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An accurate implementation of the compressibility terms in the equation of state

in a low order pressure gradient scheme for sigma coordinate ocean models

Patrick Marsaleix a,⇑, Francis Auclair c, Claude Estournel a, Cyril Nguyen b, Caroline Ulses c

In a previous study, the authors studied a low order pressure gradient force (PGF) scheme referred to as 
the Primitive-Modified scheme, that appears to be equivalent to the Pressure-Jacobian PGF (Lin, 1997). The 
scheme was successfully tested on the seamount experiment using a simplified equation of state (EOS). 
Yet, a complete equation of state, including compressibility effect, can raise a serious problem of accu-
racy. A new implementation is thus proposed in the present paper. The scheme is rewritten using a 
(numerically equivalent) geopotential formulation. The PGF truncation errors are removed by computing

the EOS compressibility terms with potential temperature and salinity interpolated on a suitable geopo-
tential level. The so-called Equivalent Geopotential Formulation (EGF) method is compared to the Finite-
Volume approach proposed by Adcroft et al. (2008).

1. Introduction

Marsaleix et al. (2009) (hereafter M09) present a low order

pressure gradient force (hereafter PGF) scheme referred to as the

‘‘Primitive Modified’’ (hereafter PM) scheme. We will see in the fol-

lowing that this scheme is equivalent to the Pressure-Jacobian PGF

(Lin, 1997). At first sight the order of the PM scheme is too low to

be really appropriate for ocean modelling. As a matter of fact, it

does not pass the academic test of an ‘‘ocean at rest’’ unless the

density field is constant, when on the other hand the wide spread

Standard-Jacobian PGF exactly cancels for a density profile linear in

z (Shchepetkin and McWilliams, 2003, hereafter SM03). However

the authors more specifically retained two arguments in favour

of the PM scheme.

First of all the discrete form used for the hydrostatic pressure is

consistent with the conservation property of tracer advection and

diffusion schemes, generally adopted by up-to-date ocean models.

According to M09, the tracer conservation property naturally leads

to consider that discrete values of potential temperature and salin-

ity (hereafter h and S) represent averaged values of ‘‘true’’ (h, S)

fields over the volume of cell boxes. Assuming this formulation

of the discrete (h, S) fields and using a simplified equation of state

(neglecting non-linearity and compressibility), M09 show that the

discrete pressure at the upper and lower facets of the C-grid cell

boxes is exact if the hydrostatic integral of the sea water density

is computed with the ‘‘rectangular’’ method. Along these lines,

M09 show that a substantial part of the initial PGF errors found

in sigma coordinate models is cancelled if the initial (h, S) discrete

fields are obtained by averaging the a priori true fields over the cell

boxes volumes.

The second argument is the particular form of the hydrostatic

correction term used to balance the pressure variation induced

by the slope of grid levels. This term notably appears in sigma coor-

dinate models or, more generally, when the grid levels are not

strictly horizontal. In the following, the subscript s will refer to a

differentiation along a constant level in the topography-following

coordinate system and the subscript z to a differentiation along a

constant geopotential level. Depending on models, a possible con-

tinuous formulation for the slope correction term is gq0@z
@x

�
�
s
. As far

as the C-grid is concerned, the density anomaly q0 is approximated

by the average of the discrete density values bounding the momen-

tum equation grid node. Avoiding the straightforward centred

average of Janjic (1977), the specificity of the PM scheme is to

use a weighted average depending on the vertical size of cell boxes.

M09 show that doing so enforces the accuracy of the bottom pres-

sure torque. In case of strong interaction between the current and

the bathymetry, the bottom pressure torque is actually an impor-

tant mechanism of the depth-averaged flow equilibrium (Mertz

andWright, 1992). The coastal zone and the well-known seamount

experiment are obviously particularly concerned by this issue. In

the case of the seamount experiment, revisited by numerical
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studies dedicated to the PGF accuracy, the errors of the second kind

are rather expectedly responsible for the long term growth of erro-

neous currents.

In their previous study, the authors used a simplified pressure-

independent equation of state. Yet, the pressure dependent terms

of the equation of state introduce an important and non-linear

dependency of the sea water density to the depth. Thus, it is a po-

tential source of PGF errors in terrain following coordinate models.

In order to solve this problem, modellers have proposed different

methods. A classical technique consists in subtracting a back-

ground vertical profile of density (Mellor et al., 1994) from the

3D density field before computing the PGF. Another one, suggested

by SM03, consists in removing from the equation of state the terms

that depend on z only. Another option is to maintain some consis-

tency between the accuracy of the PGF and the non-linearity of the

stratification by using a high order PGF scheme. Recently, Adcroft

et al. (2008) have proposed a Finite Volume approach. In this meth-

od, the PGF involves the computation of the integral of the pressure

over the edges of the momentum cell boxes. Provided that a trac-

table equation of state has been chosen, this integral can be calcu-

lated analytically. Until now, we may consider that Adcroft et al.

(2008) proposed the most sophisticated, possibly accurate, method

to deal with the compressibility of sea water.

Along these lines, the case of the Pressure-Jacobian PGF is partic-

ularly relevant since (as shown in the following) its accuracy ap-

pears to be quite sensitive to the pressure-dependent terms of

the equation of state. On the other hand, the objective of the pres-

ent study is not to focus on a particular PGF scheme but to propose

an original and simple method in order to reduce the PGF errors re-

lated to the compressibility of sea water. We will see that this

method is largely independent of the chosen PGF scheme. If the

Pressure-Jacobian PGF is naturally considered, since it perfectly

evidences the benefit of an accurate treatment of the compressibil-

ity of sea water, the present study will also consider other well-

known PGF schemes.

Our method, which will be detailed in the following, can be

summarized as follows (see also Fig. 1). A first step consists in

rewriting the PGF using a (numerically equivalent) geopotential

formulation inspired from SM03. A geopotential level of reference

is then identified, on which the (h, S) dependent parameters of the

sea water density problem are interpolated. The equation of state

is then calculated in this geopotential frame. The PGF is finally

computed.

As our method also intends to be EOS independent, this study

considers several equations of state, including the one recom-

mended by the most recent TEOS10 report (IOC, SCOR and IAPSO,

2010). Comparisons with the modern approach of Adcroft et al.

(2008) will be also presented.

