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How diverse are marine planktonic protist communities? How much 
seasonality do they exhibit? For very long time, these two old and 
challenging questions in the field of plankton ecology could be addressed 
only for large-size protist species, based on cell counting under the 
microscope. The recent application of molecular techniques, notably 
massive marker-gene amplicon sequencing or metabarcoding approaches, 
has allowed investigating with unprecedented level of resolution the small-
sized (<20 µm) planktonic eukaryotes too. An amazing diversity of these 
tiny organisms has been unveiled but details about their temporal 
dynamics have remained much more elusive. In this issue of Molecular 
Ecology, Giner et al. (2018) introduce a new Recurrence Index (RI) to 
specifically look for seasonality in time-series metabarcoding data. They 
inspected the temporal dynamics of all operational taxonomic units (OTUs) 
in a rich sequence dataset of pico- and nano-planktonic eukaryotes in 
samples collected monthly during 10 years. Although most OTUs did not 
show seasonality, some abundant ones did, which explains why some 
averaging methods can find seasonality at the less-detailed level of whole 
planktonic communities. Not surprisingly, the very complex small-sized 
eukaryotic plankton communities are composed of organisms with 
miscellaneous temporal dynamics.  
 

'As there are good and bad wine and fruit years, so there are rich and barren 

plankton years' (Haeckel, 1891). With these eloquent words, Ernst Haeckel 

exemplified more than one century ago the critical role that time series must play 

in the study of plankton, which cannot be fully understood just on the basis of 

punctual observations, as they may lead to wrong conclusions if done in 

moments when, for whichever reason, plankton does not behave normally. 

Indeed, 'to obtain a complete and more certain survey of the temporary variations 

of plankton composition requires an unbroken series of observations, carried on 

at one and the same place at least for the space of a full year—still better for 

several successive years—to obtain from the yearly and monthly oscillations a 



general average'. This idea is behind the remarkable proliferation of marine 

stations across the world during the XIXth and early XXth centuries. For decades, 

naturalists were observing marine plankton, describing new species, their 

interactions, and the functioning of the complex plankton ecosystem. This 

continuous surveillance also allowed discovering periodical rhythms in the 

abundance of particular species, leading to the elaboration of the concept of 

"periodic plankton" (Hensen, 1890). Because of the obvious easiness of 

observation and identification, early work largely concentrated on planktonic 

animals. By contrast, the study of microbial planktonic populations was more 

challenging but, after some decades of scrutiny, periodicity begun to be 

described, especially for some conspicuous species (see Fig. 1 for some 

examples), with strong emphasis on phytoplanktonic species because of their 

importance as primary producers in the global C cycle (e.g., diatoms: Pratt, 1959).  

Knowledge remained for a long time much more partial for the difficult-to-

observe, smallest planktonic size fractions (pico- and nano-plankton, 0.2-3 μm 

and 3-20 μm, respectively), mostly composed of prokaryotes but also of a variety of 

tiny eukaryotic cells. Among those eukaryotes, some important algal species, such 

as the globally distributed Micromonas pusilla (Butcher, 1952), were described, 

though most diversity was considered to correspond to heterotrophic, likely 

bacterivorous, species. These organisms were recognized to play a significant role 

in the function of the plankton trophic chain by fuelling the "microbial loop" (Azam et 

al., 1983). However, the precise taxonomic identity of these tiny eukaryotic predators 

remained for the most part unknown and were collectively classified as "eukaryotic 

nanoflagellates" and treated as a sort of black box in ecological studies (Fenchel, 

1982). Only in the early 2000's, thanks to 18S rRNA gene PCR amplification and 

sequencing from environmental DNA, it started to become possible to fully 

appreciate the actual wealth of diversity that this black box hid (Díez, Pedrós-Alió, & 

Massana, 2001; López-García, Rodríguez-Valera, Pedrós-Alió, & Moreira, 2001; 

Moon-van der Staay, De Wachter, & Vaulot, 2001). Metabarcoding, initially based on 

time-consuming Sanger sequencing and now on high-throughput techniques, 

revealed an extensive diversity of small-sized eukaryotes in marine plankton, largely 

dominated by heterotrophic -including parasitic- species (de Vargas et al., 2015; 



Moreira & López-García, 2002). Not surprisingly, the relatively simple morphologies 

of these small eukaryotes concealed a vast cryptic phylogenetic diversity that has 

been intensively studied in recent years though several large-scale plankton 

sampling and metabarcoding efforts (e.g., de Vargas et al., 2015; Pernice et al., 

2016). However, these efforts, despite their wide geographical scope, lack the 

temporal dimension indispensable to really understand plankton community 

composition, dynamics, biogeography, and ecology, something that only the 

examination of time series can achieve.  

