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Real-time determination of enantiomeric and
isomeric content using photoelectron elliptical
dichroism
A. Comby1, E. Bloch1, C.M.M. Bond2, D. Descamps1, J. Miles2, S. Petit1, S. Rozen3, J.B. Greenwood2,

V. Blanchet1 & Y. Mairesse 1

The fast and accurate analysis of chiral chemical mixtures is crucial for many applications but

remains challenging. Here we use elliptically-polarized femtosecond laser pulses at high

repetition rates to photoionize chiral molecules. The 3D photoelectron angular distribution

produced provides molecular fingerprints, showing a strong forward-backward asymmetry

which depends sensitively on the molecular structure and degree of ellipticity. Continuously

scanning the laser ellipticity and analyzing the evolution of the rich, multi-dimensional

molecular signatures allows us to observe real-time changes in the chemical and chiral

content present with unprecedented speed and accuracy. We measure the enantiomeric

excess of a compound with an accuracy of 0.4% in 10min acquisition time, and follow the

evolution of a mixture with an accuracy of 5% with a temporal resolution of 3 s. This method

is even able to distinguish isomers, which cannot be easily distinguished by mass-

spectrometry.
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Chiral molecules are not superimposable onto their mirror
image, and can only be distinguished through their
interaction with another chiral object. Since all living

organisms are constituted of chiral building blocks, chirality plays
a crucial role in biology and biochemistry, and therefore in
industrial sectors such as pharmaceuticals, food, or agro-
chemistry for instance. The relative proportion of the two mir-
ror images of chiral molecules (for instance, enantiomers R and S)
in a sample is called the enantiomeric excess and is defined as
ee= ([R]− [S])/([R]+ [S]). Its fast and accurate determination is
of prime importance for many applications, particularly in the
context of increasingly stringent legislation.

One of the most common techniques used to identify chiral
molecules is chromatography. The sample to be analyzed is sent
into a column containing chiral selectors which interact differ-
ently with the two enantiomers. As a consequence, the two
enantiomers have different travel times through the column and
can be separated. In the gas phase, the state-of-the-art in ee
determination is GCxGC-TOFMS (two-dimensional gas
chromatography–time-of-flight mass spectrometry), which
reaches 0.1% range accuracies by combining two successive chiral
columns with mass spectrometry detection1. Its main drawbacks
are the lack of a universal chiral column which is able to separate
all classes of chiral compounds, the limited lifetime of the col-
umns, and the necessity to fine tweak the temperature and
pressure for each analyzed sample. In addition, in the gas phase
the measurement speed is intrinsically limited by the migration
time, such that measurements typically take several tens of
minutes, and are incompatible with continuous monitoring of
enantiomeric excess.

To speed up measurements, it is necessary to use a physical
process which is faster than the migration on a substrate. This is
naturally achieved in chiroptical measurements, which rely on the
interaction of circularly polarized electromagnetic radiation with
chiral molecules and whose response time is on the attosecond
range2,3. Absorption circular dichroism (CD), which measures
the different absorption of left and right circularly polarized light
in a sample, played an important role historically. Its interest was
renewed in the 1970s when infrared CD revealed that transitions
between vibrational states provided a unique chiral fingerprint,
with unambigious determination of the absolute configuration
when compared to ab initio calculations4–6. This effect, called
vibrational circular dichroism (VCD), is now used in commercial
instruments to analyze chiral samples with high accuracy (~1%),
and enables enantiomeric excesses to be monitored in real time7,8.
On the other hand, VCD remains a rather weak effect, relying on
electric quadrupole and magnetic dipole transitions. This means
that VCD is only performed in the condensed phase, requiring a
large amount of molecules.

As reviewed in ref. 9, chiroptical techniques have emerged in
the past few years, which offer unprecedented sensitivities: pho-
toelectron circular dichroism10–15, microwave spectroscopy16–18,
photoexcitation circular dichroism19, and chiral high-order har-
monic generation2. In microwave spectroscopy, the free-
induction decay of a rotational transition excited by a combina-
tion of two fields with different polarization directions provides
an enantiosensitive signal16, which can be used to determine ee
with demonstrated accuracies of 1% in 90 s17 and to distinguish
conformers, isomers, or isotopologues9,18. Photoelectron circular
dichroism (PECD) was also shown to be very promising for chiral
analysis. PECD occurs when gas-phase chiral molecules are
photoionized by circularly polarized light. More electrons are
emitted forward or backward relative to the light propagation
axis, depending on the handedness of the light and of the
enantiomer10,11. PECD is a pure electric-dipole effect, leading to
very large signals (in the 1–10% range)14. PECD was thus used to

determine enantiomeric excess with accuracies better than 1% in
a few hours using extreme ultraviolet (XUV) synchrotron radia-
tion20. Using ultraviolet (UV)–visible femtosecond lasers,
accuracies better than 1% were achieved in around 10 min21, and
5% in 1 min using a high repetition rate laser22. PECD was also
associated with coincidence electron-ion detection to analyze
multi-component mixtures, distinguishing molecules with an
accuracy of 20% in 18 h acquisition time23.

Here we introduce a way of determining enantiomeric excesses
through photoelectron elliptical dichroism. We show that the
resonance-enhanced multiphoton ionization (REMPI) of chiral
molecules by elliptically polarized laser pulses produces strong
forward–backward asymmetries in the three-dimensional (3D)
photoelectron angular distributions which can evolve non-
monotonically with the ellipticity of the laser light. We con-
tinuously record the forward–backward asymmetry while mod-
ulating periodically the laser ellipticity, and show that the
resulting signal enables the fast and accurate determination of
enantiomeric excesses, with a 0.4% accuracy in 10 min and 5%
accuracy in 3 s. This breakthrough enables real-time tracking of
the composition of chiral samples. Lastly, we demonstrate that
photoelectron elliptical dichroism can be used to identify different
chemical species in a mixture without the need of mass spec-
trometry, and can even distinguish isomers.

Results
Photoelectron elliptical dichroism. To perform accurate pho-
toionization measurements, we used the Blast Beat laser system at
CELIA, whose repetition rate can be tuned between 166 kHz and
2MHz (see Methods). A 515 nm beam, obtained by frequency
doubling the 1030 nm 130 fs pulses, was focused into the inter-
action chamber of a Cold Target Recoil Ion Momentum Spec-
trometer (COLTRIMS), where it photoionized enantiopure
fenchone molecules. The laser polarization state was controlled by
rotating a half waveplate in front of a fixed quarter waveplate.
This enables scanning the ellipticity while keeping a fixed direc-
tion of the ellipse. Throughout this study, the ellipticity of the
ionizing laser pulse will be quantified by the third Stokes para-
meter S3, which represents the amount of circularly polarized
light in the radiation. The COLTRIMS provides a complete map
of the 3D photoelectron angular distribution in momentum space
P(px, py, pz)24. The distributions obtained by photoionizing
fenchone with right and left polarized light PR(px, py, pz) and
PL(px, py, pz) were used to produce two 3D distributions: the
photoelectron angular distribution 3D− PAD= (PL+ PR)/2, and
the photoelectron elliptical dichroism (PEELD) 3D− PEELD=
(PL− PR). These two distributions are expected to be respectively
symmetric and antisymmetric with respect to the laser propaga-
tion axis z. In practice, we symmetrize and antisymmetrize them
to correct for artifacts due to the imperfect nature of the wave-
plate and the inhomogeneities of the detector.