The paper is organized as follows: we first present the several

PGF schemes that will be used to test our method. For each of

them, we suggest an alternative geopotential formulation, numer-

ically equivalent to the usual discretization (as far as the potential

density is concerned), but offering a straightforward opportunity to

solve the problem of the PGF accuracy related to the compressibil-

ity terms of the equation of state. The latter is exposed through the

examination of the EOS proposed by Mellor (1991). Practical solu-

tions to correctly implement the compressibility effect are then

presented in the case of several EOS (Mellor, 1991; Wright, 1997;

McDougall et al., 2003). We compare their respective performance

in the case of the seamount experiment. We also compare the so-

called Equivalent Geopotential Formulation (EGF) method to the Fi-

nite Volume approach of Adcroft et al. (2008).
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Fig. 1. Three implementations of the Equivalent Geopotential Formulation approach for the Density-Jacobian. The density anomaly is interpolated on the geopotential level of

reference as in SM03 (a). First, the temperature and the salinity are interpolated on the geopotential level of reference and then the Mellor (1991) EOS is computed (b). First,

the coefficients of the Wright (1997) or the McDougall et al. (2003) EOS are computed on the tracer grid nodes and then interpolated on the geopotential level of reference,

where the density anomaly is finally computed (c).
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2. Presentation of different PGF schemes

We recall that the PGF is not, as such, the centre of interest of

this study. We consequently do not focus on a particular PGF

scheme. Several schemes are in fact considered with the aim of evi-

dencing the benefit of a new method for the treatment of the

depth-dependent terms of the equation of state. We chose to deal

with low order PGF schemes, easily implementable in an ocean

model. Other schemes could have been chosen without changing

the principle of our method.

2.1. Janjic (1997) scheme and its modified M09 version

The PGF scheme of models using a topography-following coor-

dinate system can be formulated as:

�
1
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� �

ð1Þ

where p is the pressure, f the free surface elevation, q0 a constant

density of reference, q0 ¼ q� q0 with q the density of sea water

and p0 a hydrostatic pressure anomaly related to the density anom-

aly q0. The Janjic scheme, given by (2), and the M09 scheme, given

by (3), are rather straightforward discrete forms of the last two

terms at the right hand side of (1), namely:
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where ðp0
i;k;q

0
i;k; zi;kÞ are the discrete values of, respectively, pressure

anomaly, density anomaly (i.e. q0
i;k ¼ qi;k � q0) and depth, in the

middle of the grid box corresponding to horizontal index i and ver-

tical index k. Vertical resolution and middle grid box depth are

deduced from the depth of the upper and lower facets, i.e. zi,k =

(zi,k+1/2 + zi,k�1/2)/2 and Dzi,k = zi,k+1/2 � zi,k�1/2 (see also Fig. 2). Simi-

larly, the middle grid box pressure is given by:

p0
i;k ¼

p0
i;kþ1=2 þ p0

i;k�1=2

2
ð4Þ

The pressure at grid box facets is given by the hydrostatic integral of

the sea water density anomaly using the rectangular method:

p0
i;k�1=2 ¼ g

X

k0¼k;kmax

q0
i;k0
Dzi;k0 ð5Þ

where kmax corresponds to the vertical index of the surface level. In

comparison to its primitive form, proposed by Janjic (1977), where

the sea water density at the momentum equation grid node is

approximated by the half-half average ðq0
i;k þ q0

i�1;kÞ=2, the modified

M09 scheme (3), is based on a weighted average depending on the

vertical size of respective grid boxes, i.e. ðDzi;kq0
i;k þ Dzi�1;kq0

i�1;kÞ=

ðDzi;k þ Dzi�1;kÞ. As shown by M09, this leads to a more accurate rep-

resentation of the bottom torque and thus limits the growth of long

term errors in the case of the seamount experiment.

2.2. Pressure-Jacobian PGF

Considering (4) and noting that (5) leads to p0
i;k�1=2 � p0

i;kþ1=2 ¼

gq0
i;kDzi;k it is possible to rewrite (3) in the following manner:
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Fig. 2. Location of variables of the Equivalent Geopotential Formulation of the Pressure-Jacobian on the vertical C-grid.
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s

¼
ðp0

i;kþ1=2 � p0
i�1;k�1=2Þðzi�1;kþ1=2 � zi;k�1=2Þ þ ðp0
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This expression is characterized by a symmetry that is also found

in the Pressure-Jacobian PGF of Lin (1997) (hereafter L97). Despite

its context restricted to the atmospheric case, L97 points up some

arguments corroborating the M09 approach. L97 notably defends

the idea that a physically motivated approach, even if it is based

on a simple finite-volume method, can be competitive compared

to some analytic, yet sophisticated, methods. L97 also insists on

the consistency that should be maintained with the discrete den-

sity. Practically, and as in M09, the latter should represent a mean

density between the vertices. As a consequence, the tracer equa-

tions should preferably use a finite-volume advection diffusion

scheme predicting the volume mean variables. Since (3) and (6)

are numerically equivalent, both will be referred to as Pressure-

Jacobian in the following.

2.3. Standard Density-Jacobian PGF

The Standard Density-Jacobian scheme is based on the following

continuous expression for the PGF:

�
1

q0

@p

@x

�
�
�
�
z

¼ �
1

q0

qsg
@1
@x

� g

Z 1

z

Jðq; zÞds

� �

ð7Þ

where qs is the density at the surface and where

Jðq; zÞ ¼
@q
@x

�
�
�
�
s

@z

@s
�
@q
@s

@z

@x

�
�
�
�
s

ð8Þ

A usual discretization of J(q, z) is given by Song (1998), namely:

�DxDsJðq; zÞ ¼
1

4
ðq0

i;kþ1 þ q0
i;k � q0

i�1;kþ1 � q0
i�1;kÞ

n

�ðzi;kþ1 � zi;k þ zi�1;kþ1 � zi�1;kÞ

� ðzi;kþ1 þ zi;k � zi�1;kþ1 � zi�1;kÞ

�ðq0
i;kþ1 � q0

i;k þ q0
i�1;kþ1 � q0

i�1;kÞ
o

ð9Þ

where the position of the variables on the C grid is shown in Fig. 1.

2.4. Equivalent geopotential formulations

2.4.1. The Pressure-Jacobian case

Analogously to SM03, who proposed a reformulation of the

Standard Density-Jacobian scheme in a geopotential frame (see Eq.

