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1 Elastic energy of a perturbed dislocations

We consider an isolated dislocation described by the non-singular theory of Cai et al. [1]. This
theory presents the advantage of avoiding the singular behavior of the stress and strain fields
at the dislocation core encountered in the classical theory of dislocations [2]. The centerpiece
of the non-singular theory is to spread isotropically the Burgers vector of the dislocation over a
characteristic distance a, hereafter referred to as the core parameter. In the framework of linear
elasticity, the self-energy of such a dislocation is given by1:

W = − µ

16π
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where b is the Burgers vector of the dislocation, µ and ν respectively denote the shear mod-
ulus and Poisson ration of the material, Ra =

√

a2 + (x− x′)2 + (y − y′)2 + (z − z′)2 and the
integrals run along the dislocation line.

In the following, we will consider the case of an infinitely long dislocation along the x direction,
gliding in the (x, y) plane. We restrict ourselves to the case of a glissile dislocation with a Burgers
vector b = [bs, be, 0]. The self-energy of such a dislocation can be decomposed in the following
way:

1Notice the difference of a factor 2 in comparison with Eq. (31) of Ref. [1] which actually describes the interaction
energy of a loop with itself (i.e. twice its self-energy)

1



W = Wscrew(b
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s) +Wedge(b

2
e) +Wcross(bs · be) (2)
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We now assume that the position of the dislocation line can be described by a function h(x),
periodic in x with a periodicity L. Then, we have dlx = dx and dly = h′(x)dx and we note
w(h) = wscrew(h)+wedge(h)+wcross(h) the energy of a portion L of the dislocation. In addition,
we are interested in the energy difference E(h) over a distance L between a perturbed state
(described by h(x)) and an unperturbed state of the dislocation. In the following, we will also
consider that the function h(x) varies slowly with x to simplify further the expression of the
energy. As for Eq. (2), we can decompose E(h) in the following way:

E (h) = (wscrew(h)− wscrew(0)) + (wedge(h)− wedge(0)) + (wcross(h)− wcross(0))

= Escrew(h) + Eedge(h) + Ecross(h) (6)

In the following, we will successively focus on these three contributions to obtain the energy of
an arbitrary perturbation h(x).

1.1 Screw contribution Escrew(h)

For a portion L of the infinite dislocation, the energy Escrew(h) is expressed as:
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where R̃a =
√

a2 + (x− x′)2 + (h(x)− h(x′))2 and R̄a =
√

a2 + (x− x′)2 are respectively re-
lated to the perturbed and unperturbed states.

We now consider that the variations of h(x) are small, i.e. that maxx |h′(x)| = h′max ≪ 1 and

consequently
∣

∣
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x−x′

∣

∣

∣
≪ 1 for any x and x′. In this limit, the integrals of Eq. (7) can be

simplified using Taylor expansions. For example, the first integral of Eq. (7) becomes:
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Performing similar Taylor expansions for the other integrands and keeping only the lowest
order terms in h′max yields:

Escrew(h) =
µb2s

4π(1 − ν)

∫ L

0

∫ +∞

−∞

h′(x)h′(x′)
√

a2 + (x− x′)2
dx′dx

− µb2s(3− ν)

16π(1 − ν)

∫ L

0

∫ +∞

−∞

(h(x)− h(x′))2

(a2 + (x− x′)2)3/2
dx′dx (9)

+
3µb2s(1 + ν)

32π(1 − ν)

∫ L

0

∫ +∞

−∞

a2(h(x) − h(x′))2

(a2 + (x− x′)2)5/2
dx′dx +O(h′4max)

For simplicity, the asymptotic notation O(h′4max) is omitted in the following.

Since h(x) is a real L-perioric function, it can be expressed as a Fourier series:

h(x) =

Nmax
∑

n=−Nmax

Cne
iknx (10)

where kn = 2πn/L are wave numbers and the complex Fourier coefficients satisfy C−n = C∗
n

because h(x) is a real function. In practice, the number of modes Nmax can be chosen in relation
with a small atomic length-scale (e.g. Nmax = int(L/b)).

