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Alternatives to the Robert–Asselin filter

Patrick Marsaleix a,⇑, Francis Auclair a, Thomas Duhaut a, Claude Estournel a, Cyril Nguyen b,
Caroline Ulses a

a Laboratoire d’Aérologie, CNRS and Toulouse University, 14 Avenue Edouard Belin, 31400 Toulouse, France
bObservatoire Midi-Pyrénées, 14 Avenue Edouard Belin, 31400 Toulouse, France

The Leap Frog time stepping scheme (hereafter LF) partly loses its conservation properties when a Rob-
ert–Asselin filter (hereafter RA) is used to damp the computational mode. The LF + RA scheme actually 
leads to a well-known long term attenuation of the physical mode. Besides, the stability of the LF, e.g. 
the maximum permitted time step, is lowered by the use of the RA. Several methods, derived from the 
Laplacian approach of Marsaleix et al. (2008), are presented as an alternative to the RA. It appears that 
the physical mode is eventually much less impacted by higher order time filters. However, in some cases, 
the stability of the time stepping scheme becomes worse than that of the LF + RA. A five points scheme 
finally appears to preserve both the amplitude of the physical mode and the stability of the time stepping 
scheme. The analysis of these filters is based on a triple approach: the kinetic energy balance, the ampli-

fication factors of the oscillation equation, numerical experiments performed with a 3D circulation ocean 
model.

1. Introduction

The leapfrog time stepping scheme (thereafter the LF scheme) is

a second order, three time-level, and time centred scheme that has

been used for years in numerous General Circulation Models

(GCMs) (Mesinger and Arakawa, 1976).

There are principally two criticisms that are made about the LF

scheme. First of all, this scheme is less accurate than several other

methods, for instance the third-order Adams–Bashforth scheme

(Durran, 1991) or the predictor–corrector scheme (Shchepetkin

and McWilliams, 2005). The second criticism, upon which the pres-

ent paper focuses, concerns the Robert–Asselin time filter (Robert,

1966; Asselin, 1972). The latter is generally associated to the LF

scheme in order to counter the possible growth of the numerical

mode permitted by the Leapfrog scheme. This numerical mode is

characterised by the time splitting of the model solution into two

independent physical trajectories (respectively corresponding to

odd and even time steps). The Robert–Asselin time filter has how-

ever several drawbacks. First of all, it has a perceptible diffusive ef-

fect on the physical mode. Second, the properties of conservations

are not always clearly ensured (Leclair and Madec, 2009). Last, it

noticeably reduces the stability of the LF scheme (the computa-

tional cost is thus possibly increased by the requirement of a smal-

ler time step).

Despite evidence that other time stepping schemes can be more

efficient, the LF scheme is often used in weather and ocean models,

like for instance the widespread Princeton Ocean Model (Blumberg

and Mellor, 1987). As pointed out by Williams (2009), several rea-

sons can be invoked: the LF scheme is easy to implement and has

low run-time storage requirements. It is also computationally

inexpensive, notably because it requires only one evaluation of

the right-hand side of a prognostic equation.

Besides, on one hand, the accuracy of a time stepping scheme

largely depends on the ratio of the time step to the time scales of

the simulated processes. On the other hand, the stability of time

stepping methods is mostly constrained by the fastest gravity

waves, leading to a time step much smaller than the time scale

of the other processes. Thus the accuracy of the Leapfrog scheme

remains reasonably good over a wide range of ocean situations.

We may also note that complex numerical systems like modern

ocean models are globally coherent, e.g. a numerical scheme can

not be written independently from the other schemes of the model.

Amongst a lot of other possible examples, the time stepping
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scheme has a major impact on the way the internal and external

modes are coupled in the POM and ROMS models (Ezer et al.,

2002). Obviously, replacing a LF scheme by another time stepping

method is not a trivial development.

For these reasons, and even though we may expect a growing

diversity of numerical methods in the coming years, the Leapfrog

will probably remain in use in several models. For the time being,

the LF scheme combined to a Robert–Asselin filter is notably

implemented in widespread ocean models like POM (Blumberg

and Mellor, 1987) and NEMO (Leclair and Madec, 2009, 2011).

Our study has similarities with the papers of Williams (2009,

2011). Indeed, the objective of the present paper is clearly to focus

on what we consider to be the principal weak point of the LF

scheme, namely the Robert–Asselin filter used to damp the numer-

ical mode permitted by the LF scheme. We thus propose to develop

an alternative scheme to the actual Robert–Asselin filter. This new

filter should bring significant improvements on the three short-

comings previously mentioned. Practically:

(1) It should let the physical mode unchanged.

(2) The tracer conservation should be unambiguously ensured.

(3) The stability should be higher than that of the LF scheme

when combined with a Robert–Asselin filter.

Another expected requirement is that this new filter should be

easy to implement in actual LF based models, e.g. it should not im-

peril the global consistency of these models. In other word, its

implementation should not concern any other scheme than the

time stepping scheme itself.

The paper is organised in the following manner. A modified for-

mulation of the Robert–Asselin filter, namely the Laplacian scheme

used in Marsaleix et al. (2008) (hereafter M08), is presented in Sec-

tion 2. The contribution of the Laplacian and Robert–Asselin filters

to the discrete energy balance of the physical and numerical modes

is presented. Other filters, based on higher order schemes, are also

examined. Amongst them, the FD filter is a ‘‘five points’’ scheme

emerging as a convincing low-diffusive alternative to the Robert–

Asselin filter. The amplification factor for the oscillation equation

is analysed in Section 3. The different filters are finally tested on

the basis of numerical experiments presented in Section 4.

2. A preliminary, physically based, examination of different

filters

Several time filters derived from the Laplacian filter used in

M08 will be considered in the following. We thus start to recall

the differences between the Laplacian and Robert–Asselin filters.

2.1. Laplacian filter

Let us start with.

oF

ot
¼ ow

ot
þ RHS; ð2:1Þ

where F represents any of the variables found in ocean models (e.g.

velocities or tracers), and RHS the usual forcing terms of the

momentum or tracer equations (Coriolis, pressure gradient, advec-

tive and diffusive terms). The laplacian time filter is ow

ot
with:

w ¼ K
oF

ot
; ð2:2Þ

where K is a coefficient of diffusion (the word ‘‘diffusion’’ is used

here for convenience, although K has the dimensions of time, which

is not the usual dimensions of a diffusion coefficient). As the filter is

the time derivative of w, the conserving properties discussed in

M08 are a consequence of the Green-Ostrogradski theorem. Indeed,

the time integration of Eq. (2.1) leads to:

Ft � F0 ¼ wt � w0 þ
Z t

0

ðRHSÞdt0; ð2:3Þ

where superscripts t and 0 refer to the present time and the initial

time respectively. As we can expect |wt � w0| to be much smaller

than |Ft � F0|, notably if we integrate over a long time, it happens

that Ft � F0 �
R t

0
ðRHSÞdt0. The conservation of F is not perfect (since

wt � w0
– 0) but satisfying since the variation of F over time is quasi

balanced by the RHS term.