(2.6) in SM03), an alternative (but numerically equivalent) discret-

ization for the right hand side of (6) is obtained by differencing the

hydrostatic pressure along a geopotential level. Practically, the

new formulation of the Pressure-Jacobian PGF at the (i � 1/2, k)

momentum grid node is given by:

p�R
i;k � p�L

i�1;k

Dx
ð10Þ

where, as shown in Fig. 2, ðp�R
i;k;p

�L
i�1;kÞ are two pressures computed at

a same depth z�i�1=2;k equal to:

z�i�1=2;k ¼
zi;kþ1=2zi�1;kþ1=2 � zi;k�1=2zi�1;k�1=2

zi�1;kþ1=2 � zi�1;k�1=2 þ zi;kþ1=2 � zi;k�1=2

ð11Þ

The height z�i�1=2;k actually corresponds to the height of intersection

of diagonals of the trapezoidal element bounded by vertices

zi�1,k�1/2, zi,k�1/2, zi,k+1/2, and zi�1,k+1/2 (see Fig. 2). The hydrostatic

pressures at depth z�i�1=2;k are given by:

p�L
i�1;k ¼ g

X

k0¼k;kmax�1

q�L
i�1;k0þ1=2

Dz�
i�1=2;k0þ1=2

þ p�L
i�1;kmax

p�R
i;k ¼ g

X

k0¼k;kmax�1

q�R
i;k0þ1=2

Dz�i�1=2;kþ1=2 þ p�R
i;kmax

ð12Þ

with

Dz�i�1=2;kþ1=2 ¼ z�i�1=2;kþ1 � z�i�1=2;k ð13Þ

The sea water density is a weighted average of the surrounding dis-

crete values, namely:

q�R
i;kþ1=2 ¼ aR

i;kþ1=2q
0
i;kþ1 þ ð1� aR

i;kþ1=2Þq
0
i;k

q�L
i�1;kþ1=2 ¼ aL

i�1;kþ1=2q
0
i�1;kþ1 þ ð1� aL

i�1;kþ1=2Þq
0
i�1;k

ð14Þ

where the weights of the combination are given by:

aR
i;kþ1=2 ¼ ðz�i�1=2;kþ1 � zi;kþ1=2Þ=ðz

�
i�1=2;kþ1 � z�i�1=2;kÞ

aL
i�1;kþ1=2 ¼ ðz�i�1=2;kþ1 � zi�1;kþ1=2Þ=ðz

�
i�1=2;kþ1 � z�i�1=2;kÞ

ð15Þ

We note that 0 < aL
i�1;kþ1=2 < 1 and 0 < aR

i;kþ1=2 < 1 provided that

z�i�1=2;k < zi�1;kþ1=2 < z�i�1=2;kþ1 and z�i�1=2;k < zi;kþ1=2 < z�i�1=2;kþ1 respec-

tively, the interpolation of the density turning into extrapolation

otherwise. The first level under the sea surface, k = kmax, is a partic-

ular case where we have p�R
i;kmax

¼ gqi;k0max
ðfi � z�kmax

Þ and p�L
i�1;kmax

¼

gqi�1;k0max
ðfi�1 � z�kmax

Þ.

As shown in Fig. 2, each grid node (i, k) leads to the computation

of two pressures, p�R
i;k and p�L

i;k, respectively involved in the computa-

tion of the pressure gradient at grid nodes (i � 1/2, k) and (i + 1/

2, k). We note that p�R
i;k and p�L

i;k have no particular reason to be equal.

2.4.2. The Janjic (1977) case

The equivalent geopotential formulation of (2) is very similar to

that of the Pressure-Jacobian scheme except for the depth of the

geopotential level z� (given by (11) in the previous case) which is

now given by:

z�i�1=2;k ¼
zi�1;k þ zi;k

2
ð16Þ

that is the average of the level depth corresponding to the discrete

density values qi�1,k and qi,k. The other relations given for the Pres-

sure-Jacobian case remain the same.

2.4.3. The Standard Density Jacobian case

An Equivalent Geopotential Formulation of the Standard Density-

Jacobian scheme is given by SM03. We briefly recall it (details

and useful comments can be found in SM03) but using the nota-

tions specific to the present study. The discrete form (9) is numer-

ically equivalent to

�DxDs Jðq; zÞ ¼ �Aðq�R � q�LÞ ð17Þ

where

A ¼ Dx
zi;kþ1 � zi;k þ zi�1;kþ1 � zi�1;k

2
ð18Þ

The discrete along-geopotential differencing involves q�L and q�R

obtained from a linear vertical interpolation (or extrapolation) of

the surrounding discrete densities to a common level z�, namely

q�L
i�1;kþ1=2 ¼

q0
i�1;kðzi�1;kþ1 � z�Þ þ q0

i�1;kþ1ðz
� � zi�1;kÞ

zi�1;kþ1 � zi�1;k

ð19Þ

q�R
i;kþ1=2 ¼

q0
i;kðzi;kþ1 � z�Þ þ q0

i;kþ1ðz
� � zi;kÞ

zi;kþ1 � zi;k
ð20Þ

The common level z� is given by:

z�i�1=2;kþ1=2 ¼
zi;kþ1zi�1;kþ1 � zi;kzi�1;k

zi;kþ1 � zi;k þ zi�1;kþ1 � zi�1;k

ð21Þ

As noticed by SM03, the latter corresponds to the level of intersec-

tion of diagonals of the trapezoidal element depicted by Fig. 1a. We

note that this expression is analogous to that of the Pressure-

Jacobian given by (11), the depth of the density grid nodes, e.g.

(zi,k+1, zi�1,k+1, zi,k, zi�1,k), now replacing that of the cellbox facets,

e.g. (zi,k+1/2, zi�1,k+1/2, zi,k�1/2, zi�1,k�1/2).
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3. Accuracy issues related to the type of equation of state

M09 used a equation of state ignoring pressure terms. This

approximation may be defendable in the case of a coastal ocean

model because the depth of continental shelves is usually small en-

ough to neglect the compressibility effect on sea water density.

Over a large domain, including an abyssal area, a complete equa-

tion of state can be essential.

As far as the Pressure-Jacobian scheme is concerned, the pres-

sure computed at the upper and lower facets of cell boxes is exact,

what ever the complexity of the density profile, because the rect-

angular method used to compute the hydrostatic integral (5) is

consistent with the discrete density field provided that the latter

is considered ‘‘true on average over the cell boxes volumes’’

(M09). However the pressure at the middle of grid boxes, given

by (4), a half-half average of discrete pressure at facets, is not exact

unless the vertical pressure profile is linear (i.e. if the density is

constant). Yet, in the case of a complete equation of state, a

strongly non-linear pressure profile is normally expected, due to

the pressure effect on the density profile, causing a major source

of PGF errors when the Pressure-Jacobian scheme is used in a

straightforward way.

