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In situ measurements of kinetic energy dissipation rate ε and estimates of eddy viscosity KZ from the Gulf of Lion
(NW Mediterranean Sea) are used to assess the ability of −k ɛ and −k ℓ closure schemes to predict microscale
turbulence in a 3-D numerical ocean circulation model. Two different surface boundary conditions are con-
sidered in order to investigate their influence on each closure schemes’ performance. The effect of two types of
stability functions and optical schemes on the −k ɛ scheme is also explored. Overall, the 3-D model predictions
are much closer to the in situ data in the surface mixed layer as opposed to below it. Above the mixed layer
depth, we identify one model’s configuration that outperforms all the other ones. Such a configuration employs a
−k ɛ scheme with Canuto A stability functions, surface boundary conditions parameterizing wave breaking and

an appropriate photosynthetically available radiation attenuation length. Below the mixed layer depth, relia-
bility is limited by the model’s resolution and the specification of a hard threshold on the minimum turbulent
kinetic energy.

1. Introduction

Turbulence is an essential mechanism for the transport of energy,
salinity, and suspended and dissolved matter. Turbulent fluxes of such
quantities are the result of correlated, small-scale fluctuations of the
velocity field and of the transported quantity itself. The prevalent tur-
bulence production mechanisms in coastal ocean are: mean shear, un-
stable stratification, Langmuir circulation (Farmer and Li, 1995) and
breaking surface waves (Agrawal et al., 1992). For coastal ocean, mean
shear is mainly generated by the action of winds and tides, but also by
surface waves and baroclinic flows (e.g., Thorpe, 2005), including
nonlinear internal waves (Toole and Schmitt, 1987). Unstable stratifi-
cation results from surface processes such as surface cooling, evapora-
tion or differential advection (e.g., Kantha and Clayson, 2000). De-
struction of turbulence occurs by transformation into potential energy
during stable stratification or viscous dissipation into heat (e.g.,
Kantha and Clayson, 2000). The complexity of these processes by
themselves and of their interactions requires numerical models to cover
a wide range of spatio-temporal scales and Reynolds number (e.g.,
Burchard et al., 2008). This is especially true in the upper ocean where
all the above phenomena concur together to generate turbulence.

Upper ocean connects –through various turbulent mechanisms– the

surface forcing from the atmosphere with the quiescent deeper ocean
where heat and fresh water are sequestrated and released on longer
time and global scales (Ferrari and Wunsh, 2009). Also, upper ocean
turbulence plays an important role in biological phenomena by, for
example, determining phytoplankton growth rate (Thomas and
Gibson, 1990), influencing primary production (Flierl and Davis, 1993)
and the onset of blooms (Taylor and Ferrari, 2011).

The complexity of modelling such mechanism within ocean circu-
lation numerical models gave rise to several approaches. In particular,
many turbulence closure schemes have been proposed. The ones most
frequently found in the ocean modelling community’s literature are the
−k kℓ by Mellor and Yamada (1982); the −k ɛ by Rodi (1987); the
−k kω by Wilcox (1988); the −k ℓ by Gaspar et al. (1990) and the KPP

by Large et al. (1994). Following recent numerical modelling literature
(Ilicak et al., 2008; Reffray et al., 2015), in the present study, we
consider the −k ɛ and −k ℓ second moments closure (SMC) schemes.
Note that other kinds of closure schemes such as the KPP (Large et al.,
1994) are not considered here being not as well suited as the other two
schemes for a comparison with in situ data of kinetic energy dissipation
rate ε.

Additional complexity is added to the modelling by the interplay of
the SMC and the choice of boundary conditions. The choice of surface
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and bottom boundary conditions can also profit from a vast literature
(e.g., Craig and Banner, 1994; Stacey and Pond, 1997; Estournel et al.,
2001; Warner et al., 2005), aiming at modelling different forcing me-
chanisms. Furthermore, different stability functions can be chosen in
order to include the effect of the parameterized non-local moments and
pressure strain correlations in the dynamical equations (e.g., Galperin
et al., 1988; Kantha and Clayson, 1994; Canuto et al., 2001). The choice
of the optical scheme is particularly important considering the high
number of studies coupling Symphonie to biochemical models as it can
influences turbulent fluxes and nutrient availability.