2.2. Robert–Asselin filter

In M08 it is showed that the Robert–Asselin filter leads to trans-

form (2.1) and (2.2) into:

oF

ot

t

¼ RHSt þ Dt

2

X

q¼1;N�1

v

2

� �q o
2Ft�qDt

ot2
; ð2:4Þ

where N is the number of iterations since the beginning of the sim-

ulation, Dt is the time step increment, v is the Robert–Asselin coef-

ficient and

o
2Ft�qDt

ot2
¼ 1

Dt2
Ft�ðq�1ÞDt � 2Ft�qDt þ Ft�ðqþ1ÞDt

� �

: ð2:5Þ

The Robert–Asselin filter is thus equivalent to the discrete sum of

decentred Laplacian type filters starting from the beginning of the

simulation. Because of this, the conservation properties of the Rob-

ert–Asselin filter are possibly questionable since a cumulative effect

of all these terms can not be excluded on the time filter balance.

Some answers are provided by the discrete energy balance detailed

in the following section. However, and realising that the Robert–

Asselin coefficient v is a positive number generally much smaller

that one (0.1 is a common value), we note that the terms

ðv
2
Þq o

2Ft�qDt

ot2
of the discrete sum at the right hand side of (2.4) tend

to vanish as the integer number q increases. If the Robert–Asselin

coefficient is small enough, the discrete sum can be reasonably

approximated to its first term (e.g. Dt
2

P

q¼1;N�1ðv2 Þ
q o

2Ft�qDt

ot2
� vDt

4
o
2Ft�Dt

ot2
)

and becomes consequently almost equivalent to the Laplacian filter,

provided that:

K ¼ vDt

4
: ð2:6Þ

In this particular case, the conservation properties of the Laplacian

and Robert–Asselin filters are obviously very close. We also retain

that (2.6) gives a first (but possibly rough estimate if v is not small

enough) estimate of an equivalent diffusion coefficient of the Rob-

ert–Asselin coefficient.

2.3. Kinetic energy balance

2.3.1. Continuous time

In order to obtain a kinetic energy balance, Eq. (2.1) (where now

F represents u, the velocity) is multiplied by the velocity and then

integrated over time. For the sake of clarity the RHS term is arbi-

trarily dropped. This leads to:

Z t

0

u
ou

ot
dt

0 ¼
Z t

0

u
ow

ot
dt

0
: ð2:7Þ

Supposing a zero velocity at t = 0, the left hand side of (2.7) is also:

Z t

0

u
ou

ot
dt

0 ¼ uðtÞ2
2

; ð2:8Þ

2



and the right hand side of (2.7) leads to:
Z t

0

u
ow

ot
dt

0 ¼
Z t

0

ouw

ot
� w

ou

ot

� �

dt
0

¼
Z t

0

ouw

ot
� K

ou

ot

� �2
!

dt
0

¼ utwt �
Z t

0

K
ou

ot

� �2

dt
0
: ð2:9Þ

As far as the two last terms at the right hand side of (2.9) are con-

cerned, we note (provided that K is not negligible) that uw should

be much smaller than
R t

0 Kðouot Þ
2dt

0
since the latter is the integral of

a quantity that is always positive. As a consequence, the energy bal-

ance of the time filter may be approximated by
Z t

0

u
ow

ot
dt

0 � �
Z t

0

K
ou

ot

� �2

dt
0
: ð2:10Þ

The latter is systematically negative so that it is a sink of kinetic en-

ergy. It acts as a dissipation term.

2.3.2. Discrete time

We now consider the discrete time. Time is given by t = nDt

where n is an integer representing the number of iterations and

Dt is the time step increment. The time stepping scheme is the

LF scheme. As far as (2.8) is concerned (and assuming a zero initial

current) we now have:

Z t

0

u
ou

ot
dt

0 ¼
X

0;N

un u
nþ1 � un�1

2Dt

� �

Dt ¼ uNuNþ1

2
: ð2:11Þ

We first note that the last term at the right hand side of (2.11) is not

exactly the square of a velocity, but the product of two consecutive

velocities. It is consequently possible for the discrete kinetic energy

to be negative in some cases. This occurs when the direction of the

current is changing (e.g. when uN and uNþ1 have a different sign).

This is far from being the most probable situation, except in (quite

unrealistic) cases where the model solution is dominated by numer-

ical instabilities characterised by a current reversal at even and odd

iterations.

As the present paper focusses on one of the main drawbacks of

the LF scheme, that is the possible time splitting of even and odd

time steps, it can be suitable to separate the current into the addi-

tional contributions of a mean current (corresponding to the aver-

age of the solution at even and odd time steps) and a 2Dt periodic

spurious oscillation. According to (2.11), we shall retain that the

discrete energy of the physical modes should be positive when

the discrete kinetic energy associated to the spurious oscillation

(e.g. the divergence of even and odd time steps) is negative.

The numerical expression corresponding to (2.9) is:

Z t

0

u
ow

ot
dt

0 ¼
X

0;N

un w
nþ1=2 � wn�1=2

Dt

!

Dt

¼ uNwNþ1=2 �
X

0;N�1

wnþ1=2 unþ1 � un
� �

: ð2:12Þ

The last term at the right hand side of (2.12) corresponds to the

dissipation of kinetic energy by the time filter (note that we as-

sumed u0 = 0). Following M08, the Laplacian filter involved in the

computation of the velocity at time step n + 1 is based on a scheme

that is centred on time step n � 1. This means that instead of the

straightforward discretisation that would intuitively lead to:

wnþ1=2 ¼ K unþ1 � un
� �

=Dt; ð2:13Þ

We rather use:

wnþ1=2 ¼ K un � un�1
� �

=Dt: ð2:14Þ

We will see that the discrete energy balance is, amongst others, a

mean to explain why the choice of (2.14) is better than (2.13). Actu-

ally, we can compare the numerical expressions for the time filter

balance respectively obtained with (2.13) and (2.14). We consider

(2.13) first. The last term at the right hand side of (2.12) leads to:

�
X

0;N�1

wnþ1=2 unþ1 � un
� �

¼ �
X

0;N�1

K unþ1 � un
� �2

=Dt: ð2:15Þ

At first sight, (2.15) is in good agreement with the dissipation term

obtained in the continuous space, given by (2.10), since both are al-

ways negative. On the other hand, using (2.14) leads to:

�
X

0;N�1

wnþ1=2 unþ1 � un
� �

¼ �
X

0;N�1

K un � un�1
� �

unþ1 � un
� �

=Dt:

ð2:16Þ

We note that the right hand side of (2.16) should be negative (as ex-

pected) most of the time (since at physical frequencies (un � un�1)

and (unþ1 � un) should be very close), but not in the case of the

aforementioned 2Dt periodic spurious oscillation (since the latter

would lead (un � un�1) and (unþ1 � un) to have opposite signs). This

behaviour is in fact consistent with the discrete energy balance of

the LF scheme. We indeed showed that the discrete kinetic energy

associated to 2Dt oscillations is negative. The fact that (2.16) be-

comes positive simply permits to counter their growth. At low fre-

quencies, (2.16) recovers the usual conclusions of the continuous

space, in other words the time filter behaves as a dissipation term.