The first integral of Eq. (9) can be rewritten as
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with u = (x−x′)/a. Here, we recognize the expression of the modified Bessel function of second
kind of order 0 defined as:

K0(z) =
1

2
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du, (11)

In addition,
∫ L
0 ei(kn+km) = 0 for m 6= −n and = L otherwise. Therefore, we can directly write
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I1(h) =

Nmax
∑

n=1

4|Cn|2k2nLK0(akn). (12)

Similarly, the other integrals of Eq. (9) can be expressed as functions of modified Bessel
functions of order 1 and 2 respectively denoted K1 and K2 :
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Therefore, the screw contribution of the perturbation h(x) can be expressed in the following
compact form:
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1.2 Edge contribution Eedge(h)

We now focus on the edge contribution of Eq. (6). For a portion L of the infinite dislocation,
the term Eedge(h) can be written as:
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We now consider that the variations of h(x) are small. As in the previous section, we perform
Taylor expansions of the different integrands and reorganize the different terms to obtain
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Eedge(h) = −µb2e
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After expanding the L-periodic function h(x) in a Fourier series as in Eq. (10), we follow the
same steps as in previous section and obtain:
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1.3 Cross term contribution Ecross(h)

We now focus on the cross term of Eq. (6). For a portion L of the dislocation, the energy
Ecross(h) can be written as:
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Writing h(x) as a Fourier series as in Eq. (10), the first integral can be written as
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I1(h) =

∫ L
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because
∫ L
0 eiknxdx = 0. For the same reasons, the second and third integrals of Eq. (21) are

also null.
Therefore, to the first order in h′max, we have Ecross(h) = 0, and the energy of the mixed

dislocation is simply expressed as the sum of its screw and edge contributions.

1.4 Elastic energy and asymptotic behavior

Therefore, combining the expressions found for Escrew(h) and Eedge(h) yields a compact expres-
sion for the energy associated with a perturbation h of Fourier coefficients Cn:

Eel(h) =

Nmax
∑

n=1

µ|Cn|2L
2π(1 − ν)a2

[

−
(

2b2s(1− ν) + b2e
)

+ a2k2nK0(akn)
(

2b2s − νb2e
)

+ aknK1(akn)

(

(3− ν)b2s − b2e

(

1− a2k2n(1− ν)

2

))

(23)

− a2k2nK2(akn)

(

b2s(1 + ν)

2
− b2e

)

]

Because the behavior of the Bessel functions are quite difficult to intuit, we can use their
Taylor expansion to yield a simple expression in the limit of small akn, i.e. for perturbation
wavelengths much larger than the core parameter:

K0(akn) = −γe + ln

(

2

akn

)

+O(a2k2n), (24)

K1(akn) =
1

akn
+

akn
4

(

−1 + 2γe − 2 ln

(

2

akn

))

+O(a2k2n), (25)

K2(akn) =
2

a2k2n
− 1

2
+O(a2k2n), (26)

where γe ≃ 0.5772 is the Euler-Mascheroni constant. Therefore, the energy associated to a
single sinusoidal perturbation of the form h(x) = A sin(kx) takes the following form for ak → 0:

Eel(h) =
µ|A|2k2

16π(1 − ν)

[

b2e
(1− 2ν)

2
− b2s(1− ν) (27)

−
(

(1− 2ν)b2e + (1 + ν)b2s
)

(

ln

(

ak

2

)

+ γe

)

]

+O(a2k2)

This expression reveals that the leading k2 order term is affected by a ln(ak/2) contribution,
which becomes large for small values of ak, and represents the long-range elastic interactions,
characteristic of the dislocation theory.
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2 Core energy of a perturbed dislocation

In addition to the elastic energy, we also account for the contribution of the core energy, which
represents the energy of the highly defected atoms in the dislocation core region. We introduce
γ(θ), the core energy of the dislocation per unit length, function of the dislocation character,
which is represented by the angle θ between the dislocation line and its Burgers vector. The
difference of core energy between the perturbed and the straight dislocation is written as:

Eco(h) =

∫ L

0
γ(θ̃(x))

√

1 + h′(x)2dx−
∫ L

0
γ(θ)dx (28)

where θ̃(x) denotes the local angle between the dislocation line and the Burgers vector, θ the

average orientation of the dislocation (θ = 1
L

∫ L
0 θ̃(x)dx). To simplify this expression, we assume

again that the variations of h(x) are small (i.e. |h′max| ≪ 1) and that γ(θ) is a smooth function
of θ. Using Taylor expansions and keeping only the first order terms in h′(x) yields

Eco(h) =
γ(θ) + γ′′(θ)

2

∫ L

0
h′(x)2dx (29)

Writing h(x) as a Fourier series yields (see Eq. (10)):

Eco(h) = −γ(θ) + γ′′(θ)

2

∫ L

0

Nmax
∑

n=−Nmax

Nmax
∑

m=−Nmax

knkmCnCmei(kn+km)xdx

= LΓ(θ)

Nmax
∑

n=1

k2n|Cn|2 (30)

where Γ(θ) = γ(θ) + γ′′(θ) is defined as the line tension. We find the expected k2 behavior,
characteristic of short-range interactions [3, 4, 5].

3 Langevin dynamics

To further characterize the time-dependent behavior of the dislocations, we consider that the
dislocation line is subjected to the following Langevin dynamics:

Mḧ(x, t) +Bḣ(x, t) = −δe (h(x, t))

δh(x, t)
+ η(x, t) (31)

where M is an inertial mass per unit length associated with the dislocation line, B is the drag
coefficient characteristic of the viscous motion of the dislocation. The right-hand side is the force
acting on the dislocation, composed of the functional derivative of the energy per unit length
denoted e(h(x, t)) and the random force η(x, t) satisfying the fluctuation-dissipation theorem
and representing the forces coming from the thermal bath.

To compute the functional derivative δe(h(x))
δh(x) , we write the function h(x) of periodicity L

as a Fourier series: h(x) =
∑Nmax

n=−Nmax
Cne

iknx. The energy per unit length of this perturbed

dislocation can be written as e(h) = Eel(h)+Eco(h)
L = 1

2

∑Nmax

n=1 |Cn|2K(kn) (see previous sections
and Eq. (4) of the main text). To simplify the notations, we use here en = 1

2K(kn). From the
chain rule, it is straightforward to show that
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δe(h(x))

δh(x)
=

δe(h(x))

δCn

δCn

δh(x)
=

Nmax
∑

n=1

C∗
nen e−iknx, (32)

Considering that the Fourier coefficients Cn are time-dependent, Eq. (31) can be written as

+Nmax
∑

n=−Nmax

MnC̈n(t)e
iknx +

+Nmax
∑

n=−Nmax

BnĊn(t)e
iknx = −

+Nmax
∑

n=−Nmax

enC
∗
n(t)e

−iknx + η(x, t) (33)

where we now assume than the effective mass and drag coefficients may depend on the wave-
number n. After multiplication of Eq. (33) by e−iknx and integration between 0 and L, we
obtain independent dynamical equations on the different modes:

MnC̈n +BnĊn + enCn = ηk(kn, t) (34)

where ηk(kn, t) is an uncorrelated random process acting on the Fourier coefficients. We recog-
nize here the equation of a noisy under-damped oscillator whose homogeneous solution (found
for ηk(kn, t) = 0) is of the form:

Chomo
n (t) = C0

n cos(ωnt+ φn)e
−t/τn (35)

with ωn =
√

4Mnen −B2
n/2Mn and τn = 2Mn/Bn. Following previous work [6], the influence

of the random process ηk(kn, t) can be averaged out by considering the ensemble average of the
auto-correlation function:

〈Cn(0)C
∗
n(t)〉 = 〈|Cn|2〉 cos(ωnt)e

−t/τn . (36)

4 Dislocation core energy from molecular static simulations

Dislocation line energy and line tension can be estimated at 0K from molecular statics (MS)
simulations. Consistent with our description of the dislocation fluctuations and previous works
[7, 8, 9], we define the core energy as the difference between the energy of a relaxed atomistic
configuration and the anisotropic elastic energy of the same dislocation arrangement computed
within the non-singular formalism.