Thus, the in situ validation of the closure schemes, boundary con-
ditions, stability functions, optical scheme and their interplay is fun-
damental for assessing the reliability of numerical models (Warner
et al., 2005; Peters and Baumert, 2007; Arneborg et al., 2007; Ilicak
et al., 2008).

The current study presents the comparison of kinetic energy dis-
sipation rate ε measurements and vertical eddy viscosity KZ estimates
issued from a Self Contained Microstructure Profiler (SCAMP) with the
predictions of a 3-D numerical ocean circulation model (Symphonie;
Marsaleix et al., 2008) obtained with different model’s setup. The aim is
to gain some insights on which scheme and/or boundary conditions
permit to have the representation of turbulence activity closer to the
observations.

Microstructure measurements with the SCAMP profiler have already
been used for turbulence estimates in lakes and ocean (e.g., Ruddick
et al., 2000; Sharples and Moore, 2001; Burchard et al., 2002; Anis and
Singhal, 2002; Sharples et al., 2003; Peters et al., 2009; Steinbuck et al.,
2010; 2011; Cuypers et al., 2012; Jurado et al., 2012; Bouffard and
Boegman, 2013). The dataset we exploit is described in Section 2. It
consists of measurements taken in a coastal environment in the Gulf of
Lion (GoL).

The GoL is located in the northwestern Mediterranean Sea and is
characterized by a large continental margin (Fig. 1) and complex

hydrodynamics (Millot, 1990). Its circulation is strongly influenced by
the southwestward along-slope Northern Current. This density current
flows in a cyclonic way and constitutes a barrier between the coastal
waters of the continental shelf from the open northwestern Mediterra-
nean Sea (Alberola and Millot, 1995; Sammari et al., 1995; Petrenko,
2003). Cross-shore exchanges between the GoL and offshore waters are
regulated by wind induced dynamics (Estournel et al., 2003; Hauser
et al., 2003; Petrenko et al., 2017) and by processes associated with the
Northern Current, such as intrusions into the continental shelf and
barotropic and baroclinic instabilities (Conan and Millot, 1992; Flexas
et al., 1997; Petrenko et al., 2005; Barrier et al., 2016). The Gulf of Lion
is a suitable case study because of the high number of physical (Qiu
et al., 2010; Hu et al., 2011), sediment dispersion (Bourrin et al., 2011)
and biochemical (Pinazo et al., 2001; Herrmann et al., 2014) numerical
studies carried out there.

Symphonie has already been validated on a variety of different as-
pects like current modelling and eddy generation (Rubio et al., 2009;
Hu et al., 2011; Kersalé et al., 2013), river plume dynamics (Reffray
et al., 2004; Gatti et al., 2006) and dense water formation (Dufau-
Julliand et al., 2004; Estournel et al., 2016). But a study of the different
SMC that the user can implement in the Symphonie code has not yet
been done. In particular, the modeling of the near-surface physical and
biogeochemical processes is sensitive to the choice of SMC and the
computed KZ values (Fraysse et al., 2014).

In general, we can regard all modeled large-scale circulation fea-
tures in an integrated fashion as they result from successive calculation
steps and approximations. Hence, a major difficulty in validating nu-
merical models –beside the high number of variables at play– is the
possible compensation of different errors between each other. This fact
makes difficult to attribute a specific amount of the total error on a
certain quantity to a specific step in its calculation, in the present case
the turbulence scheme. Here, our goal is to assess the model predictions
focusing on turbulence modelling in the most realistic configuration we

