On Number Rigidity for Pfaffian Point Processes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

On Number Rigidity for Pfaffian Point Processes

Résumé

Our first result states that the orthogonal and symplectic Bessel processes are rigid in the sense of Ghosh and Peres. Our argument in the Bessel case proceeds by an estimate of the variance of additive statistics in the spirit of Ghosh and Peres. Second, a sufficient condition for number rigidity of stationary Pfaffian processes, relying on the Kolmogorov criterion for interpolation of stationary processes and applicable, in particular, to pfaffian sine-processes, is given in terms of the asymptotics of the spectral measure for additive statistics.

Dates et versions

hal-02110587 , version 1 (25-04-2019)

Identifiants

Citer

Alexander I. Bufetov, Pavel P. Nikitin, Yanqi Qiu. On Number Rigidity for Pfaffian Point Processes. 2019. ⟨hal-02110587⟩
107 Consultations
0 Téléchargements

Altmetric

Partager

More