Figure 1 shows isosurface plots of the photoelectron distribu-
tions, for different laser ellipticities. When the laser light is
circularly polarized (S3= 1), the distributions show an almost
perfect cylindrical symmetry around pz (Fig. 1a). The 3D-PAD
and 3D-PEELD peak around 0.25 atomic units (a.u.) momentum
(0.88 eV energy), which is characteristic of photoelectrons
emitted from the highest occupied molecular orbital (HOMO,
ionization potential 8.72 eV) by 4 photon ionization at 515 nm.
This ionization process is enhanced by a resonance at 7.2 eV (3+
1 REMPI). The 3D-PEELD is dominantly negative in the forward
direction and positive backwards. When S3 decreases by 10%, the
overall 3D-PEELD changes sign, and lobes of opposite sign
appear (Fig. 1d). The 3D-PAD sharpens around the direction of
the main axis of the laser polarization ellipse (Fig. 1c). A twist
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appears in the 3D-PEELD in the px,py plane, and is enhanced
when S3 further decreases to reach S3= 0.6 (Fig. 1f). These
measurements show that the forward–backward photoelectron
asymmetry produced by REMPI of chiral molecules can switch
sign as soon as the light becomes slightly elliptical. The fast and
accurate determination of enantiomeric excesses that will be
presented later is built upon this elliptical dependency of the
REMPI-PEELD.

The COLTRIMS detection has the advantage that it directly
measures the 3D-PADs, but is restricted to around one event per
laser shot to maintain a precise determination of the arrival time
of the photoelectron on the detector. Furthermore, it is a costly
and complex device, which is unlikely to be deployed widely for
practical applications in analytical chemistry. The setup can be
simplified by combining a velocity map imaging (VMI) spectro-
meter which records only the (x, z) projection of the 3D-PAD25,
with a tomographic procedure in which the 3D-PAD is rotated
along the z-axis by rotating the laser ellipse26,27. Higher
acquisition speeds can be achieved with such a setup. For
(+)-fenchone the results presented in Fig. 2 show very good
agreement with the COLTRIMS measurements, with a 4 times
shorter acquisition time, validating the procedure.

In order to evaluate the generality of the effect, we repeated the
measurements in other molecules. Figure 2 demonstrates that in
multiphoton ionization, the enhanced sensitivity of PEELD
compared to PECD is not restricted to fenchone, but also exists
in camphor and limonene. The results also show that PEELD is
extremely sensitive to isomerism: camphor and fenchone only
differ by the position of two methyl groups that are not attached to
asymmetric carbons, have similar ionization potentials, and show
very similar 3D-PADs. However, they generate very different 3D-
PEELDs. This can be seen as an extension of the isomerism
sensitivity of PECD, observed both in single-photon20,28 and
multiphoton ionization12. The difference between PECD and
PEELD is spectacular in camphor, where a clear twist is observed
in an elliptical ionizing field. Interestingly, the direction of this
twist is imposed by the enantiomer, as can be seen in the
comparison of measurements performed in (+) and (−)-fenchone.
In limonene the 3D-PEELD distributions remain much more
symmetric but show energy components with opposite signs, as is
often observed in multiphoton ionization29. The outer component
disappears when the laser ellipticity decreases.

The 3D isosurface maps of the PEELD enable the angular and
kinetic energy dependence of the process to be resolved but make
the estimation of the overall forward–backward asymmetry quite
difficult. We thus calculated the asymmetry factor usually defined
in PECD studies as twice the difference between the number of
electrons emitted in the forward F and backward B hemispheres,
normalized by the mean signal per hemisphere: G= 4(F− B)/
(F+ B). The evolution of G as a function of S3 is shown in Fig. 3a,
at an intensity of 1 × 1013W cm−2. When the light is mostly
linearly polarized, the asymmetry increases linearly with S3.
When S3 reaches ~0.6, the asymmetry decreases, changes sign,
and maximizes in circular polarization (S3= ±1). In fenchone the
overall maximum of the forward/backward electron emission is
reached when the ionizing radiation is circular, but in camphor
and limonene the asymmetry is higher in elliptical light, around
S3 ~ ±0.6.

The ellipticity dependence of PECD has been investigated in
previous work, but the key features discussed here had not
been observed. In the single-photon vacuum UV (VUV)
ionization regime, the forward/backward asymmetry in the
photoelectron ejection scales linearly with the amount of
circularly polarized light S330. In the multiphoton ionization of
camphor by 400 nm pulses, Lux et al.27 observed a monotonic
increase of the asymmetry, with an increasing slope around very
high ellipticities. At the same wavelength with lower laser
intensity (4 × 1010W cm−2) Miles et al.22 reported a similar
observation, but found a clear slope change around |S3| ~0.4.

What is the origin of the non-monotonic behavior of G with
laser ellipticity? In the three molecular species considered here,
the resonant absorption of three photons at 515 nm (2.4 eV)
promotes the molecules to high-lying Rydberg states, from which
they are photoionized by further absorption of one or several
photons. By decoupling the excitation and ionization steps
through a two-color experiment, we recently demonstrated that
photoexciting molecules with linearly or circularly polarized
photons led to strong changes in the PECD, with possible sign
inversions31. This is the result of the anisotropy of excitation
introduced by the resonance. The multiphoton excitation from
the ground to the Rydberg states breaks the isotropy of the
sample by preferentially exciting molecules whose transition
dipole moment is parallel to the laser field. Thus, circularly
polarized radiation tends to promote molecules whose transition
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dipole moment lies in the polarization plane, while linearly
polarized light selects the molecules whose transition dipole
moment is parallel to the polarization axis. Since PECD strongly
depends on the molecular orientation32,33, the different molecular
orientations selected through photoexcitation can have a strong
influence on the resulting PECD.

Here we lie in an intermediate regime in which the ionizing
field is elliptically polarized. This field can be decomposed as a
sum of linear and circular components, the latter being
proportional to S3. When S3 is small the intensity of the linear
components is much stronger than that of the circular part. In
addition, linearly polarized light is more efficient for multiphoton

excitation than circular radiation. Thus, the multiphoton
transition to the Rydberg states most likely involves three linearly
polarized photons. From this Rydberg state the molecules can be
ionized by absorption of a linear photon, leading to no dichroism,
or of a circular photon, producing a forward–backward
photoelectron asymmetry. This 3+ 1 resonant enhanced multi-
photon ionization (REMPI) can thus be seen as a single-photon
PECD experiment, in which the ionized system is an ensemble of
orientated, photoexcited molecules. In this regime the dichroism
scales linearly with the amount of circularly polarized light S3, as
established in the VUV range30. Our experimental results indicate
that this picture is correct in the three investigated molecules as

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

In
te

ns
ity

 (
T

W
/c

m
2 )

p x
 (a

.u
.)

–2

–1

0

1

2

10

20

30

40

Stokes parameter S3

d

0

2.5

–2.5

0

7

–7

0

6

–6

0

15

–15

b

S3 = 0.08 S3 = 0.4 S3 = 0.9 S3 = 1

S3 = 0.08 S3 = 0.4 S3 = 0.9 S3 = 1

0

6

–6

0

17

–17

0 0

50

–50

c

22

–22

G (%)

×10–3

×10–3 ×10–3 ×10–3 ×10–3

×10–3 ×10–3 ×10–3

pz (a.u.)
0 0.5–0.5

pz (a.u.)
0 0.5–0.5

pz (a.u.)
0 0.5–0.5

pz (a.u.)
0 0.5–0.5

pz (a.u.)
0 0.5–0.5

pz (a.u.)
0 0.5–0.5

pz (a.u.)
0 0.5–0.5

pz (a.u.)
0 0.5–0.5

–0.5

0.5

0

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
–3

–2

–1

0

1

2

3

G
 (

%
)

Stokes parameter S3

Fenchone
Camphor
Limonene

a

Fig. 3 Ellipticity and intensity dependence of PEELD. a Evolution of the the forward/backward asymmetry G as a function of S3, in (+)-fenchone (red
squares), (+)-camphor (green diamonds), and (+)-limonene (purple circles), at 5 × 1012W cm−2. The dotted lines are a linear extrapolation of the low-S3
behavior. b, c Projections of the 3D-PEELD from (+)-fenchone in the (px, pz) plane, at 5 × 1012W cm−2 (b) and 1.7 × 1013W cm−2 (c). The z-axis is the laser
propagation direction and the x-axis is the main axis of the laser ellipse, and the VMI detector lies in the (x, z) plane. The (px, pz) projection are integration
over the time-of-flight (y) axis of the VMI. d Evolution of the ellipticity dependence of the forward/backward asymmetry G with laser intensity in
(+)-fenchone