Fig. 1. Numerical model domain. The color code represents

the water depth. The Gulf of Lion is magnified in the smaller

box where the measurements sites are represented by red

dots. Note that many profiles were taken at the same location

over time. The black lines in the smaller box represent the 0,

50, 100, 500, 1000 and 1500 m isobaths. (For interpretation

of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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can achieve: 3-D dynamics with realistic forcing. Indeed, mixing has a
primary role in influencing the large-scale circulation motion (Rhines,
1988; Ferrari, 2014). Nevertheless, the 3-D nature of the model brings
in play an augmented number of numerical issues, among which
spurious numerical diffusion (Marsaleix et al., 2008; Marchesiello et al.,
2009; Hu et al., 2009) that are usually neglected in similar, but 1-D,
studies (Gaspar et al., 1990; Burchard et al., 2002; Reffray et al., 2015).

The manuscript is organized as follows. In Section 2 we describe the
properties of the numerical model, the microstructure in situ data and
how we carry out the comparison between them and the numerical
data. In Section 3 we report the results of our analysis and we discuss
them in Section 4. In Section 5 we summarize the conclusions of our
study.

2. Materials and methods

2.1. Numerical modelling

The numerical model Symphonie is a 3-D primitive equations, free
surface, sigma coordinate ocean model, based on Boussinesq and hy-
drostatic approximations (Marsaleix et al., 2008; 2009; 2012). Com-
ponents of current, temperature and salinity are computed on a C-grid
(Arakawa and Lamb, 1977) using a classic finite difference method
detailed in Marsaleix et al. (2006); 2008). This model has been ex-
tensively used in studies of the Mediterranean Sea, mostly at the scale of
the continental shelves (Ulses, 2005; Estournel et al., 2003; 2005),
generally comparing satisfactorily with available in-situ observations of
classical hydrological quantities. Symphonie has also been coupled to
biochemical models for studies that demonstrated the impact of the
turbulence level on determining the vertical flux of nutritive salts, the
nutricline depth and –as a consequence– the results given by the bio-
chemical models (Ulses et al., 2016; Herrmann et al., 2013). However, a
study of the consequences of choosing a certain model’s implementa-
tion of the Symphonie code has not yet been done. To fill this gap, we
compare the model predictions of ε and KZ with the values measured
with the SCAMP profiler.

The model domain we use, shown in Fig. 1, is that of
Estournel et al. (2016). Note that all the measurements sites are far
from the open boundaries. The horizontal resolution of the model grid
is 1/110° (about 1 km). All the numerical experiments we perform
cover the whole period in which in situ data are available: from 1 July
2010 to 13 March 2014, plus ten weeks of spin up.

In the vertical the model exploits a generalized sigma coordinate
with 50 levels. Surface fluxes are computed using the bulk formulae by
(Large and Yaeger, 2004) and the 3-h ECMWF by
Estournel et al. (2016). The boundary condition for ε is deduced with a
length scale reasoning from the value of the gradient Richardson
number (i.e., the ratio between buoyant production of turbulence and
shear production of turbulence); see Estournel and Guedalia (1987),
Michaud et al. (2012) and Appendix A for more details. In order to
simulate the limiting effect of stable stratification, following
Galperin et al. (1988), the minimum of ε is linked to the minimum
turbulent kinetic energy value kmin through:

= k
N

ɛ
0. 55

0.53 2
min min

3

(1)

As a default in Symphonie, = −k 10 kg m /smin
8 2 2; this implies

= −ɛ 10 m /smin
12 2 3. The choice of this threshold follows from under-

estimating the more standard value of = −k 10 kg m /smin
6 2 2 (Gaspar

et al., 1990; Burchard et al., 2002), that is based on the estimate of the
internal wave activity.

Similar low-frequency buoyancy conditions are maintained for all
numerical experiments using a nudging procedure on temperature and
salinity toward the corresponding MERCATOR fields (product
PSY2V4R4). The nudging time scale is 30 days, enabling the free de-
velopment of higher frequencies (including those of the turbulence

closure scheme), and, at the same time, ensuring that the different
turbulence schemes are tested in similar general conditions of stratifi-
cation.