In the atomistic configurations, a dislocation dipole of a specific character is introduced
using the software Babel [10]. The atomic positions are then relaxed using periodic boundary
conditions, yielding the atomic energy of the relaxed configuration denoted Eat. As an example,
Fig. 1.a shows the relaxed configuration obtained for a small cell containing a dipole of edge
dislocations.

The elastic energy of the same dislocation configuration is computed based on the non-singular
theory of dislocations [1]. The dislocation dipole is introduced through its equivalent eigenstrain
that is smoothed in space over a distance a (see Ref. [11] for details). For a specific value of the
core parameter a, the elastic fields and elastic energy Eel(θ, a) are then computed with periodic
boundary conditions using an efficient spectral method accounting for anisotropic elasticity [11].

Fig. 1.b displays the core energy defined as γa(θ) = (Eat(θ)− Eel(θ, a))/2L‖ (accounting for
the two dislocations of the cell) as a function of the atomic system size for a specific value of
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Figure 1: (a) Atomistic configuration obtained after relaxation of a simulation cell containing
a dipole of edge dislocations (only the defected atoms are shown). (b) Core energy
obtained for different dislocation characters as a function of the size of the atomic
system and for a core parameter equal to the lattice spacing a = 4.05 Å. (c) Core
energy as a function of dislocation character γa(θ) from atomistic calculations at 0 K.
The line tension Γa for the edge and screw characters are shown with red squares and
were obtained from local parabolic fits (shown with dash lines).

the core parameter equal to the lattice spacing a = 4.05 Å. Fig. 1.b shows that the core energy
converges with the system size, as expected for dislocation core energies [7].

Repeating this operation for 14 different orientations ranging between 0o and 90o, we obtain
the core energy as a function of θ, displayed in Fig. 1.c. From these data, we can compute local
second derivatives from polynomial fits (shown with dashed lines in Fig. 1.c) and deduce the
line tension:

Γa(θ) = γa(θ) + γ′′a(θ), (37)

which appears in the core contribution of Eq. (30). The result for the edge and screw dislocations
are shown as red squares in Fig. 1. We highlight the importance to consider the line tension as
opposed to the line energy: while the line energy of the screw dislocation is lower than for the
edge character, the line tension of the screw is about three times higher than the edge due to
the contribution of second derivative γ′′a(θ).

5 Additional results at different temperatures

In addition to the results presented in the main article, we performed MD simulations at 200 K
and 400 K to assess the temperature-dependent behavior of the fluctuations. Fig. 2 shows the
power spectra obtained at these temperatures. We first notice that the fits are as good as the
ones presented in the main article at 300 K, showing that our analytical model is able to predict
accurately the dislocation fluctuations at various temperatures.

Temperature [K] as [Å] Γs [eV/Å] ae [Å] Γe[eV/Å]

200 3.25 0.103 5.09 0.046
300 3.34 0.114 5.60 0.053
400 3.44 0.117 6.06 0.057

Table 1: Fitted values of the core parameter and line tension at different temperatures for screw
(as,Γs) and edge (ae,Γe) dislocations.
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Figure 2: Power spectra obtained at (a) 200 K and (b) 400 K.

Another advantage of considering various temperatures is to obtain temperature-dependent
core parameters and line-tension coefficients. Tab. 1 displays these parameters obtained from
the fit of Fig. 2 and shows that both the core parameter and the line tension increase with
temperature. As mentioned in the main text of this article, the core parameter correlates with
the dissociation distance of the dislocation, which has been shown to increase with temperature
[12].
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