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07609-9 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:5212 | DOI: 10.1038/s41467-018-07609-9 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


long as |S3| <0.4. This interpretation is confirmed by the evolution
of the angular distributions. Figure 3b shows the (px, pz)
projections of the 3D-PEELD of fenchone measured by the
VMI, as a function of laser ellipticity. The distribution is
normalized by the maximum of the 3D-PAD projection: 2(L –
R)/max(L+ R). The PEELD image measured in a quasi-linear
field (S3= 0.08) is similar in shape to the one measured using S3
= 0.4, indicating that the photo-selected molecular orientations
are similar in the two cases. By extrapolating the linear trend of G,
we can predict the value of the asymmetry that would be obtained
by using circular light (S3= 1) to ionize the molecules photo-
excited by three linearly polarized photons (dashed line in
Fig. 3a): 2.3% in (+)-fenchone, −1.3% in (+)-camphor, and
−1.0% in limonene.

When the amount of circularly polarized radiation increases
beyond |S3| ~0.4, circularly polarized photons start to play a
significant role in the photoexcitation step, modifying the
orientation distributions of photoexcited molecules. This strongly
influences the resulting dichroism, inducing a sign change in the
asymmetry and a strong increase when reaching circular
polarization. Remarkably, the variations of the forward–backward
asymmetry in the vicinity of circular polarizations are very sharp:
lowering |S3| from 1 to 0.9 induces a drop of the asymmetry from
−2.6% to −0.4%. This is very different from the behavior
observed around linear polarization, where increasing |S3| from 0
to 0.1 only increases the asymmetry by 0.25%. Again we interpret
this as the result of the higher efficiency of linearly polarized
photons in the multiphoton excitation process. When the
polarization state changes from linear to |S3|= 0.1, we find that
the total ionization yield is hardly affected, diminishing by 0.7%.
This indicates that the circularly polarized photons are mostly
absorbed in the last step of the 3+ 1 REMPI process, and do not
influence the orientation distribution of photoexcited molecules.
By contrast, when |S3| decreases from 1 to 0.9, the ionization
probability decreases by 40%: the linearly polarized photons play
a strong role in the photoexcitation as soon as they are present,
sharpening the photoexcitation distribution and modifying the
forward–backward asymmetry in electron ejection. This is
confirmed by observing the projections of the 3D-PEELD
(Fig. 3b): their shape is very different when the polarization state
goes from circular to S3= 0.9. This interpretation also explains
the slope changes observed in 2+ 1 REMPI ionization of
camphor at 400 nm22: in that case (resonance at 6.2 eV) there
was no sign change in the electron asymmetry between molecules
excited by linearly and circularly polarized radiation, but the
dichroism from the latter was higher than that from the former,
leading to a slope increase when |S3| >0.4.

The resonances involved in our REMPI scheme lie close to the
ionization threshold, where the state density is high. Stark shifts
can thus occur easily as the laser intensity increases, modifying
the states reached by 3 photon absorptions and thus the selected
molecular orientations. This appears clearly in Fig. 3c which
depicts the PEELD projected distributions on the VMI spectro-
meter when the intensity is increased to ~1.7 × 1013W cm−2. The
contribution of the outer ring, associated with 5-photon
ionization from the HOMO, strongly increases, but its shape
remains quite independent of the ellipticity. The central
component, associated with 3+ 1 photon ionization from the
HOMO, shows new patterns which reflect the participation of
other Stark-shifted intermediate states in the ionization process.
Indeed, a strong dependence of the PECD on the intermediate
states involved was recently demonstrated in a 2+ 1 REMPI
experiment using tunable light34. As in the lower intensity case,
the shape of the PEELD projection associated with the 3+ 1
ionization from the HOMO is very similar when the amount of
circularly polarized light is in the |S3| <0.4 range, while it

dramatically changes between S3= 0.9 and 1. This indicates that
our conclusions on the relative influence of the circular and linear
photons in the excitation process remain valid at higher intensity.

In order to draw a complete picture of the intensity
dependence of the PEELD, we investigated the evolution of the
variation of the asymmetry factor G with ellipticity (Fig. 3d). At
the lowest intensity, the asymmetry maximizes when the laser
field is elliptical, around S3= 0.6. As soon as the intensity reaches
a few 1012W cm−2, a sharp maximum appears around circular
polarization, dominating the asymmetry. When the intensity
further increases, the overall asymmetry diminishes, reflecting the
transition towards the strong field ionization regime in which the
influence of the chiral potential on the electron scattering
becomes less important29.

Enantiomeric excess measurement by continuous photoelec-
tron elliptical dichroism. In this section, we use photoelectron
elliptical dichroism to determine the enantiomeric excess (ee) of a
pure chemical compound. Our measurement is based on a con-
tinuous and periodic variation of the laser ellipticity, associated
with continuous detection of the PEELD (c-PEELD). We sent
515 nm, 2.5 μJ pulses at 2 MHz through a motorized quarter
waveplate rotating at 45°/s. The quarter waveplate rotation
induced a quasi-sinusoidal modulation of S3, with a T0= 4 s
period. The modulated pulses were focused into the VMI to
ionize the chiral sample provided by a continuous gas jet con-
nected to flasks containing the samples to analyze. The (x,y)
projection of the 3D photoelectron angular distribution was
recorded continuously using a S-CMOS camera with 50 ms
acquisition time, acquiring 20 images per second without any
dead time. The signal emitted in the forward and backward
hemispheres was integrated numerically to extract the instanta-
neous asymmetry parameter Graw(t). In order to correct for the
spatial inhomogeneity of the detector’s gain, we averaged the
values measured for two opposite helicities by calculating
GðtÞ ¼ 1

2 ðGrawðtÞ � Grawðt þ T0=2ÞÞ.
Figure 4a shows the temporal evolution of the signals measured

consecutively in (+) and (−)-fenchone. The total signal
maximizes when the laser field is linearly polarized, and
minimizes when the field is circular, as seen previously. The
modulations of G(t) follow the variations of S3, as presented in
Fig. 3, and show opposite signs in opposite enantiomers. The high
repetition rate of the laser enables a good signal-to-noise ratio to
be reached for each data point in 50 ms, corresponding to the
sum of 100,000 laser shots. The signal being periodic, it can be
decomposed into a sum of frequency components by Fourier
transform. Figure 4b shows the fast Fourier transform (FFT) of
the signal measured over a 10 min long acquisition. The
waveplate rotation speed determines the oscillation frequency of
the total signal: it maximizes every 90° of the quarter waveplate,
i.e., at 2Ω0= 0.5 Hz, where Ω0= 2π/T0 is the natural funda-
mental frequency of the experiment corresponding to a quarter
waveplate rotation of 180°. The oscillation spectrum of the total
signal also shows very weak higher harmonic peaks at kΩ0, k 2 N,
reflecting the nonlinearity of the signal variation with S3 (not
visible on the figure scale). The oscillation spectrum of the
asymmetry GðΩÞ is much richer, showing peaks at odd harmonics
of Ω0. This GðΩÞ spectrum reflects the non-linear and non-
monotonic dependence of G with S3. It depends on the molecular
species, and can be used as a fingerprint of the molecules in
multi-component ee determination, as we will see later.