We choose the −k ɛ (Burchard and Bolding, 2001) and −k ℓ

(Gaspar et al., 1990) closure schemes because, other than being the
more exploited by Symphonie’s users, they are also widely used in the
wider scientific community. Reffray et al. (2015) showed that in a 1-D
case the −k ɛ scheme gives more reliable mixing estimate with respect
to other schemes widely used in the literature: −k kl, −k ω and −k ℓ.
The −k ℓ scheme in Reffray et al. (2015) is based on
Gaspar et al. (1990) but simplified for 1-D applications. We want to test
if the original scheme by Gaspar et al. (1990) performs better than −k ɛ

in a 3-D case.
Moreover, our questioning the numerical results’ sensitivity on the

value of kmin follows from the study by Gaspar et al. (1990). Therein
the authors encouraged (but not implemented) the use of a para-
meterization kmin rather than fixing a hard value. Herein we test if a
good result can be achieved in a simpler way by specifying a different
value of kmin .

A study by Burchard and Bolding (2001) showed that, in a 1-D study
of temperature and mixed layer depth data of the well-known dataset
OWS Papa (northern Pacific), the −k ɛ closure scheme performs better
when employing the stability functions proposed by Canuto
et al. (2001) -commonly called Canuto A- rather than the ones by
Kantha and Clayson (1994), Rodi (1980) and Hossain (1980). On the
other hand, Ilicak et al. (2008) showed that –in a 3-D study of the Red
Sea outflow– the stability functions of both Canuto et al. (2001) and
Kantha and Clayson (1994) perform similarly. We want to further in-
vestigate the different performance of these two stability functions in a
3-D case. Note also that this study –as opposed to Burchard and
Bolding (2001) and Ilicak et al. (2008)– has a strong focus on micro-
structure measurements and not only on more standard quantities like
mixed layer depth, temperature and salinity.

In the literature there are different formulations for KZ. In parti-
cular, it can include the molecular diffusivity DT (so that we always
have KZ>DT; e.g., Burchard and Bolding, 2001) or not (e.g.,
Han, 2014). Here we want to clarify the differences (if any) between the
two approaches.

Not having the necessary computational power to explore all the
possible combinations of these factors in a 3-D model (as done for ex-
ample in a similar study in the 1-D case by Reffray et al. (2015), and in
a 3-D case by Ilicak et al. (2008) but on a shorter time span), we restrict
the study to a subset of combinations.

In particular, nine different numerical experiments employing dif-
ferent combinations of turbulent closure schemes, boundary conditions,
stability functions, values of the minimum of turbulent kinetic energy
and optical schemes are analyzed here (see Table 1 for a concise

Table 1

Set of numerical experiments performed for this study.

SMC Boundary
Conditions

kmin [m2/s2] Stability
Functions

lPAR

KEset −k ɛ Equilibrium −10 8 Kantha and
Clayson (1994)

11 m

KEflu −k ɛ Flux −10 8 Kantha and
Clayson (1994)

11 m

KEfluCAN −k ɛ Flux −10 8 Canuto
et al. (2001)

11 m

KEfluCANMINk −k ɛ Flux −10 7 Canuto
et al. (2001)

11 m

KEfluCANMINkOpt −k ɛ Equilibrium −10 7 Canuto
et al. (2001)

23 m

KLset −k ℓ Equilibrium −10 8 none 11 m

KLflu −k ℓ Flux −10 8 none 11 m

KLsetMINk −k ℓ Equilibrium −10 7 none 11 m

KLfluMINk −k ℓ Flux −10 7 none 11 m
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summary).
Five of these numerical experiments employ a closure scheme based

on a −k ɛ approach (Burchard and Bolding, 2001) —hereafter marked
by the prefix KE. The other four numerical experiments employ a −k ℓ

scheme based on Gaspar et al. (1990) —hereafter marked by the prefix
KL. Details of these nine numerical experiments can be found in
Appendix B. We test the effect of two possible surface boundary con-
ditions. The first one (marked by a suffix set) supposes equilibrium
between the production and dissipation terms in the dynamic equation
for k (see Eq. (B.1)). The second one (marked by a suffix flu), takes into
account the effect of breaking waves of all scales, as suggested by
Craig and Banner (1994); see Eq. (A.1) and Appendix A for details. The
numerical experiments exploiting the KE scheme and using the stability
by Canuto et al. (2001) –instead of the ones by Kantha and
Clayson (1994)– are marked by the suffix CAN. Simulations with a
higher minimum TKE – −10 kg m/s7 2 instead of −10 kgm/s8 2– are marked
with a suffix MINk.