Analysis of time series of small-sized plankton samples using molecular 

techniques, such as terminal restriction fragment length polymorphism and 

metabarcoding, had been applied for several years to study prokaryotic 

communities and, more rarely, eukaryotic ones. These studies have revealed 

seasonal rhythmicity of the marine and freshwater eukaryotic communities, 

notably by measuring pairwise Bray–Curtis similarity values between 

communities sampled at different time intervals (e.g., Kim et al., 2014; Simon et 

al., 2015). However, this averaging approach misses the fine-grain information 

contained in the temporal dynamics of each individual species or OTU. Analyzing 

that information is challenging because the structure of the planktonic eukaryotic 

communities is very complex, as they contain hundreds or thousands of different 

OTUs and most of these OTUs appear at first glimpse to exhibit a rather sporadic 

temporal behavior. Giner et al. (2018) have developed a new Recurrence Index 

(RI) to specifically address this question on a rich dataset of plankton samples 

collected monthly over 10 years at the Blanes Bay Microbial Observatory 

(Mediterranean Sea) and submitted to 18S rRNA gene metabarcoding analysis. 

For both eukaryotes and prokaryotes, a recurrent observation in previous marine 

plankton metabarcoding analyses is that diversity patterns are most often 

dominated by rare OTUs occurring at very low frequencies and in single or very 

few samples (Pedrós-Alió, 2006; Sogin et al., 2006). By applying their new RI 

index, Giner et al. corroborated this expectation as they found that only 13% and 

19% of the pico- and nano-eukaryotic OTUs, respectively, showed seasonality. 

However, these OTUs represented a large proportion of the sequence reads 



(39% and 37%, respectively), indicating that they are quantitatively important 

members of the small-size eukaryotic plankton community. The high abundance 

of these OTUs probably drives the seasonality pattern at the global eukaryotic 

community level inferred from the Bray–Curtis similarity analyses. 

Among the OTUs with the highest RI values, there are several 

Mamiellophyceae green algae. Planktonic microalgae have traditionally been 

considered seasonal organisms that tend to bloom during spring and summer as 

a response to favorable conditions (e.g., increased daylight availability and 

warmer waters). Some heterotrophic eukaryotes also appear among the high-RI 

OTUs, in particular MALV-III marine alveolates. For these organisms, seasonality 

appears to be a conserved class-level trait since the most abundant OTUs of 

these groups have high RI. By contrast, non-seasonality can be the general trait 

of most OTUs in other taxonomic groups, both photosynthetic (e.g., 

Chlorodendrophyceae) and heterotrophic (e.g., cercozoa) ones. Similarly, the 

proportion of seasonal and non-seasonal OTUs varies in other groups. Thus, 

seasonality seems to be a trait that differs among classes and even among 

OTUs within classes. This result stresses that eukaryotic taxonomic groups must 

not be regarded as homogeneous assemblages but, in most cases, as bins of 

species with idiosyncratic temporal dynamics, most likely owing to their specific 

niche adaptations. 

A general assumption to explain plankton seasonality is that algal growth, 

driven by seasonal changes in physicochemical parameters (light, temperature, 

nutrient availability) drives in turn the abundance of heterotrophic species (e.g., 

predators and parasites) that depend on them for growth. However, seasonality 

has also been observed for deep-sea protists, probably much less influenced by 

those changes in the phytoplanktonic species (Dolan, Ciobanu, Marro, & 

Coppola, 2017). Likewise, for most eukaryotic heterotrophs, it remains to be 

elucidated whether they rely directly on the co-occurring algae or whether they 

rely on other types of prey, notably bacteria. This open question raises an 

important point concerning time series: sampling frequency. Aquatic microbial 

communities are highly dynamic and many microorganisms can exhibit fast 



population size fluctuations (Mangot et al., 2013). Thus, given the complexity of 

plankton communities both in terms of structure and temporal oscillation of the 

composing species, it seems clear that even a monthly sampling strategy most 

likely misses part of such rapid plankton dynamics and still does not allow to fully 

infer the fine temporal interplay between autotrophic and heterotrophic plankton 

populations. The next challenge in this field will be to apply similar techniques as 

Giner et al. to datasets coming from times series with higher sampling 

frequencies to look both into eukaryotic and prokaryotic OTU temporal dynamics. 

 

ORCID 

David Moreira http://orcid.org/0000-0002-2064-5354 

Purificación López-García https://orcid.org/0000-0002-0927-0651 

 

REFERENCES 
Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, A., & Thingstad, F. 

