Computing the volume of compact semi-algebraic sets - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Computing the volume of compact semi-algebraic sets

Pierre Lairez
Mohab Safey El Din

Résumé

Let $S\subset R^n$ be a compact basic semi-algebraic set defined as the real solution set of multivariate polynomial inequalities with rational coefficients. We design an algorithm which takes as input a polynomial system defining $S$ and an integer $p\geq 0$ and returns the $n$-dimensional volume of $S$ at absolute precision $2^{-p}$. Our algorithm relies on the relationship between volumes of semi-algebraic sets and periods of rational integrals. It makes use of algorithms computing the Picard-Fuchs differential equation of appropriate periods, properties of critical points, and high-precision numerical integration of differential equations. The algorithm runs in essentially linear time with respect to~$p$. This improves upon the previous exponential bounds obtained by Monte-Carlo or moment-based methods. Assuming a conjecture of Dimca, the arithmetic cost of the algebraic subroutines for computing Picard-Fuchs equations and critical points is singly exponential in $n$ and polynomial in the maximum degree of the input.
Fichier principal
Vignette du fichier
volumes.pdf (821.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02110556 , version 1 (25-04-2019)

Identifiants

Citer

Pierre Lairez, Marc Mezzarobba, Mohab Safey El Din. Computing the volume of compact semi-algebraic sets. ISSAC 2019 - International Symposium on Symbolic and Algebraic Computation, Jul 2019, Beijing, China. ⟨hal-02110556⟩
321 Consultations
215 Téléchargements

Altmetric

Partager

More