All the numerical experiments with a higher threshold on k are such
that KZ>DT. Therefore, in the other numerical experiments the total
diffusivity could be smaller than the molecular one.

One numerical experiment (marked by the suffix Opt) investigates
the effect of the attenuation length of the penetrative solar radiation
Qsr. Qsr is parameterized as a two-band exponential scheme
(Maraldi et al., 2013):

= + −− −[ ]Q z Q Re R e( ) (0) (1 )sr sr
z l z l/ / PAR (2)

where the first right-hand term parameterizes the attenuation of red
and near-infrared radiation (whose attenuation length is =l 0.35 cm);
and the second right-hand term is the one of the visible and ultra-violet
radiation; lPAR is the photosynthetic available radiation diffuse at-
tenuation length. Qsr(0) is the fraction of the available penetrative solar
radiation at the surface assuming a constant albedo of 6.6% and R =
0.54 determines the fraction in each band of Qsr(0). Following
Maraldi et al. (2013), the lPAR default in Symphonie is set to 11m.
However, this value has to be considered as an annual climatological
estimate of the photosynthetic available radiation. With this numerical
experiment we test the effect of the seasonality of lPAR by setting its
value to 23m coherently with the fact that most of the in situ mea-
surements were acquired in September when we expect a low biological
activity in the surface boundary layer of the GoL.

With this set of numerical experiments we can answer three prin-
cipal questions: 1) which SMC between −k ɛ and −k ℓ performs better
with respect to our dataset? 2) what is the effect of the boundary
conditions on the results of the numerical numerical experiments? and
3) what is the effect of the two stability functions?

2.2. SCAMP measurements

An in situ estimate of ε can be derived from high-resolution vertical
profiles of temperature T. Batchelor (1959) derived the spectral shape
of a conserved scalar field that is passively advected by an in-
compressible turbulent fluid with a molecular Prandtl number =Pr ν D/

greater than 1 (seawater has =Pr 7 at 20 °C), where ν and D are re-
spectively the molecular viscosity and the molecular diffusivity of the
scalar. In the present case the scalar is the temperature. Gibson and
Schwarz (1963) derived the one-dimensional Batchelor spectrum E(K)
of temperature gradient as a function of the rate of dissipation of
temperature variance χT, the kinetic energy dissipation rate ε, the
molecular diffusivity of temperature DT and the circular wavenumber
K:

=E K f χ D K( ) ( , , )T T B (3)

where KB is the inverse of the Batchelor length scale describing the
length scales at which fluctuations in scalar concentration (temperature
in this case) can still exist before being evened out by molecular

diffusion. Therefore, (see Ruddick et al., 2000; Luketina and Imberger,
2000 and Steinbuck et al., 2009 for details) once measured the tem-
perature vertical gradient at the millimeter scale and derived χT and KB

by fitting the Batchelor spectrum, a measure of ε follows from
(Batchelor, 1959):

= νD

K
ɛ T

B

2

4 (4)

The temperature gradient profiles were measured with a SCAMP
profiler. This instrument is equipped with a 100 Hz FP07 glass rod
microthermistors (sensitivity of 0.001 °C).

Our SCAMP was deployed in an upward configuration. After de-
ployment, it sinks to a predetermined depth following an oblique tra-
jectory and then rises up vertically at an approximately constant velo-
city = −U 10 m/s1 . This type of trajectory permits the SCAMP to get
away from the ship and be free from the influence of the ship’s wake
when rising up in an undisturbed water column. This allows to have
reliable measurements of ε and KZ near the sea surface (Anis, 2006).