On the other hand, the unconditionally negative scheme (2.15) will

enhance the growth of 2Dt oscillations. The decentred form (2.14) is

consequently better than the centred form (2.13) since the latter is

potentially unstable. We now generalise these conclusions to other

possibilities of centring in the numerical form of wnþ1=2. Practically

the latter is rewritten:

wnþ1=2 ¼ K un�m � un�1�m
� �

=Dt: ð2:17Þ

where m is an integer. The numerical forms (2.13) and (2.14) corre-

spond to m = �1 and m = 0, respectively. Let us consider the case of

m = +1. Instead of (2.15), (2.16), the energy balance of the time filter

now leads to:

�
X

0;N�1

wnþ1=2 unþ1 � un
� �

¼ �
X

0;N�1

K un�1 � un�2
� �

unþ1 � un
� �

=Dt:

ð2:18Þ

As for the previous schemes (2.18) should be negative at low fre-

quencies and thus should have the expected behaviour of a dissipa-

tion term. But in the case of a 2Dt oscillation, (un�1 � un�2) and

(unþ1 � un) have the same sign, leading (2.18) to recover the draw-

back of (2.15), practically to be unable to damp the oscillation.

These different results may be summarised as follow:

– For odd values of m in (2.17), the Laplacian filter behaves as a

dissipation term at low (physical) frequencies but favours the

growth of 2Dt oscillations.

– For even values of m in (2.17), the Laplacian filter behaves as a

dissipation term at all frequencies.

2.4. A first step toward a hybrid filter preserving the low frequencies

We recall that one of the objectives of this paper is to build a

time filter that prevents the time splitting of odd and even time

steps and, at the same time, does not dissipate the physical modes.

We will use the ambivalence of the Laplacian filter towards 2Dt

oscillations, depending of the parity of m in (2.17), to build hybrid

schemes combining two Laplacian filters, one using m = 0 and the

other one using m = +1 or m = �1, namely:
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wnþ1=2 ¼ þK un � un�1
� �

=Dt � K un�m � un�1�m
� �

=Dt m ¼ �1:

ð2:19Þ

Because of the opposite sign of its two terms, (2.19) should lead to

the following properties:

– As far as 2Dt oscillations are concerned, the energy balance of

the time filter will be positive. A damping effect is expected.

– As far as low frequencies are concerned, the second term of

(2.19) is expected to balance the first one. The physical modes

should remain unchanged.

We note that the use of (2.19) may be interpreted, in the contin-

uous time, as a third derivative (hereafter TD) filter added at the

right hand side of the model equations.

2.5. Dissipation of physical and numerical modes

In the following subsections, we examine the energy dissipated

(or created) by different filters in two cases: a physical mode and a

spurious 2Dt oscillation.

2.5.1. The Laplacian filter in M08

We recall that the Laplacian filter in M08 is based on the decen-

tred scheme (2.14), that is (2.17) with m = 0. The energy balance of

the filter is given by (2.16). We first consider a case of 2Dt

oscillation:

un ¼ u0ð�1Þn; ð2:20Þ

where n is the number of iterations. Using (2.20) in (2.16), we ob-

tain the energy balance of the filter, namely:

�
X

0;N�1

wnþ1=2 unþ1 � un
� �

� þNu2
04K=Dt: ð2:21Þ

Note that we made the hypothesis that the amplitude u0 is constant

over the time NDt of integration, in other words that NDt is not too

long compared to the time scale of the dissipation effect. The right

hand side of (2.21) is positive, as expected from the previous discus-

sions in Section 2.3.2.

We now consider a case of low frequency oscillation:

un ¼ u0 cos xnDt þuð Þ: ð2:22Þ

Using (2.22) in (2.16) leads to:

�
X

0;N�1

wnþ1=2 unþ1 � un
� �

� �
X

0;N�1

2u2
0K sin

2ðhÞ cosð2hÞ½

� cosð2xnDt þ 2uÞ�=Dt; ð2:23Þ

with

h ¼ xDt

2
: ð2:24Þ

As for the previous case, we assumed that NDt is short enough so

that u0 can be considered constant. The time step increment can

also be defined such that the time of integration is a multiple of

p/x and simplify (2.23) according to:

�
X

0;N�1

wnþ1=2 unþ1 � un
� �

� �2Nu2
0K sin

2ðhÞ cosð2hÞ=Dt; ð2:25Þ

and last we assume that Dt is much smaller than the period of the

oscillation, in other words that h < < 1, in order to approximate

(2.25) to:

�
X

0;N�1

wnþ1=2 unþ1 � un
� �

� �2Nu2
0Kh

2=Dt: ð2:26Þ

We see that the kinetic energy dissipated by the filter principally

depends on h2.

2.5.2. The Laplacian filter with m = ±1 in (2.17)

In the case of the two schemes based on m = �1 or m = +1 in

(2.17), and considering the spurious 2Dt oscillation (2.20), the en-

ergy balance of the filter is:

�
X

0;N�1

wnþ1=2 unþ1 � un
� �

� �Nu2
04K=Dt: ð2:27Þ

Compared to the result obtained with the Laplacian filter used in

M08 (e.g. (2.21)), this energy balance is negative.

As far as the physical oscillation (2.22) is considered, the energy

balance is:

�
X

0;N�1

wnþ1=2ðunþ1 � unÞ � �
X

0;N�1

2u2
0K sin

2ðhÞ

� 1� cosð2xnDtþ 2hþ 2uÞ½ �=Dt; ð2:28Þ

in the case of m = �1 and

�
X

0;N�1

wnþ1=2 unþ1 � un
� �

� �
X

0;N�1

2u2
0K sin

2ðhÞ

� cosð4hÞ � cosð2xnDt � 2hþ 2uÞ½ �=Dt
ð2:29Þ

in the case of m = +1.

In both cases (e.g. m = ±1) and as expected from the discussions

in Section 2.3.2, the filter dissipates the physical mode, but amplify

the spurious oscillation since (2.27) is negative.

2.5.3. The Robert–Asselin filter

As shown in Section 2.2, the Robert–Asselin filter is numerically

equivalent to (2.4) and thus can be seen as a sequence of decentred

Laplacian filters cumulated from the beginning of the simulation.

As far as current values of the Robert–Asselin coefficient are con-

cerned (a typical value is v = 0.1), the terms of the discrete sum
P

q¼1;N�1ðv2 Þ
q o

2Ft�qDt

ot2
become negligible when q increases and

we have seen that retaining the first term (e.g. q = 1) leads to

the Laplacian filter used in M08. It is now convenient to approxi-

mate the Robert–Asselin scheme to the two first terms of the

discrete sum, namely:

oF

ot

t

¼ RHSt þ Dt

2

v

2

o
2Ft�Dt

ot2
þ v

2

� �2 o
2Ft�2Dt

ot2

" #

; ð2:30Þ

that can be expressed similarly as (2.1) (e.g. oF
ot
¼ ow

ot
þ RHS) provided

that w is suitably formulated, namely:

wnþ1=2 ¼ Dt

2

v

2
un � un�1
� �

=Dt þ v

2

� �2

un�1 � un�2
� �

=Dt

� �

: ð2:31Þ

Using (2.6), we obtain:

wnþ1=2 ¼ K un � un�1
� �

=Dt þ 2K2 un�1 � un�2
� �

=Dt2: ð2:32Þ

The latter corresponds to (2.17) withm = 0, plus 2K
Dt
times (2.17) with

m = �1. The dissipation of the spurious 2Dt oscillation (2.20) is thus

easily deduced from the previous sections, e.g. by using the energy

balances (2.21) and (2.26) (the latter is multiplied by 2K
Dt

and then

added to the former). We obtain:

�
X

0;N�1

wnþ1=2 unþ1 � un
� �

� þNu2
04K=Dt 1� 2K

Dt

� �

: ð2:33Þ

Since 2K
Dt

¼ v

2
is smaller than one, we have 0 < 1� 2K

Dt
< 1. This leads

to the following two remarks:

– First, the condition for the damping of the spurious oscillation is

satisfied since (2.33) is positive.