The Fourier analysis enables the oscillatory signal to be isolated
from noise, acting in a similar manner to a lock-in detection. We
will focus on the strongest peak Gð3Ω0Þ, which shows the lowest
sensitivity to noise. Since G(t) is a normalized quantity, the
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magnitude of this FFT peak Gð3Ω0Þj j is proportional to the
enantiomeric excess in the sample. Enantiomeric excesses can
thus be measured after calibration by a known reference:
ee ¼ Gð3Ω0Þj j= Gref ð3Ω0Þ

�� �� � eeref . Here we used enantiopure
(+)-fenchone molecules as a reference, assuming
eeref ¼ eeðþÞ ¼ 1, but a mixture with a known enantiomeric
excess could as well be used.

We measured the composition of three samples, using a 10 min
acquisition for each. A detailed analysis of the measurement
errors is presented in the Methods section. The first sample was a
pure (−)-fenchone sample from Sigma Aldrich, whose enantio-
meric excess is specified as ee=−84.2 ± 4%. Our measurements
provide a more accurate determination of this value. Next we
composed two mixtures using a precision balance. In all cases, the
c-PEELD measurements provide high accuracy determination of
the ee, as shown in Table 1.

One important advantage of c-PEELD measurements is their
continuous nature and the absence of dead time in the
acquisition. By contrast, conventional PECD measurements rely
on the detection of photoelectrons produced by left and right
circularly polarized light, which is obtained by a 90° quarter
waveplate rotation in laser-based experiments. With kHz lasers,
the time taken to rotate the waveplate is negligible compared to
the acquisition time necessary to build up the statistics on the
asymmetric factor G. However this is far from the case when
MHz lasers are used, the acquisition time being 50 ms in the
present experiment. Even using very fast direct-drive motorized
rotation stages, the acceleration and deceleration times set a limit
of a few 100 ms for the switching time between the two helicities,
imposing a significant dead time in the acquisition. Alternative
solutions exist, such as electro-optic modulators, but their use is
much more cumbersome than a rotation stage. Furthermore, the
continuous rotation used in c-PEELD optimizes the acquisition
process by using the whole ellipticity dependence of the
photoelectron asymmetry.

To demonstrate the possibility of monitoring enantiomeric
excesses in real time, we performed a dynamical measurement.

We connected four flasks, containing (+)-fenchone, (–)-fench-
one, and the two mixtures measured above, to the gas line
supplying the gas jet. We successively opened the different flasks,
while keeping the others closed, and recorded the c-PEELD
measurements on-the-fly. The evolution of the total photoioniza-
tion signal is shown in Fig. 5a. The pressure increases every time a
new flask is connected to the chamber, causing an increase of the
signal, which relaxes afterwards in a few tens of seconds. The
photoelectron asymmetry G(t) was extracted from the data and
analyzed by Gabor analysis, using a Gaussian window of 5 s full
width at half maximum (FWHM) duration. The instantaneous
enantiomeric excess ee(t) was obtained by measuring the
magnitude of the FFT peak Gð3Ω0Þj j, while its sign was extracted
from the phase of Gð3Ω0Þ (when the enantiomeric excess switches
sign, the phase of the oscillations of G(t) shifts by π, as seen in
Fig. 4a). Figure 5b presents the evolution of the enantiomeric
excess in the VMI chamber as a function of time. Each flask
switching causes a transient in ee(t), with a typical timescale of a
few minutes, characteristic of the gas dynamics in the tubes
towards the VMI chamber. After this transient, the enantiomeric
excess tends to the expected value, within the ±4% error bar
determined by the duration of the Gabor window (see Methods).
The slight systematic offset of the measured values for Mix 1 and
Mix 2 could be due to a drift of laser intensity (see Methods). The
continuous locking of the laser power and duration should
further improve the accuracy of the c-PEELD measurements.
This experiment demonstrates the ability to follow the enantio-
meric composition of a gaseous sample in real time, with a
temporal resolution of a few seconds and an accuracy of a few
percent. This constitutes a major breakthrough for chiral analysis
in the gas phase.

While the measurements presented above used a COLTRIMS
or a VMI, two rather costly instruments, a simpler device can be
used to perform c-PEELD measurements for direct real-time
analysis. At Queen's University Belfast, an instrument has been
constructed so that G can be measured directly by collecting the
electron yield in the forward and backward hemispheres,
whatever their kinetic energy22 (see Methods). Figure 6a shows
the measured forward/backward asymmetry measured with this
instrument, using 520 nm pulses at ~1 × 1012 W cm−2, with a
repetition rate of 1 MHz. The ellipticity dependence of G is
consistent with the low intensity measurements presented in
Fig. 3d, with a strong change in G as S3 approaches 1 but
without a change in sign. Enantiomeric excesses can still be
extracted from Fourier analysis of a c-PEELD signal G(t). We
obtain a value of ee=−63 ± 5% for a mixture previously
determined as ee=−66%. Using higher laser intensity would
strongly increase the signal and its non-linear dependence on S3,
leading to an improvement of the accuracy. Nevertheless, this
measurement demonstrates the possibility of using a very simple
and compact instrument to perform PEELD and c-PEELD
measurements.

Table 1 Measurement of the enantiomeric excess of three
mixtures of fenchone using (+)-fenchone as a reference
with eeref ¼ 1

Mixture Enantiomeric excess
from provider

Enantiomeric excess
measured by c-PEELD

(−)-fenchone −84.2 ± 4% −84.0 ± 0.4%
Mix 1 63.1 ± 4% 62.7 ± 0.5%
Mix 2 25.1 ± 4% 24.9 ± 0.4%

Each measurement corresponds to a 10min acquisition
The error bars of the c-PEELD measurements are 95% confidence intervals (see Methods)
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Analysis of multi-component samples. We have focused until
now on the analysis of samples containing only one chiral species.
The enantiomeric analysis of multi-component mixtures is a
challenging task. Recently, Fanood et al.23 showed that mass-
tagged PECD offers an interesting solution to this problem. They
detected in coincidence the photoions and photoelectrons pro-
duced by circularly polarized femtosecond laser pulses. This
enabled them to resolve the PECD associated to each ion, and to
distinguish different molecular species. They managed to measure
the enantiomeric excess of limonene and fenchone in a mixture.
While mass-spectrum resolved PECD is undoubtedly a powerful
analytical technique, it suffers from long acquisition times
imposed by the coincidence detection. Here we show that c-
PEELD offers a valuable alternative.

The key idea behind multi-component analysis with c-PEELD
is to use the ellipticity dependence of the photoelectron signal as a
fingerprint of the molecules. As we have seen in Fig. 3, the
forward–backward asymmetry in the electron ejection can be very
different from one molecule to another. For instance, the
asymmetry maximizes in circularly polarized light in fenchone
and in elliptical light in camphor. This means that these two

species will show different oscillation spectra in a c-PEELD
measurement. On the other hand, two different species can show
very similar behaviors and would not be distinguished (for
instance, camphor and limonene). Such ambiguities can be lifted
by increasing the dimensionality of the measurement.

Photoelectron elliptical dichroism produces characteristic 3D
photoelectron angular distributions, which can be measured by
COLTRIMS or VMI tomography. These 3D maps carry very rich
signatures of the ionized species (Fig. 2), and could certainly be
used for multi-component mixture analysis. However, their
acquisition time is incompatible with real-time monitoring, since
it requires electron counting (COLTRIMS) or recording multiple
projections with a VMI. On the other hand, the c-PEELD analysis
shown up to now was focused on the forward–backward electron
asymmetry G(t), which is an angle- and energy-integrated
quantity. A tradeoff can be found by analyzing the (x, z)
projections of both the 3D-PAD and 3D-PEELD, which can be
measured in a VMI in a few tens of milliseconds.