On the other hand, the density q(h, S, p) can be expressed as the

sum of qh = q(h, S, pr), a potential density computed with the equa-

tion of state at a pressure of reference pr (for convenience we arbi-

trarily chose pr = 0), and dqC(h, S, p) a density anomaly related to

the compression terms of the equation of state, namely:

qðh; S;pÞ ¼ qhðh; SÞ þ dqCðh; S; pÞ ð22Þ

The equation of state of Mellor (1991) was, to our knowledge,

the first equation relying on the potential temperature (rather than

the temperature) and thus particularly well suited to ocean mod-

els. The contribution of the compression terms to the Mellor

(1991) EOS is given by:

dqC ¼104 p

c2
1�0:2

p

c2

� �

c¼1449:2þ1:34ðS�35Þþ4:55h�0:045h2þ0:00821pþ15�10�9p2

ð23Þ

where p is the pressure in decibars. Practically, the latter is not pre-

cisely known when the equation of state is computed by the ocean

model, since the pressure itself requires the knowledge of the

density. Following several other studies (SM03), p is approximated

to �z (i.e. assuming p � �10�4gq0z with 10�4gq0 � 1). Besides we

observed that using p rather than �z in the EOS does not produce

noticeable changes in the results of the realistic experiments

presented in Section 6.2. Thus a main characteristic of dqC is its

strong dependency on depth. According to (23) and using constant

temperature and salinity, the variation of dqC between the sea sur-

face and the bottom of the abyssal plane (z � �5000 m) is of the

order of 20 kg m�3. Considering the sea water properties presented

by Gill (1982, Fig. 3.2), this is sensibly stronger than the variations

of the potential density, which tends to become homogeneous at

abyssal depth. Conversely, variations of dqC at a constant depth

are often weaker than those of the potential density. This is notably

the case of the two realistic stratifications considered in Section 6

(North-Western Mediterranean and North-Eastern Atlantic). In a

sigma coordinate model, this means that taking compressibility into

account generates PGF errors that may be greater than the physical

signal itself. Indeed the part of dqC that depends on z only (which

should not create any horizontal pressure gradient) possibly leads

to an erroneous PGF (i.e. if the last terms at the right hand side of

(2) and (3) fail to balance the other terms) higher than the PGF the-

oretically expected because of (h, S) gradients. Besides, we note that

several authors have proposed to isolate the part of dqC that

depends on z only and remove it from the rest of the equation of

state (Dukowicz, 2001, SM03).

On the other hand, and provided that the PGF scheme is linear

relative to q, it may split into two parts (as suggested by SM03 but

only as theoretical possibility), namely:

PGFðqh þ dqCÞ ¼ PGFðqhÞ þ PGFðdqCÞ ð24Þ

which can be specifically treated according to the nature of their

respective errors. In other words PGF(qh) and PGF(dqC) can be com-

puted using different schemes. Despite a complex dependency of

dqC to z, apparently expressed by (23), the vertical profile of dqC re-

veals a certain linearity relative to depth (Gill, 1982, Fig. 3.2). The

Standard Density-Jacobian PGF (SM03, Song, 1998), which is exact

when the density profile is linear in z, may thus be considered to

compute PGF(dqC), when keeping the Pressure-Jacobian scheme to

compute PGF(qh). We will however show that the performances of

this possible hybrid PGF are lower than those of a revisited form

of the Pressure-Jacobian scheme dealing with dqC in a more suitable

way. The latter is presented in the following section.

4. A discrete approach adapted to a complete equation of state

In order to reduce the PGF errors associated with dqC(h, S, z), we

developed a method based on the Equivalent Geopotential Formula-

tion of the PGF described in Section 2.4. Depending on the EOS, dif-

ferent implementations of this method will be considered in order

to rationalize the computational cost. In the following, we distin-

guish the case of the Mellor (1991) EOS from the EOS proposed

by the Wright (1997) or McDougall et al. (2003).

4.1. Mellor (1991) EOS

As far as dqC(h, S, z) is concerned, the accuracy problem of the

PGF scheme mainly comes from the fact that a small variation in

z can generate a substantial change in dqC. Even if h and S are con-

stant, the variations of dqC related to z cannot be exactly balanced

by (2), (3), (9), when the PGF should theoretically vanish. The idea

is thus to build a scheme that would not deal with discrete values

of dqC computed with different values of z. This is easily achievable

if we now consider the alternative geopotential formulation of the

PGF. From now, we distinguish PGF(qh) and PGF(dqC). At this stage

the choice of the scheme used for PGF(qh) does not really matter. It

can be one of the three schemes described in Section 2, or any

other scheme provided that the separation in a dqC dependent

term and a qh dependent term is easily tractable. We actually con-

sider PGF(dqC) on which we apply the Geopotential approach. The

method closely follows Section 2.4 except that we change the order

of the calculus. In Section 2.4, the EOS is first computed from

(h, S, z) given at tracer grid nodes and then interpolated on the

common z⁄ level. We actually propose to interpolate (h, S) on the

common z⁄ level first, and then to compute dqC from the interpo-

lated temperature and salinity using the common z⁄ level. This sig-

nificantly reduces the PGF errors. It notably ensures that the PGF

exactly vanishes if (h, S) are constant. As far as the Equivalent Geo-

potential Formulation of the Density-Jacobian is concerned, this new

order is illustrated by Fig. 1b (to be compared to Fig. 1a) and the

interpolation of (h, S) is derived from (19) and (20), namely:

S�Li�1;kþ1=2 ¼
Si�1;kðzi�1;kþ1 � z�Þ þ Si�1;kþ1ðz

� � zi�1;kÞ

ðzi�1;kþ1 � zi�1;kÞ

S�Ri;kþ1=2 ¼
Si;kðzi;kþ1 � z�Þ þ Si;kþ1ðz

� � zi;kÞ

zi;kþ1 � zi;k

h�Li�1;kþ1=2 ¼
hi�1;kðzi�1;kþ1 � z�Þ þ hi�1;kþ1ðz

� � zi�1;kÞ

zi�1;kþ1 � zi�1;k

h�Ri;kþ1=2 ¼
hi;kðzi;kþ1 � z�Þ þ hi;kþ1ðz

� � zi;kÞ

zi;kþ1 � zi;k

ð25Þ
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As far as the Janjic (1997) PGF or the Pressure-Jacobian PGF are con-

cerned, the interpolation of (h, S) is derived from (14), that is:

h�Ri;kþ1=2 ¼ aR
i;kþ1=2hi;kþ1 þ ð1� aR

i;kþ1=2Þhi;k

S�Ri;kþ1=2 ¼ aR
i;kþ1=2 Si;kþ1 þ ð1� aR

i;kþ1=2ÞSi;k

h�Li�1;kþ1=2 ¼ aL
i�1;kþ1=2 hi�1;kþ1 þ ð1� aL

i�1;kþ1=2Þhi�1;k

S�Li�1;kþ1=2 ¼ aL
i�1;kþ1=2Si�1;kþ1 þ ð1� aL

i�1;kþ1=2ÞSi�1;k

ð26Þ

where ðaL
i�1;kþ1=2;a

R
i;kþ1=2Þ are given by (15). We may note this subtle

difference with the Density-Jacobian case: the common geopotential

level z�i�1=2;k defined by (16) or (11) corresponds to the pressure

ðp�R;p�LÞ level. As the discrete integral (12) used to compute the

hydrostatic pressure assumes that the interpolated temperature

and salinity are located between two consecutive pressure levels,

a common geopotential level for (h, S) is deduced from two consec-

utive pressure levels according to:

z�i�1=2;kþ1=2 ¼
z�i�1=2;k þ z�i�1=2;kþ1

2
ð27Þ

Using (27) and (26), we then obtain the two discrete densities,

dqCðh�Ri;kþ1=2; S
�R
i;kþ1=2; z

�
i�1=2;kþ1=2Þ and dqCðh�Li�1;kþ1=2; S

�L
i�1;kþ1=2; z

�
i�1=2;kþ1=2Þ,

involved in the computation of the hydrostatic pressure (12).