The dataset (spanning the period 2010–2014) for this analysis
consisted of 126 profiles of variable vertical extent —between 1 m
below the surface and 100 m depth— collected in different sites in the
Gulf of Lion (Fig. 1). The profiles were collected during various ocea-
nographic campaigns in the GoL conducted by the Mediterranean In-
stitute of Oceanography (MIO - Marseille, France). Because the SCAMP
measurements were opportunistically taken in cruises mainly not
dedicated to turbulence measurements, repeated casts were often not
possible. Data were collected mostly during summer and with meteor-
ological conditions favorable to operations with a small boat, generally
with wave heights less than half meter. Precipitation was always absent
or negligible. Surface buoyancy flux was positive for 115 profiles in-
dicating a gain of buoyancy by the ocean surface.

Temperature gradient spectra were computed from 128 points
(≈ 13 cm) windows without overlap. The choice of this segmentation
resulted from a sensitivity analysis using different segmentation
methods proposed in the literature (see Appendix C).

The vertical eddy viscosity coefficient KZ can be derived on the basis
of the turbulence intensity parameter =Re νNɛ/ ,b as follows. Reb ex-
presses the ratio of the destabilizing effect of turbulence to the stabi-
lizing effect of stratification and viscosity. In different Reb regimes, the
mixing efficiency, expressing the portion of the energy produced by
shear which is dissipated by viscosity, assumes different values and
determines different vertical turbulent diffusivity of density Kρ. Here we
use a recent field-validated parameterization of Kρ as function of Reb
proposed by Bouffard and Boegman (2013) based on a previous para-
meterization derived by Shih et al. (2005). At very low Reb
( < ≈Re Pr10 / 1.7b

2/3 ), the turbulent regime is regarded as diffusive
and Kρ is set equal to the temperature molecular diffusivity

= × − −D 1.4 10 m sT
7 2 1. At low Reb ( < < ≈Pr Re Pr10 / (3 ln ) 8.5b

2/3 2 )
turbulent mixing tends to be controlled by buoyancy effects with in-
complete mixing favoring up-gradient fluxes reducing the mixing effi-
ciency. Here Kρ can be expressed as = −K Pr νRe0.1ρ b

1/4 3/2. For moderate

< <Re Pr Re((3 ln ) 400)b b
2 the mixing efficiency has the classical

form derived by Osborn (1980): =K νRe0.2ρ b. For high Reb (Reb>400),
turbulence is in an energetic regime, where =K ν Re4ρ b . Therefore, for
high Reb the buoyancy flux KρN tends to vanish together with stratifi-

cation: = ⎯ →⎯⎯⎯⎯→K N ν Nɛ 0,ρ

N 0
as we expect in weakly stratified fluids

(Osborn, 1980). As in the case of the Mediterranean Sea (e.g.,
Cuypers et al., 2012), when the density variations are dominated by
those of temperature, the density vertical eddy diffusivity coefficient is
assumed to be equal to the temperature vertical eddy diffusivity coef-
ficient (Peters et al., 1988). Assuming then a turbulent Prandtl number

= =Pr K K/ 1t Z ρ (Hogg et al., 2001), it is possible to estimate the mo-
mentum eddy viscosity (or eddy viscosity) KZ to be equal to Kρ.
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2.3. Comparison of numerical and in situ data

While the vertical resolution of the in situ profile of ε and KZ is
constant (13 cm), the vertical resolution of the model is variable and
generally coarser (≈ −1 2 m) than the in situ one. In order to compare
the numerical data to the measurements, the SCAMP data are grouped
in windows centered on each sigma level. Then, the median of each
window is calculated and compared to the numerical data at that sigma
level. The choice of the median permits to give less importance to
outliers and reduce the error due to the fact that the profiles were
mainly single casts (Lozovatsky et al., 2005).