In order to generate molecular fingerprints, we analyze the
temporal oscillations of the projections of the 3D electron
distributions on the VMI detector as the ellipticity is continuously
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scanned: Pðpx; pz; tÞ ¼
R
Pðpx; py; pz; tÞdpy . The forward/back-

ward symmetric part of the image P
symðpx; pz; tÞ ¼

1
2 Pðpx; pz; tÞ þ Pðpx;�pz; tÞ
� �

provides the evolution of the

projection of the PAD. The antisymmetric part P
antiðpx; pz; tÞ ¼

1
2 Pðpx; pz; tÞ � Pðpx;�pz; tÞ
� �

is the chiral-sensitive projection of
the PEELD signal. Each pixel of the detector plane (x, z) is
analyzed by Fourier transform to obtain the oscillation spectra

Psymðpx; pz;ΩÞ and Pantiðpx; pz;ΩÞ. These spectra respectively
show peaks at frequencies 2kΩ0 and (2k+ 1)Ω0, k 2 N, as
observed in the analysis of the integrated signal GðΩÞ (Fig. 4). The
symmetric and antisymmetric signals are respectively even and
odd with respect to variations of the Stokes parameter S3, and
thus with respect to the quarter waveplate rotation. As a
consequence, their oscillation spectra are respectively purely real
and imaginary.

Figure 7 shows the amplitude of the different peaks of the
oscillation spectra of the projected PAD and PEELD images,
measured in fenchone, camphor and limonene. The three
molecular species clearly show different two-dimensional (2D)
fingerprints which could be used for the analysis of chiral
mixtures. The spectroscopic assignment of the structures
observed on these fingerprints is beyond the scope of this paper.
Let us simply mention that the sign changes in the low-energy
range PEELD can result from vibrational excitation of the ion, as
observed in PECD29,35,36, but also from low-energy electron
scattering. However, one-dimensional (1D) fingerprints are
indeed enough to measure the composition of a multi-
component mixture, offering the opportunity to perform faster
analysis for real-time monitoring. To obtain 1D distributions, we
project the 2D VMI images along the laser propagation direction:

Pðpz; tÞ ¼
R
Pðpx; pz; tÞdx. We calculate the symmetric and

antisymmetric components, Fourier transform them, and finally

get the 1D fingerprints Psymðpz; 2kΩ0Þ and Pantiðpz; ð2kþ 1ÞΩ0Þ.
After determining the 1D fingerprints from pure fenchone and

camphor (left column in Fig. 8), we performed a c-PEELD
measurement in a mixture of these two compounds. We
connected flasks containing enantiopure (+)- and (−)-camphor
and fenchone to the gas jet, and alternatively opened them to
continuously vary the composition of the VMI target. The VMI
images were measured on-the-fly as the quarter waveplate rotated
continuously, with the same parameters as in previous measure-
ments. To extract the time-resolved composition of the samples,
we use a Gabor analysis with a Gaussian filter of 30 s FWHM, and

calculate Psymðpz; 2kΩ0Þ and Pantiðpz; ð2kþ 1ÞΩ0Þ as a function
of the central position of the filter. The symmetric part

Psymðpz; 2Ω0Þ (Fig. 8c) is used to extract the relative proportions
of fenchone and camphor and their contribution to the signal
(Fig. 8e). These contributions take into account differences in
partial pressure and ionization probabilities. The latter could be
normalized out by calibration in pure samples at the same
pressure. The two main frequency components of the antisym-

metric part Pantiðpz;Ω0Þ and Pantiðpz; 3Ω0Þ(Fig. 8c, d) are used to
determine the enantiomeric excess of each species (see Methods).

We started with a situation where both (−)-camphor and
(−)-fenchone were connected to the target tube through partly
open valves. From t= 0 to t ≈ 2′30″ the total signal decreased.
Figure 8e reveals that this was due to a drop of the fenchone
pressure. At t= 2′30″ we increased the (−)-fenchone valve
opening and slightly closed the (−)-camphor valve, increasing the
total signal (Fig. 8a) and the fenchone contribution (Fig. 8b).
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During this phase, the instantaneous enantiomeric excess
measurements give eefenchone=−82 ± 5% and eecamphor=−94 ±
2% (95% confidence interval). At t= 5 min, we switched the
fenchone sample, from (−) to (+)-fenchone. The c-PEELD
measurements clearly detects this transition and shows that it
occurs in about 3 min. From t= 9 min to the end of the
measurement, the enantiomeric excess of fenchone is eefenchone=
91 ± 8%. At t= 10 min, we switched the camphor enantiomer.
Again, the ee measurement tracks the dynamics of this change
and ends up with the right enantiomeric composition. We
observe a continuous decrease of the fenchone pressure from 5
min to the end of the measurement, but this does not affect the ee
measurement. The c-PEELD technique is thus able to track
variations of the composition and ee in a mixture, offering
excellent accuracy and temporal resolution. Note that this
technique is able to distinguish two compounds that have the
same mass, such as fenchone and camphor, which would be
difficult using a mass spectrometer.

Discussion
Photoelectron elliptical dichroism in multiphoton ionization is a
remarkably rich phenomenon. Whereas one-photon PECD scales
linearly with the amount of circular polarization, the PEELD
measured in REMPI can exhibit very abrupt variations with S3.
These variations reflect the competition between linearly and
circularly polarized photons in the photoexcitation process, which
determines the anisotropy of the photoexcited molecular
ensemble. From a fundamental point of view, extrapolating the
linear behavior of PEELD measurements near S3= 0 to S3= 1
provides an interesting physical quantity—the photoelectron
circular dichroism that would be measured by photoexciting
molecules with linear photons and ionizing them with circular
photons—which can be particularly useful to benchmark calcu-
lations of REMPI-PECD32,37,38. In the same spirit, the 3D-PEELD
distributions that we have measured exhibit very characteristic
features, depending on the molecular species, and are certainly
very sensitive probes of the quality of quantum chemistry
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Fig. 8 Real-time analysis of a dynamical camphor-fenchone mixture. The fingerprints Psymðpz; 2Ω0Þ, P
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(+)-fenchone (orange) and (+)-camphor (blue) were recorded using pure samples before the dynamical measurement and are presented in the left
column. At t= 0, two flasks of (−)-fenchone and (−)-camphor were connected to the gas jet. At t= 2′30″, the valve openings were adjusted to increase
the fenchone contribution. At t= 5min, the (−)-fenchone flask was closed and a (+)-fenchone flask was opened. At t= 10min, the (−)-camphor was
closed and a (+)-camphor flask was opened. a Total signal from the gas mixture during the c-PEELD measurement. b Temporal evolution of the 1D
symmetric component at 2Ω0, extracted from a Gabor analysis with a 30 s window. c 1D antisymmetric component at Ω0. d 1D antisymmetric component
at 3Ω0. e Contribution to the total signal and f enantiomeric excess of fenchone (orange) and camphor (blue) retrieved by fitting the symmetric and
antisymmetric components
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calculations in chiral molecules. From a more applied point of
view, continuous PEELD measurements prove to be an extremely
powerful probe of chiral samples. This accuracy results from the
Fourier analysis of the continuously recorded data, in which the
abrupt variations of PEELD with S3 produce characteristic fre-
quency peaks. This analysis does not require quantum-chemical
calculation as it is often the case for ee determination by micro-
wave spectroscopy9. Enantiomeric excesses from mono-
component samples can be determined with accuracies of 0.4%
in 10 min and 5% in 3 s, enabling real-time monitoring. In multi-
component samples, the instantaneous composition can be fol-
lowed, with an accuracy of a few percent and a temporal reso-
lution of 30 s. A remaining point to investigate is the possible
limitations encountered when components with very different
vapor pressures or ionization probabilities need to be identified.
In that case it is probable that scanning the laser wavelength
could provide a way to balance the signals from different species
by optimizing the resonance transitions in the compound giving
the lowest signal. Indeed, the wavelength dependence could
provide additional discrimination, especially if picosecond pulses
with a narrower bandwidth are used. However, even without
exploiting the full dimensionality of the current data, and given
the relative simplicity of the setup and data processing, we believe
that this method could become a standard in analytical chemistry.