– Second, (2.33) is lower than (2.21) and thus the damping of the

2Dt spurious oscillation is more efficient in the case of the M08

Laplacian filter, or, alternatively, an equivalent damping effect is
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obtained with the Robert–Asselin filter but with a stronger

coefficient v. Supposing that KRA and KLP are the values of the

diffusion coefficient in (2.33) and in (2.21) respectively, this is

obtained provided that KRAð1� 2KRA

Dt
Þ ¼ KLP . Using (2.6) in order

to define vRA ¼ 4 KRA=Dt and vLP ¼ 4 KLP=Dt, this can be alterna-

tively formulated as:

v
RA 1� v

RA

2

� �

¼ v
LP; ð2:34Þ

or alternatively v
RA ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2vLP
p

� v
LP þ v

LP2

2
þ v

LP3

2
þ . . .. If the

diffusion coefficient used in the M08 Laplacian filter is such that

v
LP ¼ 0:1, (2.34) says that an equivalent damping effect of the spu-

rious 2Dt spurious oscillations is obtained with the Robert–Asselin

filter provided that vRA � 0:1056. We note that (2.6) and (2.34) are

anyway equivalent for very small v.

In a similar way, the dissipation of the physical oscillation

(2.22) can be deduced from (2.23) and (2.29). Compared to

(2.26), the rough estimate of the filter energy balance obtained in

the case of the M08 Laplacian filter (e.g. �2Nu2
0Kh

2=Dt þ . . .), the

Robert–Asselin filter leads to a slightly larger value, i.e.

�2Nu2
0Kh

2ð1þ 2K
Dt
Þ=Dt þ . . .. The physical mode is consequently

more dissipated in the case of the Robert–Asselin filter.

2.5.4. TD filters

We first consider the TD filter based on (2.19) with m = 1, that

is:

wnþ1=2 ¼ þK un � un�1
� �

=Dt � K un�1 � un�2
� �

=Dt: ð2:35Þ

As in Section 2.5.3, and now noting that (2.35) is simply (2.17) with

m = 0 minus (2.17) with m = 1, the energy balance of this filter is

simply deduced from previous calculus. In the case of the spurious

2Dt oscillation (2.20), the energy balance is given by (2.21) minus

(2.27), that is:

�
X

0;N�1

wnþ1=2ðunþ1 � unÞ � þNu2
08K=Dt: ð2:36Þ

This is twice the energy balance of the M08 Laplacian filter. We

thus deduce that a dissipation effect equivalent to that of the M08

Laplacian filter is obtained with a twice smaller coefficient K. In the

case of the physical mode (2.22), the filter energy balance is de-

duced from the difference of (2.23) and (2.29), that is:

�
X

0;N�1

wnþ1=2 unþ1 � un
� �

� �2Nu2
0K sin

2ðhÞ cosð2hÞ � cosð4hÞð Þ=Dt:

ð2:37Þ

As in the previous sections, we suppose that h (given by (2.24)) is

much smaller than one and we thus approximate (2.37) to

�2Nu2
0Kðh2 þ . . .Þð6h2 þ . . .Þ=Dt and obtain:

�
X

0;N�1

wnþ1=2 unþ1 � un
� �

� �12Nu2
0Kh

4=Dt: ð2:38Þ

The latter depends on h4 and is thus much smaller than the energy

dissipated by the M08 Laplacian filter (e.g. �2Nu2
0Kh

2=Dt).

We now consider the TD filter based on (2.19) withm = �1, that

is:

wnþ1=2 ¼ þK un � un�1
� �

=Dt � K unþ1 � un
� �

=Dt: ð2:39Þ

As far as the spurious 2Dt oscillation (2.20) is concerned, the fil-

ter energy balance is the same as for the m = +1 case, that is (2.36).

In the case of the physical mode (2.22), the filter energy balance is

deduced from the difference of (2.23) and (2.28), that is:

�
X

0;N�1

wnþ1=2 unþ1�un
� �

��2Nu2
0K sin

2ðhÞ cosð2hÞ�1ð Þ=Dt ð2:40Þ

when h < < 1 (2.40) can be approximated to:

�
X

0;N�1

wnþ1=2 unþ1 � un
� �

� þ4Nu2
0Kh

4=Dt: ð2:41Þ

As previously, (2.41) is several orders smaller than the energy bal-

ance of the M08 Laplacian filter. On the other hand, this filter no

longer behaves like a dissipation term because of the positive sign

in the right hand side of (2.41).

2.6. FD filter

At this stage, a combination of different TD schemes can be

considered in order to improve the selective properties of the

resulting filter. Practically, a linear combination of (2.35) and

(2.39) leads to:

wnþ1=2 ¼ þK un � un�1
� �

=Dt � 1� að ÞK un�1 � un�2
� �

=Dt

þ aK unþ1 � un
� �

=Dt; ð2:42Þ

with 0 6 a 6 1. We will see in a following section that this new fil-

ter can be seen as a forth derivative (hereafter FD) filter in the con-

tinuous time. The special case a = 0 corresponds to the TD filter with

m = 1 (that is (2.35)) and the case a = 1 to the TD filter with m = �1

(e.g. (2.39)). The corresponding energy balance is simply deduced

from an analogous linear combination of the results given in the

previous section. As far as the spurious 2Dt oscillation (2.20) is con-

cerned, the energy balance remains unchanged (that is 2.36). In the

case of the physical mode (2.22), the filter energy balance is (1 � a)
times (2.37) plus a times (2.40), that is:

�
X

0;N�1

wnþ1=2ðunþ1 � unÞ � �2Nu2
0K sin

2ðhÞðcosð2hÞ � a

� ð1� aÞ cosð4hÞÞ=Dt: ð2:43Þ

For h small enough, a Taylor development leads to:

cosð2hÞ � a� ð1� aÞ cosð4hÞ ¼ �4h2

2!
ð4a� 3Þ þ h4

4!
24 þ 44ða� 1Þ

� �

:

ð2:44Þ

The leading order term cancels for a ¼ 3
4
for which the filter effect on

the physical mode should be much smaller than that of the TD

filters. On the other hand, using a ¼ 3
4
and (2.44) in (2.43) leads to

�2Nu2
0K sin

2ðhÞ h4

4!
ð24 � 43Þ=Dt. As the latter expression is positive,

we can expect the time stepping scheme to be slightly unstable

when a ¼ 3
4
. We will see in Section 3.6 that a smaller value of the

tuning coefficient a is actually preferable, although a– 3
4
leads the

FD accuracy to recover the h4 dependency characterising the TD

filter.

2.7. Partial conclusions

(1) About the Laplacian and Robert–Asselin filters: the diffusive

impact on the physical mode is lower, and the filtering of the

2Dt oscillation is more efficient, in the case of the Laplacian

filter. However, the two methods tend to become equivalent

for small values of a and K.

(2) The generalised form of the Laplacian filter (based on (2.17))

dissipates the physical mode whatever the value of m in

(2.17). The 2Dt oscillation is dissipated ifm = 0 but amplified

ifm = ±1. This ambivalent behaviour is used to build a hybrid

(TD) filter that removes the spurious oscillations and leaves

the physical modes unchanged.

