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SAILING SITE INVESTIGATION THROUGH CFD MODELLING OF 
MICROMETEOROLOGY 

M. Le Guellec,Fluidyn FRANCE, France, malo.leguellec@fluidyn.com 
Y.Amice,DépartementMétéorologie - Institut de Recherche de l’ÉcoleNavale, France, yann.amice@gmail.com; 

To have a prior accurate knowledge of the local wind currents on a water body is of crucial importance for the 
performance of the sailing team. In the recent years, Computational Fluid Dynamics (CFD) has proven itself a 
powerful tool in atmospheric modelling. By solving the Navier-Stokes equations and with correct description of 
the atmospheric boundary layer and turbulence at the domain boundaries, the local influences of the shore 
topography and the obstacles on the wind flows can be investigated in detail. Two examples of the use of CFD 
(Fluidyn PANWIND software) are presented here. The first one shows the coastal wind analysis of 2012 
Olympic sailing site of Weymouth, UK. The local wind effects due to the harbour and hill have been 
determined and compared to observations of wind velocity and direction for several wind conditions.The 
second example required to model the wind over the training base of the French Sailing Teamin Brest, France. 
This landlocked bay, surrounded by two steep hills and linked to the Atlantic Ocean by a strait, emphasizes the 
need for a CFD simulation of the wind which provided the patterns of wind around the racing areacompared 
with empirical observations.  

NOMENCLATURE 

C1 k-εturbulence model constant  
C2 k-εturbulence model constant  
CS dimensionless turbulence production factor  
CE dimensionless turbulence viscosity constant 

for the k-ε model 
Cp specific heat of air (J g-1 K-1) 
Fg/p force due to: (g) gravitational acceleration, (p) 

interaction with droplets/particles (N m-2) 
g gravitational acceleration (9.8 m s-2) 
G turbulence production rate by shear = σ∇u (m2 

s-3) 
hm specific enthalpy of species m (J kg-1) 
I specific internal energy (J kg-1) 
J heat flux vector (W m-2) 
k turbulent kinetic energy per unit mass (m2 s-2) 
kc thermal conductivity (W m-1 K-1) 
L Monin-Obukhov turbulent length scale (m) 
Qh

 rate of specific internal energy gain due to (h) 
surface energy budget (J kg-1 s-1) 

Ri Richardson number, dimensionless 
t time since the start of the release (s) 
T temperature (K) 
u fluid velocity (m s-1) 
u* surface friction velocity (m s-1) 
v wind speed (m s-1) 
Wp Turbulence production due to interaction with 

particles (m2 s-3) 
z height (m) 
z0 ground roughness length(m) 

Greek letters 
ρ density of air  
µ primary (shear) viscosity of fluid (kg m−1 s−1) 
λ secondary (bulk) viscosity of fluid (kg m−1 s−1) 
σ Newtonian viscous stress tensor (N m-2) 
ε dissipation of turbulent kinetic energy (m2 s-3) 

ζ Monin-Obukhov similarity variable = z/L, 
dimensionless 

κ Von Karman constant = 0.41, dimensionless 
θ potential temperature (K) 
θ* temperature scale 
σh turbulent Prandtl number, dimensionless 
σk dimensionless turbulence model constant for the 

k equation  
σε dimensionless turbulence model constant for the 

ε equation  
Ψ1/2(ς) similarity profiles 
νt turbulent viscosity (m−1 s−1) 
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∂ρ௨
∂௧    ∇•ሾρݑݑ   σሿ ൌ  ∇ܲ  ܨ௦   ܨ   ܨ

where σ is Newtonian viscous stress tensor (σ= 
µ[∇u+(∇u)T]+λ(∇•u)i,µ, λ = first and second 
coefficients of viscosity, λ = -2/3µ; T = matrix 
transpose; i = unit dyadic - product of vectors).  
The energy conservation equation is: 

∂ρܫ
ݐ∂  ∇•ሾρܫ ݑ  ሿܬ   ൌ  ݑ•∇  ρε  ܳ 

Whereܫ is the specific internal energy, ܬis theheat flux 
= kc∇.T + ρ∑[hm∇(ρm/ρ)], ܳis the rate of specific 
internal energy gain due surface energy budget. 

2.2 GEOMETRY AND MESH 

(a) 

(b) 

Figure 3: Weymouth unstructured mesh at ground level 
((a) full domain (b) nested domain) 

For Weymouth case, the topography of the site was 
collected from Landform Profile Plus data on a global 
domain of 24 km * 25 km. This data has a 15–25 
centimetre root mean square error (RMSE) accuracy 
and a grid resolution of 2 metres to 10 meters - 
sufficiently detailed to represent key terrain 
features. The harbour and jetties were modelled in finer 
details in an embedded domain of dimensions 5 km * 
10 km. The finest cell size of the unstructured mesh in 
the harbour is 12 m and the averaged size dimension in 

the sailing area is 25 m (see figure 3) resulting in a total 
of 2 million cells. Vertical mesh gets a 2m resolution 
from ground level to 12m of altitude. The vertical mesh 
is then coarser till until 200 m high.  