4.2. Computational cost

We note from Fig. 2 that p�R
i;kþ1 and p�L

i;kþ1 do not share the same

geopotential level, leading dqCðh�Ri;kþ1=2; S
�R
i;kþ1=2; z

�
i�1=2;kþ1=2Þ and

dqCðh�Li;kþ1=2; S
�L
i;kþ1=2; z

�
iþ1=2;kþ1=2Þ (yet sharing the same horizontal po-

sition) to be subject to different interpolation rules. If we consider

the two horizontal directions, it finally appears that dqC needs to be

computed four times per each tracer grid point. As far as the Mellor

(1991) EOS is concerned, the numerical expression of dqC is rather

simple and thus the computational cost of the method remains

affordable. Moreover, as the numerical expression of dqC is much

simpler than that of qh, the choice of separating dqC and qh (qh

being computed once per grid point at tracer locations) is particu-

larly judicious from a computational cost point of view. The cases

of the EOS of Wright (1997) and McDougall et al. (2003) are quite

different and require a particular implementation described in the

next section.

4.3. Wright (1997) EOS

Wright (1997) EOS is given by:

qðh; S;pÞ ¼
pþ p0

kþ a0ðpþ p0Þ
ð28Þ

where p is the pressure and ðp0; k;a0Þ are polynomial functions of h

and S. Its very simple pressure dependency makes Wright (1997)

EOS attractive, notably for analytic approaches (Adcroft et al.,

2008). In the present study, as for the previous case, the density

q(h, S, p) is expressed as the sum of a potential density qh = q(h, S, 0)
and a density anomaly related to the compression terms

dqC(h, S, p) = q(h, S, p) � q(h, S, 0). As far as (28) is concerned, and

using the approximation p = �z � 104 (note that the pressure in

Wright 1997 EOS is given in Pascal), this leads to:

dqC ¼
a1z

b0 þ b1z
ð29Þ

with ða1; b0; b1Þ ¼ ð�104
k; ðkþ a0p0Þ

2;�104a0ðkþ a0p0ÞÞ. The com-

parison of expressions (23) and (29) shows that the pressure depen-

dency of Wright (1997) EOS is simpler than that of Mellor (1991)

EOS. On the other hand, the dependency to (h, S) of (29) is signifi-

cantly more complex than (23) since ðp0; k;a0Þ are given by polyno-

mial functions of (h, S) based on 15 coefficients (see Table 1 in

Wright 1997). The related numerical cost is moreover aggravated

by the fact that our method leads to compute dqC four times per

each tracer grid point. However it is possible to reduce the compu-

tational cost if the coefficients (a1, b0, b1) of (29) are first computed

at tracer grid points and then interpolated at the common height z⁄.

Using (29), dqC is finally given by

dqCR
i;kþ1=2 ¼

aR1i;kþ1=2z
�
i�1=2;kþ1=2

b
R
0i;kþ1=2 þ b

R
1i;kþ1=2z

�
i�1=2;kþ1=2

dqCi�1;kþ1=2L ¼
aL1i�1;kþ1=2z

�
i�1=2;kþ1=2

b
L
0i�1;kþ1=2 þ b

L
1i�1;kþ1=2z

�
i�1=2;kþ1=2

ð30Þ

where the coefficients ðaR1i;kþ1=2; b
R
0i;kþ1=2; b

R
1i;kþ1=2; a

L
1i�1;kþ1=2; b

L
0i�1;kþ1=2;

b
L
1i�1;kþ1=2Þ are obtained as follows: first (a1, b0, b1) are computed at

tracer grid points and are then interpolated on the common height

z�i�1=2;kþ1=2 according to:

aR1i;kþ1=2 ¼aR
i;kþ1=2a1ðhi;kþ1;Si;kþ1Þþð1�aR

i;kþ1=2Þa1ðhi;k;Si;kÞ

b
R
0i;kþ1=2 ¼aR

i;kþ1=2b0ðhi;kþ1;Si;kþ1Þþð1�aR
i;kþ1=2Þb0ðhi;k;Si;kÞ

b
R
1i;kþ1=2 ¼aR

i;kþ1=2b1ðhi;kþ1;Si;kþ1Þþð1�aR
i;kþ1=2Þb1ðhi;k;Si;kÞ

aL1i�1;kþ1=2 ¼aL
i�1;kþ1=2a1ðhi�1;kþ1;Si�1;kþ1Þþð1�aL

i�1;kþ1=2Þa1ðhi�1;k;Si�1;kÞ

b
L
0i�1;kþ1=2 ¼aL

i�1;kþ1=2b0ðhi�1;kþ1;Si�1;kþ1Þþð1�aL
i�1;kþ1=2Þb0ðhi�1;k;Si�1;kÞ

b
L
1i�1;kþ1=2 ¼aL

i�1;kþ1=2b1ðhi�1;kþ1;Si�1;kþ1Þþð1�aL
i�1;kþ1=2Þb1ðhi�1;k;Si�1;kÞ

ð31Þ

The weights of the interpolation, aR
i;kþ1=2 and aL

i�1;kþ1=2, are given by

(15). The implementation of the method is illustrated by Fig. 1c

(to be compared with Fig. 1b).

4.4. McDougall et al. (2003) EOS

The McDougall et al. (2003) EOS is of the form:

q ¼
a0 þ a1pþ a2p2

b0 þ b1pþ b2p2 þ b3p3
ð32Þ

where p is the pressure in decibars and (a0, a1, a2, b0, b1, b2, b3) are

given by polynomial functions of (h, S) defined by 25 coefficients

updated by Jackett et al. (2006). We also note that a similar formula

is available for the Conservative Temperature and the Absolute Salin-

ity (IOC SCOR and IAPSO, 2010). The pressure dependant density

anomaly is given by dqC = q � a0/b0. As the structure of (32) is sim-

ilar to that of (28), the order of the polynomials being simply higher

in the case of the McDougall et al. (2003) EOS, the method used for

Wright (1997) EOS still applies here. Practically (a0, a1, a2, b0, b1,

b2, b3) are first computed on the tracer grid points and then interpo-

lated on the common height z⁄, as in (31). We can note that in the

special case where both PGF(dqC) and PGF(qh) are based on the same

scheme (for instance both Pressure-Jacobian), there is no particular

need to separate dqC and qh. As far as the Wright EOS or the

McDougall et al. EOS are concerned, dealing with a reunified density

q = qh + dqC contributes to lower the computational cost of our

method.