For both the in situ and numerical data, we define the surface mixed
layer (MLD) as the depth at which the temperature is smaller than the
surface value by 0.5 °C (Anis, 2006; Jurado et al., 2012). Then we se-
parate the data in the MLD from the ones below it. The data in the
bottom layer are not considered for this analysis because of the low
number of in situ profiles near the sea bottom.

Following Burchard et al. (2002), we define the standard deviation
between the logarithmic numerical and in situ values of ε as:

∑ ⎜ ⎟ ⎜ ⎟= ⎡
⎣⎢

⎛
⎝

⎞
⎠
− ⎛

⎝
⎞
⎠
⎤
⎦⎥= − −σ

M

1
log

ɛ

m s
log

ɛ

m si

M i
mod

i
obs

ɛ
1 2 3 2 3

2

(5)

where M is the number of points in a given profile, and ε
mod and ε

obs are
the numerical and observed values respectively. Similar definitions
hold for the decadal standard deviation of N (σN) and KZ (σKZ). To
calculate these quantities, no division between data above and below
the MLD is made because the number of in situ and numerical values in
the MLD can differ for a given profile. Hereinafter, the mean values of
σ
ε
, σN and σKZ on all the profiles are denoted σ

ε
, σN and σKZ for ease of

reading, instead of < σ
ε
> , < σN> and < >σKZ .

We also compare the probability density functions (PDFs) of the in
situ and numerical values of kinetic energy dissipation rate ε, Brunt-
Väisälä frequency N and eddy viscosity KZ. In particular, the PDFs are
calculated with a kernel density estimation (Bowman and

Azzalini, 1997) on the base of the frequency distributions of values
from all the in situ and numerical profiles.

In order to compare a distribution of numerical data g(x) with the
distribution of the in situ data f(x), we compute the squared difference
between the empirical cumulative distribution functions (Fn and Gn) of
the two distributions:

∫= − +∞
S F x G x S dx∆ ( ) ( ( ) ( ))n n

2

0

2
(6)

We define the shift S between two distributions as the shift of Gn(x)
that permits to minimize Δ

2. A subscript will tell to which distribution
the values of Δ2 and S refer to: ∆ɛ

2 and S
ε
for the PDF of ε; ∆N

2 and SN for
the PDF of N; ∆K

2
Z
and SKZ for the PDF of KZ. An estimate of the error on

Δ
2 values is obtained by re-sampling the in situ empirical distribution

function (Nerini and Ghattas, 2007) in order to further account for
uncertainty in the measurements.

3. Results

To quantify the agreement between the numerical and the in situ
data we use two methods. One takes into account the deviation of the
numerical data from the in situ profiles over the whole water column
and expresses it by the decadal standard deviations (see Section 3.1 and
Table 2). The other approach looks at the shape of the probability
density functions of the numerical values of ε, N and KZ and expresses it
by the squared differences and shift values above and below the MLD
(see Section 3.2 and Tables 3 and 4). We then also look at the in situ and
numerical data in the (ε, N, KZ) space (see Section 3.3).

3.1. In situ and numerical median profiles

Median profiles of dissipation ε for the numerical outputs and ob-
servations are shown in Fig. 2 vs. nondimensional depth z/MLD. Note
that, the average value of the in situ MLD value is 27.3 m. As reported
in Table 2, all the numerical MLDs are systematically lower by
≈ −6 15% compared to in situ MLDs. Overall, the KE numerical ex-
periments predict a slightly deeper MLD, closer to the observed values.

The thick lines in Fig. 2 represent the median dissipation profiles
calculated using all profiles, where the shades represent the 95%
bootstrap confidence interval. At the surface, all the numerical ex-
periments agree with the in situ data to within one order of magnitude
with the in situ data. At this depth, KEflu is the numerical experiment
with values the closest to the observations. Also note that, at the sur-
face, the equilibrium boundary condition generates higher dissipation
values than the flux boundary condition.