A large main domain of 43km by 32km was used for 
Brest’s Roadstead case. A first nested domain of 30 
km*28 km has been defined. Two smaller embedded 
domains with an area around 80 km² were used in order 
to evaluate accurately the wind flows as shown in figure 
2.The topography was extracted from The NASA
Shuttle Radar Topographic Mission (SRTM) who has 
provided digital elevation data (DEMs) for over 80% of 
the globe. The SRTM data is available as 3 arc second 
(approx. 90m resolution) Digital Elevation Model. 
The finest cell size of the unstructured mesh in the two 
nested domains is 30m and the averaged size dimension 
in the sailing area is 50m resulting in a 2.3 million cells. 
Vertical mesh gets a 3m resolution from ground level to 
15m of altitude. The vertical mesh is then coarser until 
200 m high.  

2.3 TURBULENCE MODEL, BOUNDARY AND 
INITIAL CONDITIONS 

The standard k-ε model has been used throughout the 
simulations.  
The k-ε model is a two-equation linear eddy viscosity 
model. The PANACHE implementation of this model is 
derived from the standard high-Re form with 
corrections for buoyancy and compressibility. It solves 
the transport equations for turbulent kinetic energy, k, 
and its dissipation rate, ε. The incompressible versions 
of the equations are: 

( ) νν ε
σ

 ∂
+ ∇ ⋅ = ∇ ⋅ + ∇ + + − ∂  t

t
l k b

k

k k k P PU

( ) ( )ε ε
ε

νε εε ν ε ε
σ

 ∂
 + ∇ ⋅ = ∇ ⋅ + ∇ + + −   ∂  

1 2t
t

l k b bC P C P C
k

U

where, Pk=ν γ ∇& :t U , the mechanical production rate
of k 

 Pb=ν β
σ
∇g�

t
h

T
, the buoyancy production rate

of k 
σk= Prandtl number for turbulent diffusion of k 
σε= Prandtl number for turbulent diffusion of ε 
µt= turbulent eddy diffusivity 

 Cs1,Cs2=k-ε turbulence model dimensionless 
constants 

The eddy diffusivity is computed using: 

ν୲ ൌ CE כ ݇ଶ
ε
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Ambient mean wind speed and air temperature profiles 
are specified within the model domain and are 
represented by logarithmic functions, such that: ݒሺݖሻ  ൌ ௨כ

κ
ሾ݈݊ሺ ௭௭ሻ Ψଵሺςሻሿ  

θሺݖሻ  ൌ σ θכ
κ

ሾ݈݊ሺ ௭௭ሻ Ψଶሺςሻሿ
Whereθ* = temperature scale; Ψଵሺςሻ and Ψଶሺςሻ = 
similarity profile.  
The surface friction velocity, כݑ, the temperature scale 
θ*, and the Monin-Obukhov length, L are related by: L 
= u*2T / (g κθ*)and θ* = Qh / (ρCp u*).
The micrometeorological parameters כݑ, θ*, and L are 
evaluated for different atmospheric stability classes. 
They have been evaluated for neutral conditions.  

In this study, the roughness lengthhas been chosen 
equal to 0.001m (typical of water body). The roughness 
length for the land has been chosen equal to 0.4m. 

2.4 SIMULATION AND SOLVER PARAMETERS 

In the frame of this study, the solver is a pressure-based 
fully implicit segregated method on unstructured 
meshes. It is well suited for flows that are steady or 
quasi-unsteady (slowly changing). 
It solves all governing equations separately. It uses an 
iterative procedure for both steady state and transient 
cases. SIMPLE schemeis used for pressure 
computation. It uses a formulation valid for flows at all 
speeds and for any thermodynamic model. 

3 RESULTS 

3.1 BREST ROADSTEAD CASE ANALYSIS 

3.1.1. Climatology 

The dominant flux in all seasons comes from west to 
west-southwest even if a few nuances exist depending 
on the season. The most significant factor is the south 
pathwayof the low pressure zone. During winter, 
stronger west or southwest winds are usually observed 
and frequent disturbances which impact the Atlantic 
coast. 
During the summer, this scheme remains relevant but 
strengthening anti-cyclonic depression requires a more 
northern flow, which allows the Atlantic coast to 
sample light winds and a more conventional summer 
time. 
The North Atlantic Oscillation (NAO) is 
a climatic phenomenon in the North Atlantic Ocean of 
fluctuations in the difference of atmospheric pressure at 
sea level between the Icelandic low and the Azores high 
(see Figure 4). Through east-west oscillation motions of 
the Icelandic low and the Azores high, it controls the 
strength and direction of westerly winds across the 
North Atlantic. 

Figure 4: The North Atlantic Oscillation (NAO) is 
a climatic phenomenon in the North Atlantic Ocean - L 
: Low pressure area in Iceland - H: High pressure area 
in Azores and Northern Africa 

3.1.2. Local effect of terrain on the wind flows 

The results of the modelling focus on the wind direction 
modification due to the topography around the sailing 
area. 
The wind directions areSW (225°) and E(90°) and the 
simulations were done for a wind speed of 10 m/s at a 
height of 10m for both directions.  
In Figure 5, the white colour arrows and the pink colour 
contours represent a deviation greater than +15° from 
the mean direction and the black colour arrowsand the 
blue colour contours indicate a deviation greater than -
15°. All the views are voluntarily schematic for an easy 
understanding of the wind fields in the area by non-
specialist people. 

Figure 5: Wind deviation in case of SW conditions 

The wind flow is channelled through the axis of the 
strait, exceptwhere a little deviation is observednear the 
tip of Spanish peninsula Quernel. The flow is divided in 
a West-Southwest and a South-Southwest part when 
reaching the peninsula ofPlougastel (see figure 6). 
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