(3) As far as the 2Dt oscillation is concerned: for a dissipation

effect equivalent to that of the M08 Laplacian filter, K is

twice smaller in the case of the TD filter.
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(4) As far as the physical mode is concerned: the impact of the

TD scheme is several orders smaller than that of the Lapla-

cian filter. It behaves as a dissipation term when the scheme

is based on (2.19) with m = +1 and as an amplification term

when m = �1.

(5) A linear combination of these two TD schemes enforces the

selective properties of the filter. But the stability of the so-

called FD filter is conditioned to the use of an appropriate

tuning coefficient, still not defined at this stage of the paper.

3. The oscillation equation

3.1. Amplification factor

The physically based approach of the time filters properties pre-

sented in Section 2 is particularly attractive since it provided sev-

eral powerful conclusions with very little developments. On the

other hand, as the calculus were based on what can be considered

as rather restrictive hypothesis (the fact that u0 is maintained con-

stant over the time of integration of the energy balance, or the fact

that we considered small time step increments), further analysis

appears useful. For convenience (i.e. in order to easily distinguish

Section 2 and Section 3 in the following) Section 3 is referred to

as ‘‘mathematical’’ approach (meanwhile Section 2 is referred to

as ‘‘physical approach’’).

In the following, we examine the properties of various filters

through the analysis of the oscillation equation used in Williams

(2009). The latter is given by

dF

dt
¼ ixF: ð3:1Þ

The discrete formulation of (3.1) based on the LF time stepping

scheme combined to the M08 Laplacien (hereafter LP) filter is:

Fðt þ DtÞ ¼ Fðt � DtÞ þ v

2
ðFðtÞ � 2Fðt � DtÞ þ Fðt � 2DtÞÞ

þ 2ixDtFðtÞ: ð3:2Þ

In order to make comparisons with Williams’s study easier, we

adopted similar notations. We notably used (2.6) (e.g. v ¼ 4K
Dt
) in or-

der to make v appear in (3.2).

In the case of the TD scheme based on (2.19) with m = +1, and

once again using Williams (2009) notations, we have:

Fðt þ DtÞ ¼ Fðt � DtÞ þ v

2
ðFðtÞ � 3Fðt � DtÞ þ 3Fðt � 2DtÞ

� Fðt � 3DtÞÞ þ 2ixDtFðtÞ; ð3:3Þ

when m = �1 in (2.19), the TD filter leads to:

Fðt þ DtÞ

¼ Fðt � DtÞ þ v

2
ð3FðtÞ � 3Fðt � DtÞ þ Fðt � 2DtÞÞ þ 2ixDtFðtÞ

1þ v

2

:

ð3:4Þ

We note that (3.4) is an implicit scheme when (3.3) is explicit. In

the following, (3.4) is referred as to TDI and (3.3) as to TDE.

As in Williams (2009) we calculate the amplification factor

A = F(t + Dt)/F(t) associated to the different schemes considered in

the present study. As far as (3.2) (LP scheme) is concerned, the lat-

ter is obtained from:

A3 þ �v
2
� 2ixDt

� �

A2 þ ð�1þ vÞA� v

2
¼ 0: ð3:5Þ

The polynomial corresponding to the Robert–Asselin filter can be

found in Williams (2009) (see Eq. (11) with a = 1 in the Williams’s

paper), namely:

A2 � ðv þ ixDtÞAþ v � 1þ v ixDt ¼ 0: ð3:6Þ

In the case of the TDE (3.3) scheme, the polynomial is:

A4 þ �v
2
� 2ixDt

� �

A3 þ �1þ 3v

2

� �

A2 � 3v

2
Aþ v

2
¼ 0; ð3:7Þ

and in the TDI (3.4) case we obtain:

1þ v

2

� �

A3 þ �3v

2
� 2ixDt

� �

A2 þ �1þ 3v

2

� �

A� v

2
¼ 0: ð3:8Þ

There are 3 roots in the LP polynomial (3.5), 2 roots in the Asselin

polynomial (3.6), 4 roots in the TDE polynomial (3.7) and 3 roots

in the TDI polynomial (3.8). They are numerically computed using

the ‘‘roots finder’’ routine of a mathematical toolbox. Fig. 1 presents

the root corresponding to the physical mode (e.g. A = 1 for xDt = 0)

and the different ‘‘numerical mode’’ roots. As far as the diffusion

coefficient is concerned, we chose a commonly used value (i.e.

v = 0.1) for the LP filter. Taking (2.34) into account, a slightly higher

value is actually taken for the Robert–Asselin filter, i.e. v = 0.1056.

As far as the TDE and the TDI filters are concerned, v = 0.05, since

we have shown that their diffusive effect is comparable to that of

a LP filter but with a twice smaller coefficient.

First of all, Fig. 1 shows that the use of any of the considered fil-

ters (Fig. 1(b) corresponding to the Leap Frog scheme with no fil-

ter) leads to lower the stability of the LF scheme. As a matter of

fact, in all cases, one of the roots is outside of the unity circle for

some high enough values of xDt (within the range [0,1]), when

the roots obtained in the case of the LF scheme with no time filter

remain on the unity circle (as long as xDt 6 1). Being on the unity

circle does not mean that the LF scheme is exact but only that the

amplitude of the oscillation is correctly represented. Note that If

we extent the oscillation equation case to the case of the horizontal

momentum equations, this property actually becomes synony-

mous with energy conservation (Marsaleix et al., 2008). On the

other hand the LF introduces a well-known phase error (Durran,

1991).

3.2. Damping of the 2Dt oscillations

As previously mentioned, a particular well-known feature of the

LF scheme is to enable the existence of the ‘‘2Dt numerical mode’’.

Fig. 1(b) evidences this property with a ‘‘numerical mode’’ root

remaining on the unity circle whatever the time step within the

range 0 6 xDt 6 1. All the time filter schemes considered here lead

to a substantial damping of the 2Dt oscillation provided, in some

cases, that xDt remains lower than a critical value smaller than

one. As far as the TDE and LP filters are concerned, the critical value

for xDt is 0.802 and 0.951, respectively. These values depend on v.

They would be smaller if a higher coefficient had been chosen.

3.3. Robert–Asselin versus Laplacian filters

As far as the LP and Robert–Asselin filters are concerned, the

stability of the two corresponding time stepping schemes are quite

similar since thexDt critical value over which one of the two roots

crosses the unity circle is almost the same in both cases. We simply

note that the LF + RA scheme (critical xDt = 0.9485) is slightly less

stable than the LF + LP scheme (criticalxDt = 0.951). As long as the

physical mode is concerned, the physically based analysis (Section

2) suggests that the dissipative effect is lower in the case of the

Laplacian filter. As Fig. 1 is not really appropriate to evidence small

differences between schemes, Fig. 2 gives an alternative represen-

tation of the amplification factor around A � 1. The conclusions of

Section 2 are confirmed by Fig. 2, at least for a wide range of rele-

vant time steps (e.g. xDt < 0.86). This is not true anymore for
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xDt > 0.86 but we note that such large time steps are not really

representative of realistic applications.

3.4. TDE filter

Fig. 2 confirms that the dissipative effect on the physical mode

is much smaller with the TDE filter than with the Robert–Asselin

and the Laplacian filters. This rather satisfying behaviour is how-

ever tempered by the fact that the stability of the TDE filter is low-

er than that of the Robert–Asselin and Laplacian filters. Fig. 1

indeed shows that a ‘‘numerical mode’’ root crossing the unity cir-

cle for a relatively small time step (xDt = 0.802).