5. A high-order Finite-Volume method derived from Adcroft

et al. (2008)

Adcroft et al. (2008) (hereafter A08) proposed a method to deal

with the compressibility of sea water based on an analytical, Finite

Volume (hereafter FV), approach of the PGF. Although we use a

substantially different model (the A08 model is based on isopycnal

layers with momentum equations making use of the Montgomery

potential), this FV method can be applied here. We may note that

the general principle of the FV approach of these authors follows
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that of the Lin, 1997) Pressure-Jacobian PGF. Indeed the pressure

force is obtained from the integral of the pressure over the edges

of momentum cell boxes, namely:

A�1 �

Z zi;kþ1=2

zi;k�1=2

pdz

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

I

þ

Z zi�1;kþ1=2

zi;kþ1=2

pdz

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

II

þ

Z zi�1;k�1=2

zi�1;kþ1=2

pdz

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

III

þ

Z zi;k�1=2

zi�1;k�1=2

pdz

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

IV

0

B
B
B
@

1

C
C
C
A

ð33Þ

In the discrete approach of Lin (1997), the four terms in brackets

and the area A are approximated by:

I ¼
pi;kþ1=2 þ pi;k�1=2

2
ðzi;kþ1=2 � zi;k�1=2Þ

II ¼
pi�1;kþ1=2 þ pi;kþ1=2

2
ðzi�1;kþ1=2 � zi;kþ1=2Þ

III ¼
pi�1;k�1=2 þ pi�1;kþ1=2

2
ðzi�1;k�1=2 � zi�1;kþ1=2Þ

IV ¼
pi;k�1=2 þ pi�1;k�1=2

2
ðzi;k�1=2 � zi�1;k�1=2Þ

A ¼ Dx
Dzi;k þ Dzi�1;k

2

ð34Þ

where the location of variables is shown in Fig. 5. Actually, using

(34) in (33) leads to the right hand side of (6).

Alternatively, the pressure integral can be written:
Z z2

z1

pðzÞdz ¼

Z z2

z1

Z 1

z

gqh dz
0

� �

dz

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

þ

Z z2

z1

Z z2

z

gdqC dz
0

� �

dz

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

II

þ

Z z2

z1

Z 1

z2

gdqCdz
0

� �

dz

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

III

ð35Þ

where (z1, z2) represents any of the four pairs of levels in (33) and

where, as previously, we distinguish a potential density and a

depth-dependent density anomaly, that is q = qh + dqC. In the A08

approach, the depth dependent part of the sea water density (e.g.

terms II and III in (35)) is subjected to an analytical treatment. As

the latter possibly leads to complicated expressions, the simplicity

of the Wright (1997) EOS is, in these circumstances, rather attrac-

tive. Even though, the problem remains complex because of the

possible variations, over the range of the vertical integral, of the

(h, S) dependent coefficients of the EOS. This point is discussed by

A08 who proposed practical solutions.

As far as the pressure integral is calculated over the two vertical

segments (see terms I and III in 33 and Fig. 5), the temperature and

the salinity (and consequently the EOS coefficients) can notably be

assumed constant within the cell box. In this case, and using (29),

the term II of (35) leads to:

g
a1b0

b
3
1

ðb0 þ b1zÞðlnðb0 þ b1zÞ � 1Þ �
a1
b1

b0

b1

zþ
z2

2

� ��
�
�
�
�

�
�
�
�
�

z2

z1

ð36Þ

where the symbol jjz2z1 stands for the following operation; jf ðzÞjz2z1 ¼

f ðz2Þ � f ðz1Þ, and where the EOS coefficient ða1; b0; b1Þ are computed

using (hi,k, Si,k) (case (z1, z2) = (zi,k�1/2, zi,k+1/2)) or using (hi�1,k, Si-1,k)

(case (z1, z2) = (zi�1,k�1/2, zi�1,k+1/2)). On the other hand, the density

integral of the term III of (35) can be calculated using a method

combining a hybrid discrete-analytical approach, namely:
Z z2

z1

Z 1

z2

gdqCdz

� �

dz

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

III

¼

Z z2

z1

pcðz2Þdz ¼ pcðz2Þjzj
z2
z1

ð37Þ

where, considering the case z2 = zi,k+1/2, the pressure anomaly pc(z2)

is given by:

pcðzi;kþ1=2Þ ¼ pcðzi;kþ3=2Þ þ

Z zi;kþ3=2

zi;kþ1=2

gdqC dz ð38Þ

The zi;kmaxþ1=2 level corresponds to the sea surface where we have

pcðzi;kmaxþ1=2Þ ¼ 0, while the second term at the right hand side of

(38) is givenbyananalytical calculus expressionbasedon (29), that is:

Z zi;kþ3=2

zi;kþ1=2

gdqC dz ¼ g
a1
b1

zþ
b0

b1

1� lnðb0 þ b1zÞ½ �

� 	�
�
�
�

�
�
�
�

zi;kþ3=2

zi;kþ1=2

ð39Þ

where the EOS coefficients (a1, b0, b1), assumed constant, are com-

puted with (hi,k+1, Si,k+1).

As far as the pressure integral concerns the lower and upper

facets of the cell box (see terms II and IV in 33 and Fig. 5), the ana-

lytical approach is hampered by the horizontal variations of tem-

perature and salinity. This was reported by Adcroft et al. (2008)

who proposed to overcome the problem through a high-order

numerical approach and some simple hypothesis on subgrid

variations of the fields. Here, we assume that the (h, S) field at a

given vertical grid level varies linearly between two neighbouring

grid nodes. According to A08, a sixth-order quadrature apparently

provides enough accuracy. As the computational cost is not really

an issue for us at this stage, we use an even higher (e.g. 10th-order)

scheme. Besides, we checked that this alternative numerical ap-

proach could be extended to the four terms of (33) with a very sat-

isfying accuracy (the PGF can notably be considered cancelled for

constant (h, S)). The interest is obviously to render the computation

of the pressure integral more ‘‘EOS independent’’ and, insofar as

the Mellor (1991) and McDougall et al. (2003) EOSs are signifi-

cantly more complex than the Wright (1997) EOS, to render the

FV approach easily implementable whatever the complexity of

the considered EOS.

6. Tests and discussion

6.1. The Seamount experiment

We now repeat the seamount experiment presented in M09.

The initial profile of salinity and potential temperature is:

S ¼ 35

h ¼ 20ez=500
ð40Þ

which roughly corresponds to the potential density profile used in

SM03. As in M09, the initial discrete fields are provided by the aver-

age of the true fields over the volume of the cell boxes, i.e. Hi,k =

20 � 500 � (exp(zi,k+1/2/500) � exp(zi,k�1/2/500))/(zi,k+1/2�zi,k�1/2)

(see also expression (11) in M09). The other fields are given by the

ocean at rest. The numerical model (SYMPHONIE) is derived from

Table 1

PGF schemes used for the Seamount Test. Left column: PGF(qh). Right column:

PGF(dqC). We recall that FV stands for ‘‘Finite Volume’’ and EGF for ‘‘Equivalent

Geopotential Formulation’’.

