 +(α1z1z+α ′

3)
−→z2 =

−→
0

Since−→x1 is not colinear to−−−−→zf orearm, the first equation leads
to α1 = α ′

4 = 0. Similarly, since{−→x2,
−→y2,

−→z2} forms a basis,
α ′

1 = α ′
2 = α ′

3 = 0. In conclusion,dim(TS1 ∩TL2) = {0}.
3) Examination of the condition (3c)
For the considered example,n= 2 and condition (3c) writes
dim(TS2) = 0. SinceTS2 = (TS1 +TR2)∩TL2, we need to verify
that any vector that belongs to both(TS1 +TR2) and TL2 is
null. Let’s considert ∈ (TS1 +TR2) and t ′ ∈ TL2. One has:

∃ α1,α2 ∈ R / t = α1t7+α2t8
∃ α ′

1, ..,α ′
4 ∈ R / t ′ = α ′

1t9+α ′
2t10+α ′

3t11+α ′
4t12

Thereforet = t ′ is equivalent to:
{

α1l sinθ1
−→x1 −α2l2

−→y2 +α ′
4
−−−−→zf orearm=

−→
0

(α1z1x+α ′
1+α2)

−→x2 +(α1z1y+α ′
2)
−→y2 +(α1z1z+α ′

3)
−→z2 =

−→
0

The first of these two equations leads toα1 = α2 = α ′
4 = 0

since it is supposed that−→x1,−→y2 and−−−−→zf orearm are not coplanar in
order to avoid the third singularity, and sinθ1 6= 0 in order to
avoid the second singularity. Therefore, the second equation
leads toα1 = α2 = α ′

4 = 0 because{−→x2,
−→y2,

−→z2} forms a basis.
In conclusion,t = t ′ ⇒ t = 0, or dim(TS2) = 0.
4) Summary.
In conclusion, we identified three singularities:

1) −−→zarm.
−→z1 = 0 representing the case where the passive slide,

mounted parallel to the upper arm axis, is perpendicular
to the robot upper limb axis. This case will never
appear since the angle between−−→zarm and −→z1 reflects
small discrepancies between the exoskeleton and human
kinematics, and remains smaller than a few degrees.

2) sinθ1 = 0 representing the case whereM1, P1 andP2 are
aligned. This singular configuration can be avoided by
limiting the range of motion for the robot elbow to a
few degrees before full extension.

3) −→x1,−→y2 and−−−−→zf orearm coplanar. This configuration does not
appear in practice, since in the nominal configuration,
−→x1 is perpendicular to the plane generated by−→y2 and
−−−−→zf orearm.

Therefore, under normal conditions of operation, the ABLE
exoskeleton with its two fixations never falls into a singular
configuration.
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