(1983). The ecological role of water-column microbes in the sea. Marine 
Ecology Progress Series, 10, 257-263.  

Butcher, R. W. (1952). Contribution to our knowledge of the smallest marine 
algae. Journal of the Marine Biological Association of the United Kingdom, 
31, 175-191.  

de Vargas, C., Audic, S., Henry, N., Decelle, J., Mahe, F., Logares, R., ... 
Karsenti, E. (2015). Ocean plankton. Eukaryotic plankton diversity in the 
sunlit ocean. Science, 348(6237), 1261605.  

Díez, B., Pedrós-Alió, C., & Massana, R. (2001). Study of genetic diversity of 
eukaryotic picoplankton in different oceanic regions by small-subunit rRNA 
gene cloning and sequencing. Applied and Environmental Microbiology, 
67(7), 2932-2941.  

Dolan, J. R., Ciobanu, M., Marro, S., & Coppola, L. (2017). An exploratory study 
of heterotrophic protists of the mesopelagic Mediterranean Sea. ICES 
Journal of Marine Science, fsx218. https://doi.org/10.1093/icesjms/fsx1218.  

Fenchel, T. (1982). Ecology of heterotrophic microflagellates. II. Bioenergetics 
and growth. Marine Ecology Progress Series, 8, 225-231.  

Giner, C. R., Balague, V., Krabberod, A. K., Ferrera, I., Rene, A., Garces, E., . . . 
Massana, R. (2018). Quantifying long-term recurrence in planktonic 
microbial eukaryotes. Molecular Ecology, 27, XXX-XXX.  

Haeckel, E. (1891). Plankton-Studien. Jenaische Zeitschrift für 
Naturwissenschaft, 25, 232-336.  



Hensen, V. (1890). Einige Ergebnisse der Plankton-Expedition der Humboldt-
Stiftung. Sitzungsberichte der Berliner Akademie der Wissenschaften, 13, 
243-253.  

Kim, D. Y., Countway, P. D., Jones, A. C., Schnetzer, A., Yamashita, W., Tung, 
C., & Caron, D. A. (2014). Monthly to interannual variability of microbial 
eukaryote assemblages at four depths in the eastern North Pacific. ISME 
Journal, 8(3), 515-530.  

López-García, P., Rodríguez-Valera, F., Pedrós-Alió, C., & Moreira, D. (2001). 
Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. 
Nature, 409, 603-607.  

Mangot, J. F., Domaizon, I., Taib, N., Marouni, N., Duffaud, E., Bronner, G., & 
Debroas, D. (2013). Short-term dynamics of diversity patterns: evidence of 
continual reassembly within lacustrine small eukaryotes. Environmental 
Microbiology, 15(6), 1745-1758.  

Moon-van der Staay, S. Y., De Wachter, R., & Vaulot, D. (2001). Oceanic 18S 
rDNA sequences from picoplankton reveal unsuspected eukaryotic 
diversity. Nature, 409, 607-610.  

Moreira, D., & López-García, P. (2002). Molecular ecology of microbial 
eukaryotes unveils a hidden world. Trends in Microbiology, 10, 31-38.  

Pedrós-Alió, C. (2006). Marine microbial diversity: can it be determined? Trends 
Microbiology, 14(6), 257-263.  

Pernice, M. C., Giner, C. R., Logares, R., Perera-Bel, J., Acinas, S. G., Duarte, C. 
M., . . . Massana, R. (2016). Large variability of bathypelagic microbial 
eukaryotic communities across the world's oceans. ISME Journal, 10(4), 
945-958.  

Pratt, D. M. (1959). The phytoplankton of Narragansett Bay. Limnology and 
Oceanography, 4, 425-440.  

Simon, M., Lopez-Garcia, P., Deschamps, P., Moreira, D., Restoux, G., Bertolino, 
P., & Jardillier, L. (2015). Marked seasonality and high spatial variability of 
protist communities in shallow freshwater systems. ISME Journal, 9(9), 
1941-1953.  

Sogin, M. L., Morrison, H. G., Huber, J. A., Mark Welch, D., Huse, S. M., Neal, P. 
R., . . . Herndl, G. J. (2006). Microbial diversity in the deep sea and the 
underexplored "rare biosphere". Proceedings of the National Academy of 
Sciences U. S. A., 103(32), 12115-12120. 

 

 



Figure legend 
FIGURE 1  Large protists with seasonal dynamics: the tintinnid ciliate Stenosomella 

nivalis (a) and the dinoflagellate Ceratium furca (b) have abundance peaks during winter, 

whereas their counterparts Protorhabdonella curta (c) and Ceratium pentagonum (d) 

increase their abundance during summer (photographs by John Dolan). 
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