PGF(qh) PGF(dqC)

Pressure-Jacobian (Lin, 1997) Pressure-Jacobian (Lin, 1997)

Pressure-Jacobian (Lin, 1997) Density-Jacobian (Song, 1998) (green in

Fig. 3)

Pressure-Jacobian (Lin, 1997) High Order FV scheme (blue in Fig. 3)

Pressure-Jacobian (Lin, 1997) EGF Janjic PGF

Pressure-Jacobian (Lin, 1997) EGF Density-Jacobian

Pressure-Jacobian (Lin, 1997) EGF Pressure-Jacobian (red in Fig. 3)

EGF Pressure-Jacobian EGF Pressure-Jacobian

Density-Jacobian (Song, 1998) Density-Jacobian (Song, 1998)

Density-Jacobian (Song, 1998) High Order FV scheme

Density-Jacobian (Song, 1998) EGF Janjic PGF

Density-Jacobian (Song, 1998) EGF Density-Jacobian

Density-Jacobian (Song, 1998) EGF Pressure-Jacobian
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Marsaleix et al. (2008) and M09 but we now use the complete equa-

tion of state proposed by McDougall et al. (2003).

The ocean should remain at rest but the PGF errors are respon-

sible for erroneous currents. We follow their long term evolution

with a 180-days run similar to that presented in M09 and SM03.

We compare several low order schemes listed in Table 1. As far

as the potential density is concerned, PGF(qh) is computed using

the genuine formulation of the Pressure-Jacobian or the Density-

Jacobian schemes (left column in Table 1). In each case, PGF(dqC)

is computed with the usual genuine scheme, or using the various

Equivalent Geopotential Formulations (hereafter EGF) proposed in

Section 4, or the high order FV approach described in Section 5

(right column in Table I). We also consider a case where both

PGF(qh) and PGF(dqC) are computed using the Equivalent Geopoten-

tial Formulation of the Pressure-Jacobian.

Fig. 3, which can be directly compared to Fig. 3 of M09, presents

initial PGF errors at different locations of the seamount (depicted

in Fig. 2 of M09). In order to evidence the PGF errors caused by

the compression terms only, Fig. 3 shows the part of the PGF solely

due to dqC (the other part being shown in Fig. 3 of M09). Note that

since the three EGF schemes give similar results, only one of them

(the EGF Pressure-Jacobian) is presented in Fig. 3 for the sake of

clarity. As expected, PGF errors are weak, whatever the scheme,

for small depth since compression terms become negligible. Errors

are also small at the basis of the seamount because the slope of the

s levels is small (Fig. 3a). The largest errors are finally found when

the slope of the bathymetry and the depth are both significant (see

Fig. 3b and c). In this latter case, errors are rather of the same order

as PGF errors related to qh shown in M09. Globally the errors of the

EGF method are smaller than those of the Standard-Jacobian

scheme or the high order FV approach. These three methods are

anyway much more accurate than the usual Pressure-Jacobian dis-

cretization (errors not shown). In some areas the FV approach is

the most accurate option (Fig. 3a), in others, it can be rather disap-

pointing (Fig. 3d).

Fig. 4 shows the time variation of the total kinetic energy. The

Pressure-Jacobian based on the full usual discretization (Fig. 4a,

red curve) is particularly subject to the PGF errors related to the

compressibility of the sea water. The error level is notably much

higher than that of the full Density-Jacobian PGF (Fig. 4b, magenta
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Fig. 3. Vertical axes: depth (m), Horizontal axes: 107 � q�1
0 rxp

0 (m s�2). At the location of the profile h = 5000 m (a), h = 3500 m (b), h = 1800 m, (c), h = 700 m (d). See also

Fig. 2 in M09. Usual Density Jacobian discretization (green), Equivalent Geopotential Formulation of the Pressure-Jacobian (red), Finite Volume approach (blue).
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curve). As far as the computation of PGF(qh) relies on the usual

Pressure-Jacobian discretization, all the methods proposed to re-

duce the error level are efficient (Fig. 4a). The EGF approach clearly

leads to the best results (green curve). The three EGF schemes,

including the full EGF approach (e.g. both PGF(qh) and PGF(dqC)

using the EGF discretization), lead to very similar results (for clar-

ity, only one of them is thus shown in Fig. 4a). Among these three

schemes, the EGF of the Janjic PGF seems slightly better than the

two others. The PGF errors of the FV approach (Fig. 4, blue1 curve)

are comparable to those obtained when the computation of

PGF(dqC) is based on the Density-Jacobian scheme (Fig. 4a, magen-

ta curve).

 1e-05
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 0  20  40  60  80  100 120 140 160 180

 0.0001
 0  20  40  60  80  100 120 140 160 180

0.0005
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Fig. 4. Total kinetic energy (m2 s�2) as a function of time (days). Fig. 4a: PGF(qh) is computed on the basis of the usual Pressure-Jacobian discretization. PGF(dqC) is computed

with the usual Pressure-Jacobian (red), the usual Density-Jacobian (magenta), the EGF formulation of the Janjic (1997) scheme (green), the high order Finite Volume method

(blue). Fig. 4b: PGF(qh) is computed on the basis of the usual Density-Jacobian discretization. PGF(dqC) is computed with the usual Density-Jacobian (magenta), the EGF

formulation of the Janjic (1997) scheme (green), the high order Finite Volume method (blue).
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As far as PGF(qh) is computed on the basis of the usual Density-

Jacobian discretization, the reduction of the compressibility errors

by the FV and EGF methods is less significant. Indeed, the error le-

vel of the full Density-Jacobian PGF (e.g. both PGF(qh) and PGF(dqC)

based on the usual density-jacobian discretization) is of the same

order of the errors obtained when PGF(dqC) is computed using

the FV or EGF methods. This is not really surprising insofar as the

previous test (e.g. Fig. 4a) shows that computing PGF(dqC) with

the usual density-Jacobian discretization significantly reduces the

PGF errors of the Pressure-Jacobian. Anyway, the benefit of the

Fig. 7. South-North pressure gradient divided by the Coriolis frequency (m s�1) for the Mediterranean case (location given by the red line in Fig. 6). Colour resolution:

5 � 10�4 m s�1. Horizontal axis: latitude (�). Vertical axis: depth (m). The PGF related to the potential density has been arbitrarily cancelled in order to evidence the effect of

the compressibility terms of the equation of state. Reference PGF computed on a geopotential grid using the Pressure-Jacobian scheme (a), PGF computed on a sigma

coordinate grid (b, c, d, e) using the usual Pressure-Jacobian discretization (b), the Equivalent Geopotential Formulation of the Pressure-Jacobian scheme (c), the high-order

Finite-Volume scheme (d), the usual Density-Jacobian discretization (e). Note the particular colour resolution used in Fig. 7b.
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EGF approach (green curve) is small but indubitable. On the other

hand, the interest of the high order FV approach (blue curve) is

possibly doubtful.