Methods
Laser system at CELIA. All experiments (except Fig. 6) were conducted using the
Blast Beat laser system at CELIA consisting of two optically synchronized industrial
ultrafast fiber amplifiers seeded by the same oscillator, each delivering 130 fs pulses
at 1030 nm with 50W average power and a tunable repetition rate from 166 kHz to
2MHz (Tangerine Short Pulse, Amplitude Systemes).

COLTRIMS measurements. The 515 nm laser pulses were focused by a f= 50 cm
lens with a numerical aperture ~0.08 in the interaction chamber of the Cold Target
Recoil Ion Momentum Spectrometer (COLTRIMS, RoentDek GmbH). Enantio-
pure fenchone molecules (Sigma Aldrich) at room temperature were carried under
vacuum by a gas line heated at 80°C into a 30 μm nozzle heated at 120°C. The gas
jet was seeded by 1.0 bar of argon. A 200 μm diameter skimmer, placed 9 mm after
the nozzle, was used to select the most collimated part of the gas jet. The ions were
accelerated towards a set of dual microchannel plates and collected using a delay
line anode, which measured their position and arrival time. The signal was isolated
using RC decouplers, amplified, and a Constant Fraction Discriminator was used to
remove the amplitude dependency before digitalization of the timings. As the

ionization potential of argon (15.76 eV) is much higher than that of fenchone (8.72
eV), no argon ions were detected. The electrons were guided by a homogeneous
magnetic field and accelerated by an electric field towards a set of dual micro-
channel plates (MCPs) and an hexanode. Since the ion signal was dominated by
fenchone, we did not perform any electron-ion coincidence and detected all the
produced electrons. The laser repetition rate was adjusted between 400 kHz and 1
MHz to ensure a constant count rate of 100 kHz on the detector when the ellipticity
was varied, while keeping the same pulse energy. The delay line anodes enable the
full 3D momentum distribution of the ejected photoelectrons to be measured. For
each laser ellipticity, measurements were taken by alternating positive and negative
helicity every 3 × 107 detected electrons, to reach a total number of electrons of 3 ×
108. The total acquisition duration for the data shown in Fig. 1 was less than 1 h.

Velocity map imaging measurements. The laser polarization state was controlled
by a continuously rotating direct-drive stage, and the acquisition was triggered by
the stage to ensure that the absolute phase of the c-PEELD oscillations remained
unchanged from one measurement to the next. The samples were provided by 5
flasks lying in a water bath heated at 40°C and connected to the jet by a 60 cm long
stainless steel tube with 4 mm inner diameter. The tube was heated to 120°C and a
glass fiber filter was used to avoid the formation of droplets in the jet. No seed gas
was used. The continuous gas jet (250 μm nozzle, 40 mm away from a 2 mm
skimmer) was directed towards the interaction zone of the VMI, where a set of
electrodes projected the 3D photoelectron distributions onto a double stack
of MCPs, imaged by a phosphor screen. A S-CMOS camera measured the 2D
images of the projected photoelectron distribution, with 50 ms acquisition time and
20 images per second (no dead time between two images). Each 3D-PEELD map
shown in Fig. 2 was typically recorded in 15 min.

Belfast’s measurements. Measurements at Queen’s University Belfast (Fig. 6)
were conducted using a device dubbed CERSEI (Chiral Electron Removal and
Separation for Enantiomer Identification), which directly measures the number of
electrons emitted forward and backward. Rather than using an electric field to
project the electrons onto a detector, a magnetic field (of around 30 Gauss) is
generated parallel to the laser propagation by two current-carrying coils. This keeps
the photoelectrons confined along the laser axis so that the direction in which they
drift is determined by their initial emission angle—forward if less than 90°,
backward if greater than 90°. The number of electrons in these two groups can then
be counted separately in two channel electron multipliers (CEMs) via the stereo-
detection scheme shown in Fig. 9. In the present experiment, the detectors were
operating in counting mode, with a count rate below 0.1 event per laser pulse to
avoid saturation effects. The measurements speed could be significantly increased if
MCPs were used instead.

As the detectors need to be offset from the laser beam, two pairs of deflection
plates are used to deflect the electrons into the CEMs using an E × B field. The
average potential of these plates is positive so that the electrons are accelerated as
well as deflected. This ensures that the trajectories of all the electrons emitted in
each direction lie within the solid angle of their respective detector, regardless of
the initial emission angle or energy.

Deflection plate
Deflection plate

Forward
CEM

Laser

Gas in

E
E

B

Backward
CEM

Fig. 9 Schematic of the Belfast CERSEI instrument used to directly measure PEELD. Femtosecond laser pulses were focused into a vacuum chamber
through a series of apertures into an effusive gas jet. The gas jet emerged from a capillary in one of the grounded plates which sandwich the interaction
region. A pair of current-carrying coils is used to generate a magnetic field (B) of around 30 Gauss parallel to the laser beam. As a result, any
photoelectrons emitted from multiphoton ionization of the gas spiral along the field lines allowing those emitted in the forward (blue) and backward (red)
directions to spatially separate. Pairs of parallel deflection plates (one plate of the pair is cut away for clarity in the figure) are used to generate an electric
field (E) which separates each bunch of electrons from the laser and directs them onto separate channel electron multipliers (CEM). The electrodes and
simulated trajectories were produced by SIMION 8.0 charge particle optics software39. The CEM detectors are separated by 130mm and the instrument
sits inside a vacuum chamber with an outer footprint of 300 × 200 × 150mm
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The target molecules were introduced into the interaction region via a room
temperature effusive gas jet which emerged from a capillary in one of the plates
comprising the interaction region. For the measurements, a Spectra Physics Spirit
HE laser generating 300 fs pulses at repetition rate of 1 MHz was coupled to the
device. Second harmonic pulses at 520 nm and an energy of 1.8 μJ were focused with
a 20 cm focal length lens into the center of the gas jet to produce peak intensities
approaching 1012W cm−2. The small chamber was pumped by a 200 L s−1

turbopump to less than 10−7mbar which increased to around 10−6mbar during
measurements.

The laser polarization state was controlled by the angle of a quarter waveplate
placed just before the focussing lens. During measurements, data were acquired for
30 s at 10° intervals of the waveplate angle. In order to account for any inequality in
the detection efficiency of the two CEMs and small drifts of laser power or target
density, the value of G was calculated using two measurements corresponding to
polarization states with the same ellipticity but opposite helicity
GðtÞ ¼ 1

2 GrawðtÞ � Grawðt þ T0=2Þð Þ.

Error analysis in c-PEELD measurements. We first analyze the statistical error in
the determination of the enantiomeric excess as a function of the measurement
duration. We cut a 10 min measurement in (+)-fenchone into successive slices by
applying a Gaussian filter of duration τ (FWHM). We measure the enantiomeric
excess from each slice, and perform a statistical analysis of the results. Figure 10a
shows the 95% confidence interval on a measurement as a function of its duration.
The enantiomeric excess can be determined with a 5% accuracy in 3 s. Increasing
the measurement duration to 30 s enables reaching accuracies in the 2% range, but
the uncertainty saturates after that. This means that to further improve the

measurements, we should repeat it several times and average the results. Figure 10b
shows the results of this procedure. The total measurement time is 10 min but the
measurement is split into a decreasing number of submeasurements of increasing
duration. The 95% error bar remains below 0.5% whatever the subset chosen, but
choosing a large number of short submeasurements is favorable, enabling a 0.3%
accuracy to be reached. Note that the symmetrization procedure GðtÞ ¼
1
2 ðGrawðtÞ � Grawðt þ T0=2ÞÞ is absolutely not necessary for the chiral analysis: the
artifacts in the detection appear as other frequency components in the analyzed
signal, such that the same results are found using G(t) and Graw(t), with the same
accuracy.