3.5. TDI filter

On the other hand, the numerical modes are well damped by

the TDI scheme whatever the time step value. Unfortunately, as

far as the physical mode is concerned, the behaviour of the TDI

filter is questionable. As expected from the physically based ap-

proach, the magnitude of the amplification factor is indeed bigger

than one, whatever the time step. As the latter remains very close

to one for a wide range of time steps, it is not clear whether the

TDI filter should be discarded or not. We actually may wonder

whether other possible forms of dissipation in the model

(depending on the numerical scheme, advection is for instance

potentially diffusive) can compensate for the inherently unstable
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Fig. 1. Amplification factor of the oscillation equation problem as a function of the time step. The physical mode is represented by a solid line and the numerical modes with

dashed lines. Labels indicate the value of the dimensionless time step xDt. Exact solution: a; Leap Frog with no filter: b; Asselin filter: c; Laplacian filter: d; TDI filter: e; TDE

filter: f; FD filter: g.
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nature of the LF + TDI time stepping scheme. We however note

that the behaviour of the LF + TDI depicted by Fig. 1(e) is very

similar to that of Fig. 3(c) in Williams (2009) obtained with a

LF scheme associated to a modified Robert–Asselin filter preserv-

ing a three-time-level mean state. This property of conservation

of the so-called RAW filter is ensured provided that a tuning coef-

ficient, conveniently introduced by the author, is equal to 1/2.

Williams (2009) underlines the unconditionally unstable nature

of the RAW filter in this special case and recommends the use

of a higher tuning coefficient in order to recover a conditionally

stable filter (Williams, 2011; Amezcua et al., 2011). In the light

of Williams’s results, we can reasonably expect the TDI filter to

be inappropriate in realistic simulations. This point will be actu-

ally assessed in Section 4.

3.6. FD filter

Fig. 1 shows some symmetries between the TDI and TDE short-

comings, suggesting that the latter could be eliminated, at least

partially, by a combination of the two filters. The FD filter pre-

sented in Section 2.6 actually corresponds to the following linear

combination:

a� TDI þ ð1� aÞ � TDE; ð3:8Þ

with 0 6 a 6 1. For the particular case a = 0.5, we may note that this

new filter can be seen as a discrete equivalent of:

oF

ot
¼ �KDt2

2

o
4F

ot4
: ð3:9Þ
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Fig. 1 (continued)
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We can be tempted to find an analogy with the bilaplacian scheme

often used as a spatial filter (Marchesiello et al., 2009). On the other

hand, this analogy is limited by a somehow unexpected negative

sign at the RHS of (3.9) and also by the fact that a = 0.5 is a priori

not the best setting since the energy analysis of the TDE and TDI fil-

ters (Section 2) actually suggests that a better compromise should

be found with a higher weight given to TDI in (3.8).

As far as the oscillation equation is concerned, the general for-

mulation of the LF associated to this hybrid filter leads to:
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Fig. 3. Modulus of the amplification error, |1 � A|, as a function of the dimensionless time step xDt and of the time filter scheme. The slope of the curves indicates of the Dt

dependency order of the errors (note the logarithmic axis). For guidance, straight lines of slope 2 and 4 are also drawn.
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Fig. 2. Amplification factor around A � 1 as a function of the dimensionless time step xDt and of the time filter scheme.

Table 1

Critical stability number xDt as a function of v and a (underlined values

corresponding to the best setting of the tuning coefficient a).

v = 0.05 v = 0.1 v = 0.2

a = 0.5 0.975 0.950 0.900

a = 0.52 0.976 0.953 0.907

a = 0.54 0.975 0.954 0.913

a = 0.57 0.969 0.951 0.916
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with the related polynomial:

1þ v

2
a

� �

A4 þ �vð1þ 2aÞ
2

� 2ixDt

� �

A3 þ �1þ 3v

2

� �

A2

� vð3� 2aÞ
2

Aþ v

2
ð1� aÞ ¼ 0: ð3:11Þ

Fig. 1(g) shows the amplification factor of the physical mode and of

the computational modes corresponding to (3.11). Fig. 1(g) is ob-

tained with the same diffusion coefficient than that previously used

for the TDE and TDI filters, i.e. v = 0.05. Clearly, the physical mode is

less impacted when the FD filter is used (see also Fig. 2). Beside, the

computational modes are efficiently dissipated. Note that several

values have been tested for the tuning coefficient a. The highest

Fðt þ DtÞ ¼ Fðt � DtÞ þ v

2
ðð1þ 2aÞFðtÞ � 3Fðt � DtÞ þ ð3� 2aÞFðt � 2DtÞ þ ða� 1ÞFðt � 3DtÞÞ þ 2ixDtFðtÞ

1þ v

2
a

: ð3:10Þ
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Fig. 4. Phase error as a function of the dimensionless time stepxDt and of the time filter scheme. (a) Absolute phase error (�). (b) Relative phase error. The slope of the curves

indicates of the Dt dependency order of the errors (note the logarithmic axis). For guidance, a straight line of slope 2 is also drawn.
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critical stability number, xDt = 0.976, is obtained with a close to

0.52. This result actually depends on the diffusion coefficient. In-

deed, when v = 0.1 (respectively, 0.2), the highest critical number,

xDt = 0.954 (respectively, 0.916), is obtained for a close to 0.54

(respectively, 0.57). These optimal values, as expected smaller than

the theoretical value mentioned in Section 2.6, are close to the

straightforward value a = 0.5 for which the FD stability remains

quite satisfying (see Table 1). In this latter case, the critical stability

number is indeed equal to 0.975 (respectively, 0.950 or 0.900) for

v = 0.05 (respectively, 0.1 or 0.2), that is very close to the optimised

setting. Consequently, a = 0.5 can be seen as an acceptable, v-inde-

pendent, default tuning of the FD scheme.

3.7. Partial conclusions and technical considerations

The analysis of the oscillation equation confirms the principal

conclusions of the physically based approach presented in Section

2. It notably confirms that the TDE and TDI filters have a much low-

er impact on the physical mode. Meanwhile the TDE and TDI filters

successfully suppress the spurious computational mode. However,

in the case of the TDE filter, this is true provided that the time step

remains lower than a relatively small (i.e. compared to other fil-

ters) critical time step. We also note that both physical and math-

ematical approaches predict an unstable behaviour of the TDI filter

concerning the physical mode. The latter is however relatively

slight so that we will check (using a realistic simulation presented

in Section 5) if it can be balanced by other forms of dissipation in

the model. Finally, as none of the TDE and TDI filters is completely

satisfying, the FD scheme ends up being a much better alternative.

Last, Fig. 3 confirms the Dt4 dependency of the amplitude error in

the case of the TD and FD filters, as well as the Dt2 dependency of

the LP and Robert–Asselin filters, provided that Dt remains small

enough, (accuracy becoming sensitive to higher orders contribu-

tions for large time steps).

The present paper is focussed on the attenuation of the signal

amplitude, leaving the phase errors problem for a future study. It

is however worth noting that the phase errors are not aggravated

by the different filters proposed here as low-diffusive alternatives

to the Robert–Asselin filter. Fig. 4a, giving the absolute phase error

as a function of the time step (parameters setting as for Fig. 1),

shows that the phase accuracy is very similar for all the filter

schemes within the first third of the range of stability. Noticeable

differences only appear for larger time steps, the Robert–Asselin

filter producing the largest errors and the TDE filter the smallest

ones. The relative phase errors (Fig. 4(b)) are Dt2 dependent, what-

ever the time filter, except forxDt close to one where the accuracy

is dominated by higher orders.