Several reasons for the partial success of the FVmethod depicted

by Figs. 3d and 4b could be invoked. We may for instance note that

the benefit of the high order treatment of the depth dependency of

the problem is possibly lost because of the lower order approach

used for several other crucial parameters. The fact that the pressure

integral is computed under the approximation of a constant tem-

perature and salinity, is notably not consistentwith the exponential

profile (40). On the other hand, the pressure integral is computed in

our case over a cell box contour that is linearly interpolated from

four vertices, when a more complex approach of the cell box geom-

etry is possibly required by high order methods (SM03).

Fig. 8. Same as Fig. 7 but for the Atlantic case (location given by the blue line in Fig. 6). Colour resolution: 10�2 m s�1. Note the particular colour resolution used in Fig. 8b.
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6.2. Realistic stratifications

We now present the PGF errors in the cases of realistic stratifi-

cations. The interest of these additional tests is to assess whether

or not the error amplitude is smaller than the amplitude of the ex-

pected physical signal. Indeed, the ideal case of an ocean at rest (i.e.

the Seamount experiment) does not permit to conclude on this

question. Two regions are considered: the North Occidental Medi-

terranean Sea and the North Atlantic Ocean (Fig. 6). The stratifica-

tion is provided by the NEMO OPA general circulation model on a

geopotential grid using 72 levels in the Mediterranean case (Tonani

et al., 2009) and 50 levels in the Atlantic case (Dombrowsky et al.,

2009; Hurlburt et al., 2009). The horizontal resolution is respec-

tively 1/16� and 1/12�. The (h, S) fields are interpolated on the grid

of our model (horizontal resolution: 2.5 km). Two vertical grids are

used. First of all, a geopotential grid, with a vertical distribution

identical to that of the NEMO OPA model, enables to compute

the PGF without truncation errors related to the sigma coordinate,

thus providing a reference solution (Figs. 7a and 8a). The second

vertical grid is based on 40 sigma levels regularly distributed.

The PGF is thus subject to the truncation errors of the sigma sys-

tem. In order to evidence the errors related to the compressibility

terms of the EOS, PGF(qh) is excluded, so that the computation of

the PGF relies on dqC only. The PGF has been divided by the Coriolis

Frequency so that Figs. 7 and 8 may be interpreted in terms of geo-

strophic current balance. The latter is particularly weak, notably in

Fig. 7a, since it hardly reaches a few cm/s. Clearly, even a small er-

ror on the PGF computed in the sigma coordinate may be sufficient

to hide the physical signal. Along these lines, it is clear that the

usual Pressure-Jacobian discretization should be avoided since the

induced truncation errors completely hide the physical signal

(Figs. 7b and 8b). On the other hand the PGF is in good agreement

with the reference solution when it relies on the other schemes

(e.g. Equivalent Geopotential Formulation, high order FV, density Jaco-

bian). In these three cases, the error level is thus lower than the

physical signal. Consequently, even though the previous section

shows that the EGF method performs better than the two others,

it does not seem unreasonable to use any of these three methods

on a realistic case.

We note that the agreement with the reference solution is

rather better in the Mediterranean case. Actually, the North-Wes-

tern Mediterranean stratification tends to become rather homoge-

neous with decreasing z, placing the PGF scheme in a favourable

situation since the geopotential formulation exactly cancels for

(h, S) constant. In the North-East Atlantic case, (h, S) vertical varia-

tions are not negligible at deep levels where the compressibility ef-

fect becomes effective. As a consequence, even if the comparison of

Fig. 8a, c–e is globally satisfying, we note that truncation errors

tend to emerge from the physical signal in regions of strong hydro-

static inconsistency (Fig. 8, latitude = 44.2).

7. Conclusion

Even if the PGF scheme studied in M09 (a numerical equivalent

of the L97 Pressure-Jacobian) was the starting point of the present

study, we may retain that the method proposed to remove the

truncation error associated to the compressibility terms of the

EOS is not limited to a particular PGF scheme. Actually, this meth-

od can be applied to any scheme that can be rewritten using an

Equivalent Geopotential Formulation. We actually showed that it

can be easily applied to the Standard-Jacobian or the Janjic (1977)

schemes.

By placing the computation of the compressibility terms on a

common geopotential level z⁄, this method removes the errors re-

lated to the pressure dependency of the density. A major result is

indeed the exact cancellation of the PGF when (h, S) are constant.

Because our discrete approach is not really limited by the complex-

ity of the EOS, it appears competitive compared to some analytic

approaches. As a matter of fact, the Finite Volume method devel-

oped by Adcroft et al. (2008) seems rather difficult to apply to

any EOS significantly more complex than the Wright (1997) EOS.

A high order numerical scheme can be substituted to the analytical

treatment proposed by Adcroft et al. (2008) with a reasonable level

of accuracy, but the efficiency of the method remains anyway low-

er than that of the EGF method. This latter comment should be

however tempered by the fact that for a given numerical experi-

ment, different models can lead to different conclusions, because

models are not only sensitive to the PGF scheme but also to the

way the other processes are computed (Coriolis, advection, turbu-

lence and so on). We consequently can not exclude that the FV

method would better perform in other models.

On the other hand, the computation of (h, S) at the common

height z⁄ remains subject to the errors of the interpolation scheme

(26). The same remark can be done concerning the interpolation of

the (ai, bi) coefficients of Wright or McDougall EOSs using (31). As a

matter of fact, these linear interpolations become particularly inac-

curate in situations of hydrostatic inconsistency (the interpolation

turning into extrapolation) and thus could certainly be improved

by a higher order method.

Last we note that we did not use the well-known method that

consists in removing a background density profile (horizontally

homogeneous) from the PGF computation. The reason is that this

method can be applied to any of the schemes considered in this pa-

per and thus does not help to differentiate the different ap-

proaches. This does not mean that this good sigma-modelling

practice should be avoided. As a matter of fact, it can be combined

to the EGF method. For instance, the PGF term retained in the

momentum equations can be:

PGF ¼ PGFðqÞ � PGFðqðh0ðzÞ; S0ðzÞ; zÞÞ ð41Þ

This ensures the cancellation of the PGF when (h, S) = (h0(z), S0(z)), a

result that is normally not verified with a trivial approach because

of truncation errors. As far as the pressure-dependent density dqC is

concerned, we recall that PGF(dqC(h0, S0, z)) vanishes anyway if

(h0, S0) are simple constants. Applying (41) is thus interesting pro-

vided that (h0, S0) are function of z and, of course, provided that

these reference profiles are reasonably representative of the tem-

perature and salinity fields. We also thank several anonymous

reviewers for their helpful comments.
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