Beyond this statistical analysis, one can wonder about the origin of systematic
errors in the measurement. First, a systematic error in the ee measurement by c-
PEELD can be introduced by the calibration step. The enantiomeric excesses are
determined with respect to a reference sample, whose enantiomeric purity must be
known accurately. Furthermore, the reference measurement will introduce an
inherent uncertainty but this can be minimized by performing a very long
acquisition. Second, since the enantiomeric excess is determined by the
measurement of a modulation amplitude, the linearity of the detector is an
important parameter. To estimate its impact on the measurements, we performed a
10 min acquisition in enantiopure (+)-fenchone, and increased the voltage on the
microchannel plates by 20 V every 30 s, then decreased it again. The level of the
detected signal varied by two orders of magnitude during this procedure. We ran a
Gabor analysis of the results using a Gaussian window with 3 s FWHM, and
measured the temporal variation of the peak I3Ω0

to determine the instantaneous
enantiomeric excess (Fig. 10c, d). A systematic error is clearly present over the first
3 min: the ee values are systematically lower than the actual value. However, the
discrepancy is not large, around 5%, i.e., within most statistical error bars. This
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means that for the lowest signal value, a new calibration of Iref3Ω0
should be

performed. This result demonstrates however that ee can be faithfully measured
over more than one order of magnitude of signal variations, such as the ones that
could result from molecular density variations. The other important source of
statistical error is drifts of the laser intensity. As we have seen in the previous
section, PEELD is indeed very sensitive to laser intensity. This means that once the
calibration is done, the laser intensity should be kept constant. Fiber laser systems
are intrinsically very stable, but they deliver a high average power which has to be
dealt with adequately in order to avoid thermal drifts of the beam properties.

Multi-component mixture analysis. To obtain 1D distributions, we project the

2D VMI images along the laser propagation direction: Pðpz ; tÞ ¼
R
Pðpx ; pz ; tÞdx.

We calculate the symmetric and antisymmetric components, Fourier transform

them, and finally get the 1D fingerprints Psymðpz ; 2kΩ0Þ and Pantiðpz ; ð2kþ 1ÞΩ0Þ.
Once the fingerprints from pure compounds have been determined, we perform a
c-PEELD measurement in a mixture of two compounds A and B to extract

Psym

mixðpz ; 2kΩ0Þ and Panti

mix ðpz ; ð2kþ 1ÞΩ0Þ. A least-square algorithm is used to
minimize the function

f ¼ Psym

mixðpz ; 2Ω0Þ � aPsym

A ðpz ; 2Ω0Þ � ð1� aÞPsym

B ðpz ; 2Ω0Þ
���

���
2

þα4 Psym

mixðpz ; 4Ω0Þ � aPsym

A ðpz ; 4Ω0Þ � ð1� aÞPsym

B ðpz ; 4Ω0Þ
���

���
2

þα6 Psym

mixðpz ; 6Ω0Þ � aPsym

A ðpz ; 6Ω0Þ � ð1� aÞPsym

B ðpz ; 6Ω0Þ
���

���
2

þ:::

ð1Þ

where a and (1− a) are the relative contributions of components A and B to the
ionization signal, and αj are coefficients used to adjust the relative weight of the
different frequency components jΩ0, j 2 2N>1. In the present case we only used the
first Fourier peak and set all αj to zero. Getting a calibration of the signal level with
respect to the pressure can be done separately with pure compounds, so that in the
mixture the fingerprint measurement of a (and hence 1− a) and the total inte-
grated level provide absolute measurement of the partial pressures of A (and B), in
a non enantiomer-specific manner at this stage.

Once the contributions of the two compounds are determined, the projected
PEELD signal can be used to measure the enantiomeric excesses of the two
compounds eeA and eeB by minimizing the function:

g ¼ Panti

mix ðpz ;Ω0Þ � a:eeA:P
anti

A ðpz ;Ω0Þ � ð1� aÞ:eeB:P
anti

B ðpz ;Ω0Þ
���

���
2

þβ3 Panti

mixðpz ; 3Ω0Þ � a:eeA:P
anti

A ðpz ; 3Ω0Þ � ð1� aÞ:eeB:P
anti

B ðpz ; 3Ω0Þ
���

���
2

þβ5 Panti

mixðpz ; 5Ω0Þ � a:eeA:P
anti

A ðpz ; 5Ω0Þ � ð1� aÞ:eeB:P
anti

B ðpz ; 5Ω0Þ
���

���
2

þ:::

ð2Þ

where βj are coefficients used to adjust the relative weight of the different frequency
components jΩ0, j 2 2N>1 � 1. Here we set a weight of 10 to β3 and set higher
components to zero, to put emphasis on the dominant peak in the signal, which
was less sensitive to noise. The minimization procedure can be sequential, first
determining a by minimizing f and then eeA,B by minimizing g, or globally through
the minimization of a weighted sum of f and g. In the present case we obtained
similar results with the two procedures. The partial pressure of each enantiomer of
each compound is then accessible using the pressure calibration mentioned above.

Data availability
The datasets generated and analyzed during the current study are available from
the corresponding author on reasonable request.

Received: 23 July 2018 Accepted: 9 November 2018

References
1. Vetter, W. & Schurig, V. Enantioselective determination of chiral

organochlorine compounds in biota by gas chromatography on modified
cyclodextrins. J. Chromatogr. A 774, 143–175 (1997).

2. Cireasa, R. et al. Probing molecular chirality on a sub-femtosecond timescale.
Nat. Phys. 11, 654–658 (2015).

3. Beaulieu, S. et al. Attosecond-resolved photoionization of chiral molecules.
Science 358, 1288–1294 (2017).

4. Holzwarth, G., Hsu, E. C., Mosher, H. S., Faulkner, T. R. & Moscowitz, A.
Infrared circular dichroism of carbon-hydrogen and carbon-deuterium
stretching modes. Observations. J. Am. Chem. Soc. 96, 251–252 (1974).

5. Nafie, L. A., Keiderling, T. A. & Stephens, P. J. Vibrational circular dichroism.
J. Am. Chem. Soc. 98, 2715–2723 (1976).

6. Batista, J. A. M. Jr, Blanch, E. W. & da Silva Bolzani, V. Recent advances in the
use of vibrational chiroptical spectroscopic methods for stereochemical
characterization of natural products. Nat. Prod. Rep. 32, 1280–1302 (2015).

7. Guo, C. et al. Determination of enantiomeric excess in samples of chiral
molecules using Fourier transform vibrational circular dichroism
spectroscopy: simulation of real-time reaction monitoring. Anal. Chem. 76,
6956–6966 (2004).

8. Mower, M. P. & Blackmond, D. G. In-situ monitoring of enantiomeric excess
during a catalytic kinetic resolution. ACS Catal. 8, 5977–5982 (2018).

9. Patterson, D. & Schnell, M. New studies on molecular chirality in the gas
phase: enantiomer differentiation and determination of enantiomeric excess.
Phys. Chem. Chem. Phys. 16, 11114–11123 (2014).

10. Ritchie, B. Theory of the angular distribution of photoelectrons ejected from
optically active molecules and molecular negative ions. Phys. Rev. A 13,
1411–1415 (1976).

11. Böwering, N. et al. Asymmetry in photoelectron emission from chiral molecules
induced by circularly polarized light. Phys. Rev. Lett. 86, 1187–1190 (2001).

12. Lux, C. et al. Circular dichroism in the photoelectron angular distributions of
camphor and fenchone from multiphoton ionization with femtosecond laser
pulses. Angew. Chem. Int. Ed. 51, 5001-5005 (2012).

13. Lehmann, C. S., Ram, N. B., Powis, I. & Janssen, M. H. M. Imaging
photoelectron circular dichroism of chiral molecules by femtosecond
multiphoton coincidence detection. J. Chem. Phys. 139, 234307 (2013).