According to (3.2) and (3.4) the computation of F(t + Dt) using

the Laplacian or the TDI filters is based on F(t), F(t � Dt), F(t � 2Dt).

On the other hand, the use of the TDE or FD schemes requires the

storage of an additional state, e.g. F(t � 3Dt).

The memory storage induced by all these filters is thus heavier

than that of the Robert–Asselin and RAW filters, for which the

computation of F(t + Dt) only requires the knowledge of F(t) and

F(t � Dt) (Williams, 2009). In order to estimate the relative impact

on the overall model memory, we now look at the results of the

compilation of a wide spread open access model, namely the

pom98.f code (Blumberg and Mellor, 1987) available at http://

www.aos.princeton.edu/WWWPUBLIC/htdocs.pom. This code is

first compiled in its original version and then recompiled with

the additional arrays required by the aforementioned filters. Re-

sults are summarised in Table 2. As all the ocean models do not

use a turbulent closure scheme based on two prognostic variables

(the POM model actually uses the Mellor and Yamada 1982,

scheme), Table 2 considers two cases; case 1 where all the state

variables (e.g. including the turbulent variables) are concerned by

the time filter and Case 2 ignoring the turbulent variables. The

Laplacian and TDI filters lead to an overall memory representing

1.15 (case 1) or 1.1 (case 2) times that of the original code. These

values become 1.3 (case 1) or 1.2 (case 2) when the TDE and FD fil-

ters are concerned. Let us note that for a given three dimensional

grid, several models can have quiet different memory require-

ments. Ezer et al. (2002) for instance reported that the ROMS mod-

el is 46/29 times heavier than POM. As a matter of fact, we can

expect models based on low order numerical schemes to require

less storage than high order models for which the implementation

of the FD filter would imply a more modest increase of the overall

memory.

As far as the computation time is concerned, the most sophis-

ticated filter considered in this study (e.g. the FD filter in its con-

servative form presented in the Appendix A) represents 1.8 times

the computation expense of the Robert–Asselin filter, when the

basic formulation of the FD filter (3.10) requires only 1.3 times

that of the Robert–Asselin filter. The time filters considered here

are anyway simple compared to the numerical complexity gener-

ally found amongst the other terms of the momentum and scalars

equations (advection, pressure gradient schemes, turbulence clo-

sure, etc.). As a consequence, the computation expense induced

by the time filter only represents a small ratio of the overall cost.

Again considering the case of the pom98.f (we run the test case

provided with the pom98.f code), we notice that the Robert–

Asselin filter requires roughly 5% of the overall computation time.

This cost would certainly be smaller in models using more

sophisticated methods than those implemented in the POM code

(Marchesiello et al., 2009; Shchepetkin and McWilliams, 2003;

Chu and Fan, 1997).

4. Numerical experiments

The different filters are now tested using numerical simulations.

The first test is based on the oscillation equation. Then we consider

the case of internal waves propagating in a 2 dimensional vertical

plan. Last we consider the case of a 3D realistic simulation. These

tests are made with the 3D circulation ocean model described in

Marsaleix et al. (2008, 2009).

4.1. Oscillation equation

The fully discrete form of the Oscillation equation analyzed in

Section 3 is obtained by solving the equations for X and Y, the real

and imaginary components of F = X + iY (details in Williams

(2009)), that is:

oX

ot
¼ �xY;

oY

ot
¼ þxX:

ð4:1Þ

The different discrete forms related to (4.1) depend on the time fil-

ter scheme. They are simply deduced from the discrete expressions

given in Section 3 and Section 4, then replacing F by X or Y and ixF

by �xY or +xX.

Table 2

Relative increase of the overall memory requirement of the pom98.f code depending

on the time filter scheme. Case 1: all the states variables are concerned, including the

Mellor and Yamada (1982) turbulent scheme. Case 2: the turbulent variables are

ignored.

LP, TDI TDE, FD

Case 1 1.15 1.3

Case 2 1.1 1.2
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The time step is such that xDt ¼ 2p
100

. If we were considering a

semi-diurnal signal,Dtwould be of this order of 400 s, which could

be considered as a possible realistic value for a circulation ocean

model. On the other hand, the diffusion coefficient is set to

v = 0.1 in order to remain consistent with the previous sections.

The initial discrete state is given by the exact solution. Fig. 5 shows

the different discrete solutions and the exact solution after 200

oscillations. The computational mode does not appear in the solu-

tion obtained with the LF alone. This is an expected result since the

LF scheme neither amplifies nor damps the computational mode.

The amplitude of the oscillation is perfectly conserved by the LF

scheme alone. However, Fig. 5 evidences the well-known lack of

accuracy of the LF scheme as long as the phase is concerned. In-

deed, after 200 oscillations, the phase error is about 48� degrees,

which is not negligible. On the other hand, as the leading order

terms of the LF scheme error depend on Dt2, decreasing the time

step is an efficient way to reduce the errors. The dissipative impact

of the low order time filter on the physical mode is obvious. The

Laplacian and Robert–Asselin schemes almost suppressed roughly

90% of the physical mode. Between these two filters, the Laplacian

scheme eventually appears as a ‘‘less worse’’ option. The benefit of

the other filters is obvious. The LF solution is quasi unchanged by

the use of the FD filter. The solutions obtained with TDE and the

TDI filters are not that good but remain close to that of the LF

scheme alone. We note that the TDI filter tends to aggravate the

phase error of the LF scheme. On the other hand, the TDE scheme

tends to diminish it. The reduction of the phase error is anyway

too small to see in the TDE filter a way to overcome the lack of

accuracy of the LF scheme.

4.2. Internal Gravity Waves in a 2DV plan

The following tests are based on simulations of internal waves

propagating in an idealised, non rotating, flat, continuously strat-

ified ocean. They are performed with the free surface sigma coor-

dinate SYMPHONIE ocean model described in Marsaleix et al.

(2006, 2008, 2009a). Applications of this model to realistic cases

of gravity waves in the North-East Atlantic Ocean can be found

in Pairaud et al. (2008, 2010). The following simulations are in-

spired from Floor et al. (2011), and Marsaleix et al. (2009b). The

horizontal resolution is 1 km. The vertical grid consists of 30 reg-

ularly spaced sigma levels. The density field is horizontally homo-

geneous and linear in z: dq/dz = 10�3kg m�4. The background

reference density is q0 = 1000kg m�3. The corresponding Brunt–

Väisälä Frequency is N ¼ ð�gq�1
0 dq=dzÞ0:5 ¼ 3:132� 10�3 s�1. The

constant sea-floor depth is h = 1000 m. The two dimensional ver-

tical grid is 2000 km long. The first baroclinic mode of the analyt-

ical solution of the normal mode problem described in Gill (1982)

is used as boundary conditions for the velocity at the incoming

(x = 0) lateral open boundary. Practically the forcing velocity is

set to:

u ¼ u0 cosðpz=hÞ sinðxt � kxÞ x ¼ 0: ð4:2Þ

The wave amplitude is u0 = 0.001 ms�1. This choice of small ampli-

tude intends to limit the dissipation related to the turbulence clo-

sure and the bottom friction. Besides, centred, few diffusive,

advection schemes are purposely used, so that dissipation is essen-

tially caused by the different filters of the time stepping scheme.