14. Nahon, L., Garcia, G. A. & Powis, I. Valence shell one-photon photoelectron
circular dichroism in chiral systems. J. Electron Spectrosc. Relat. Phenom. 204,
322–334 (2015).

15. Hadidi, R., Bozanic, D., Garcia, G. & Nahon, L. Electron asymmetries in the
photoionization of chiral molecules: possible astrophyiscal implications. Adv.
Phys. X 3, 833 (2018).

16. Patterson, D., Schnell, M. & Doyle, J. M. Enantiomer-specific detection of
chiral molecules via microwave spectroscopy. Nature 497, 475–477 (2013).

17. Patterson, D. & Doyle, J. M. Sensitive chiral analysis via microwave three-wave
mixing. Phys. Rev. Lett. 111, 023008 (2013).

18. Shuber, V. A., Schmitz, D., Patterson, D., Doyle, J. M. & Schnell, M.
Identifying enantiomers in mixtures of chiral molecules with broadband
microwave spectroscopy. Angew. Chem. Int. Ed. Engl. 53, 1152–55 (2014).

19. Beaulieu, S. et al. Photoexcitation circular dichroism in chiral molecules. Nat.
Phys. 14, 484–489 (2018).

20. Nahon, L. et al. Determination of accurate electron chiral asymmetries in
fenchone and camphor in the VUV range: sensitivity to isomerism and
enantiomeric purity. Phys. Chem. Chem. Phys. 18, 12696–12706 (2016).

21. Kastner, A. et al. Enantiomeric excess sensitivity to below one percent by using
femtosecond photoelectron circular dichroism. ChemPhysChem 17,
1119–1122 (2016).

22. Miles, J. et al. A new technique for probing chirality via photoelectron circular
dichroism. Anal. Chim. Acta 984, 134–139 (2017).

23. Fanood, M.M.R., Ram N.B., Lehmann C.S., Powis, I. & Janssen, M.H.M.
Enantiomer-specific analysis of multi-component mixtures by correlated
electron imaging-ion mass spectrometry. Nat. Commun. 6, 7511 (2015).

24. Ullrich, J. et al. Recoil-ion and electron momentum spectroscopy: reaction-
microscopes. Rep. Progress. Phys. 66, 1463 (2003).

25. Eppink, A. T. J. B. & Parker, D. H. Velocity map imaging of ions and electrons
using electrostatic lenses: application in photoelectron and photofragment ion
imaging of molecular oxygen. Rev. Sci. Instrum. 68, 3477 (1997).

26. Wollenhaupt, M., Lux, C., Krug, M. & Baumert, T. Tomographic
reconstruction of designer free-electron wave packets. ChemPhysChem 14,
1341–1349 (2013).

27. Lux, C., Wollenhaupt, M., Sarpe, C. & Baumert, T. Photoelectron circular
dichroism of bicyclic ketones from multiphoton ionization with femtosecond
laser pulses. ChemPhysChem 16, 115–137 (2015).

28. Powis, I. Photoelectron circular dichroism in chiral molecules, Advances in
Chemical Physics (ed. Rice, S. A.) 267–329 (John Wiley & Sons, Inc., Hoboken,
New Jersey, USA) (2008).

29. Beaulieu, S. et al. Universality of photoelectron circular dichroism in the
photoionization of chiral molecules. New J. Phys. 18, 102002 (2016).

30. Nahon, L., Garcia, G. A., Harding, C. J., Mikajlo, E. & Powis, I. Determination
of chiral asymmetries in the valence photoionization of camphor enantiomers
by photoelectron imaging using tunable circularly polarized light. J. Chem.
Phys. 125, 114309 (2006).

31. Beaulieu, S. et al. Multiphoton photoelectron circular dichroism of limonene
with independent polarization state control of the bound-bound and bound-
continuum transitions. J. Chem. Phys. 149, 134301 (2018).

32. Goetz, R. E., Isaev, T. A., Nikoobakht, B., Berger, R. & Koch, C. P. Theoretical
description of circular dichroism in photoelectron angular distributions of
randomly oriented chiral molecules after multi-photon photoionization. J.
Chem. Phys. 146, 024306 (2017).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07609-9 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:5212 | DOI: 10.1038/s41467-018-07609-9 | www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


33. Tia, M. et al. Observation of enhanced chiral asymmetries in the inner-shell
photoionization of uniaxially oriented methyloxirane enantiomers. J. Phys.
Chem. Lett. 8, 2780–2786 (2017).

34. Kastner, A. et al. Intermediate state dependence of the photoelectron circular
dichroism of fenchone observed via femtosecond resonance-enhanced multi-
photon ionization. J. Chem. Phys. 147, 013926 (2017).

35. Garcia, G. A., Nahon, L., Daly, S. & Powis, I. Vibrationally induced inversion
of photoelectron forward-backward asymmetry in chiral molecule
photoionization by circularly polarized light. Nat. Commun. 4, 2132 (2013).

36. Rafiee Fanood, M. M. et al. Intense vibronic modulation of the chiral
photoelectron angular distribution generated by photoionization of limonene
enantiomers with circularly polarized synchrotron radiation. Chemphyschem
19, 921–933 (2018).

37. Artemyev, A. N., Müller, A. D., Hochstuhl, D. & Demekhin, P. V.
Photoelectron circular dichroism in the multiphoton ionization by short laser
pulses. I. Propagation of single-active-electron wave packets in chiral pseudo-
potentials. J. Chem. Phys. 142, 244105 (2015).

38. Müller, A. D., Artemyev, A. N. & Demekhin, P. V. Photoelectron circular
dichroism in the multiphoton ionization by short laser pulses. ii. three- and four-
photon ionization of fenchone and camphor. J. Chem. Phys. 148, 214307 (2018).

39. Manura, D.J., Simion 8.0.4. Scientific Instrument Services Inc., Idaho National
Laboratory (2008).

Acknowledgements
We thank R. Bouillaud, N. Fedorov, and L. Merzeau for technical assistance, and B.
Fabre, L. Nahon, and B. Pons for fruitful discussions. This project has received funding
from the European Research Council (ERC) under the European Unions Horizon 2020
research and innovation program no. 682978 - EXCITERS, and 654148 - LASERLAB-
EUROPE. We acknowledge the financial support of the French National Research
Agency through ANR-14-CE32-0014 MISFITS and from the Région Nouvelle Aquitaine
through RECHIRAM. Queen's University Belfast (QUB) acknowledges the support of
EPSRC grant no. EP/M001644/1 and the Royal Society’s Paul Instrument Fund grant no.
PI170043. C.B. acknowledges the support of EPSRC.

Author contributions
Y.M. conceived the study. A.C., E.B., C.M.M.B., D.D., S.P., S.R., J.G., V.B., and Y.M.
carried out the experiments at CELIA. C.M.M.B., J.M. and J.B.G. carried out the
experiments at QUB. A.C., E.B., CM.M.B., J.B.G., V.B., and Y.M. analyzed the data. Y.M.
wrote the manuscript with input from all authors.

Additional information
Competing interests: Y.M. declares the following competing interests: patent
FR1855683 filed by CNRS and Université de Bordeaux. The remaining authors declare
no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07609-9

14 NATURE COMMUNICATIONS |          (2018) 9:5212 | DOI: 10.1038/s41467-018-07609-9 | www.nature.com/naturecommunications

http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Real-time determination of enantiomeric and isomeric content using photoelectron elliptical dichroism
	Results
	Photoelectron elliptical dichroism
	Enantiomeric excess measurement by continuous photoelectron elliptical dichroism
	Analysis of multi-component samples

	Discussion
	Methods
	Laser system at CELIA
	COLTRIMS measurements
	Velocity map imaging measurements
	Belfast’s measurements
	Error analysis in c-PEELD measurements
	Multi-component mixture analysis

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