The period of waves is 12 h. The theoretical phase speed is c = Nh/

p � 0.996 ms�1 and the wave length is l � 43 km. The simulation

is stopped before the waves reach the outgoing boundary in order

to avoid any problem of spurious reflected waves. The theoretical

maximum time step depends on the horizontal resolution and the
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Fig. 5. Numerical solution of the oscillation equation (X in Eq. (4.1)) as a function of time (in number of oscillation periods) after about 200 oscillations.

Table 3

First column: diffusion coefficient. Second column: approximated (since empirically

determined) maximum allowed time step as a function of the time filter scheme.

Third column: the latter is divided by the theoretical maximum time step permitted

by the Leap Frog scheme with no time filter.

Filter v Dtmax Dtmax=Dt
theory
max

Robert–Asselin 0.1058 476s 0.948

Laplacian 0.1 477s 0.950

TDE 0.05 406s 0.809

TDI 0.05

FD 0.05 488s 0.972
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phase speed. In the case of the Leap-Frog scheme with no time filter

the latter is Dttheorymax ¼ 0:5Dx=c � 502 s (Nycander and Döös, 2003).

Table 3 gives the maximum permitted time step depending on

the time filter scheme used in the simulation, empirically obtained

by increasing the time step until the model blows up.

As far as the TDI filter is concerned, the simulation blows up

whatever the value of the time step. As previously mentioned,

we tried to control the expected growth of the physical mode

through other dissipative processes in the model. We notably re-

placed the centred advection scheme of the momentum and tracer

equations by an upwind scheme, since the latter is known for its

strong diffusive properties. Our attempt was unfortunately unsuc-

cessful. Actually, the diffusive effect of the upwind scheme prefer-

entially acts at the grid mesh scale and is consequently rather

powerless to prevent the growth of the physical mode. As a matter

of fact, its wave length (43 km) is much larger than the grid mesh.

The maximum time step permitted by the TDE scheme is 406 s

that is 80, 9% of the theoretical maximum time step. The stability of

the Laplacian filter is a little bit better than that of the Robert–Ass-

elin filter. The FD filter is the most stable scheme amongst the con-

sidered filters. Last, we note that Table 3 is consistent with the

maximum time steps allowed by the oscillation equation for the

different time filter schemes (see Fig. 1), as expected from previous

theoretical studies (see for instance Eq. (7) in Shchepetkin and

McWilliams, 2005).

Fig. 6 shows the surface velocity after 20 days, at 1000 km from

the wave source (e.g. approximately 23 wave lengths). All the sim-

ulations use the same time step (Dt = 400 s). Fig. 6 confirms the

comments made on Fig. 5. The LP and RA filters have a strong dis-

sipative impact on the physical mode, the RA filter being the worse

of the two filters. The amplitude of the physical mode is much bet-

ter preserved with the FD and TDE filters, both filters giving very

similar results. The phase lag reported in the previous section be-

tween the TDE and FD filter is too small to be detected on Fig. 6

but can be evidenced by a more careful examination (not shown).

The latter is about 0.5� in favour of the TDE scheme. This difference

is anyway far from being enough to compensate for the phase er-

ror. The latter is about 14�.

5. Conclusion

Four alternative schemes have been analysed with the aim of

finding an efficient solution to the well-known shortcoming of

the Robert–Asselin filter, namely the numerical dissipation of the

physical mode.

Provided that their respective diffusion coefficients are tuned in

order to obtain an equivalent damping effect on the computational

mode, the Laplacian filter (Marsaleix et al., 2008) seems to be a bet-

ter option than the Robert–Asselin filter. Indeed, the physical mode

is less impacted and the stability of the time stepping scheme is

stronger in the case of the Laplacian filter. Nevertheless, the behav-

iour of the two filters remains rather similar and for a sufficiently

small value of the diffusion coefficient they can even be considered

equivalent. The Laplacian filter is consequently not a really con-

vincing alternative to the Robert–Asselin filter.

The analysis of the role of the time filter scheme in the discrete

kinetic energy balance suggested the building of two higher order

time filters. One is an explicit scheme based on 4 points (TDE) and

the other one is a 4 points implicit scheme (TDI). Unfortunately,

none of them is completely satisfying. Indeed, as long as the com-

putational mode is concerned, the stability of the TDE scheme is

sensibly lower than that of the other filters. On the other hand,

the physical mode appears unstable, whatever the time step, in

the case of the TDI filter.

A 5 points filter finally appeared as the best option amongst the

schemes considered in the present study. Indeed, the FD filter let

the physical mode almost unchanged and enables a larger time step

compared to the other filters. On the other hand, the FD filter needs

more computing memory storage than the RAW filter, a low diffu-

sive alternative to the Asselin filter proposed by Williams (2009).

Interestingly, the TDE filter is the only scheme (amongst the

schemes that have been considered here) able to reduce the phase

error of the Leap-Frog scheme. The improvements (noticeable in

our numerical tests) are however too small to really overcome

the advantages of the FD filter. On the other hand the well-known

problem of phase errors of the LF scheme remains unsolved by the

FD filter.
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Fig. 6. Internal waves propagating in a two dimensional vertical plan. Surface velocity after 20 days around x = 1000 km. The time step is Dt = 400 s. The diffusion coefficient,

v, is given in Table 3.
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Appendix A. The case of moving vertical levels

In sigma coordinate free surface ocean models, the depth of ver-

tical levels is not constant in time. Considerations on the conserva-

tion properties of the time stepping and advection schemes

generally lead to a particular formulation of the model equations,

practically:

oDzF

ot
¼ oDzw

ot
þ DzRHS; ðA1Þ

where Dz is the thickness of the vertical layers. We note that the

comments about the Green-Ostrogradski theorem made in Section

2.1 still apply to (A1). The discrete expression corresponding to

(A1) is:

Dznþ1Fnþ1 � Dzn�1Fn�1

2Dt
¼ Dznþ1=2wnþ1=2 � Dzn�1=2wn�1=2

Dt

þ DznRHSn; ðA2Þ

where Dznþ1=2 ¼ ðDzn þ Dznþ1Þ=2. As Dznþ1 is already determined at

this stage, Fnþ1 is simply obtained from:

Fnþ1 ¼ Dzn�1Fn�1 þ 2Dznþ1=2wnþ1=2 � 2Dzn�1=2wn�1=2 þ 2DtDznRHSn
� �.

Dznþ1:

ðA3Þ

As far as the FD filter is concerned:

wnþ1=2 ¼ K

Dt
Fn � Fn�1 � a Fnþ1 � Fn

� �

� 1� að Þ Fn�1 � Fn�2
� �h i

¼ v

4
�aFnþ1 þ 1þ að ÞFn � 2� að ÞFn�1 þ 1� að ÞFn�2
h i

:

ðA4Þ

Using (A4), (A1) leads to:

Fnþ1 ¼ Dzn�1Fn�1 þ Dznþ1=2 v

2
1þ að ÞFn � 2� að ÞFn�1 þ 1� að ÞFn�2

h in

� Dzn�1=2 v

2
�aFn þ 1þ að ÞFn�1 � 2� að ÞFn�2 þ 1� að ÞFn�3
h i

þ 2DtDznRHSn
o.

Dznþ1 þ Dznþ1=2 av
2

n o

: ðA5Þ

The TDI and TDE filters are simply obtained by using (A5) with a = 1

or a = 0 respectively.
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