As we descend the water column, beyond =z MLD/ 1, the in situ
data tend to become more variable due to the lower number of profiles
reaching depths greater than the MLD. On the contrary, the numerical
data tend to become much less variable. Moreover, there is an evident
difference between the SMCs: when the lower threshold on k is applied,
the KE numerical experiments always have lower levels of turbulence
with respect to the KL numerical experiments. In this case, KEs’ median

Table 2

MLD ratio indicates the average ratio between the numerical prediction of the MLD and
the in situ value. σ

ε
indicates the mean value of the decadal standard deviation of the ε

profiles. σN indicates the mean value of the decadal standard deviation of the N profiles.
σKZ indicates the mean value of the decadal standard deviation of the KZ profiles.

MLD ratio σ
ε

σN σKZ

KEset 0.91 2.48 1.16 2.19
KEflu 0.91 2.43 1.15 2.16
KEfluCAN 0.85 2.42 1.14 2.11
KEfluCANMINk 0.94 1.88 1.16 1.63
KEfluCANMINkOpt 0.89 1.82 1.16 1.56
KLset 0.88 2.07 1.14 2.20
KLflu 0.87 2.10 1.14 2.21
KLsetMINk 0.85 1.59 1.12 1.46
KLfluMINk 0.86 1.67 1.14 1.54

Table 3

S
ε
indicates the shift of the numerical distribution of ε in the surface layer respect to the in situ one. ∆ɛ

2 is the squared difference between the numerical and in situ distribution of ε values
in the surface layer. Similar definitions apply for different subscript variables. Errors are calculated with a re-sampling procedure.

Above MLD S
ε ∆ɛ

2 SN ∆N
2 SKZ ∆KZ

2

KEset 1.31 0.010 ± 0.002 −0.47 0.018 ± 0.001 0.96 0.032 ± 0.003
KEflu 1.21 0.008 ± 0.001 −0.47 0.015 ± 0.001 0.83 0.039 ± 0.004
KEfluCAN 0.87 0.006 ± 0.001 −0.50 0.016 ± 0.001 0.46 0.021 ± 0.003
KEfluCANMINk 0.62 0.0031 ± 0.0009 −0.45 0.013 ± 0.001 0.49 0.023 ± 0.002
KEfluCANMINkOpt 1.07 0.0008 ± 0.0003 −0.47 0.011 ± 0.001 1.19 0.022 ± 0.003
KLset 0.03 0.012 ± 0.002 −0.41 0.014 ± 0.001 −0.66 0.053 ± 0.005
KLflu 0.34 0.041 ± 0.005 −0.52 0.017 ± 0.001 0.31 0.060 ± 0.005
KLsetMINk 0.07 0.082 ± 0.006 −0.43 0.017 ± 0.001 −0.15 0.139 ± 0.009
KLfluMINk 0.03 0.014 ± 0.003 −0.41 0.014 ± 0.001 −0.68 0.022 ± 0.003
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values of ε are one order of magnitude lower than the KLs’ ones. When a
higher threshold on the kinetic energy k is applied, the difference is
slightly reduced.

The in situ data within the mixed layer are characterized by higher

mixing close to the surface and lower mixing near the MLD. This is
reflected by a change of slope in the ε profiles at =z MLD/ 0.5. KEflu,
KLflu, KLsetMINk and KLfluMINk are the numerical experiments that
better reflect this behavior. Note also that the in situ data show a clear

Table 4

S
ε
indicates the shift of the numerical distribution of ε below the surface layer respect to the in situ one. ∆ɛ

2 is the squared difference between the numerical and in situ distribution of ε
values below the surface layer. Similar definitions apply for different subscript variables. Errors are calculated with a re-sampling procedure.

Below MLD S
ε ∆ɛ

2 SN ∆N
2 SKZ ∆KZ

2

KEset 1.97 0.180 ± 0.006 0.22 0.004 ± 0.0005 0.96 0.032 ± 0.004
KEflu 1.93 0.163 ± 0.008 0.19 0.005 ± 0.0006 0.83 0.039 ± 0.004
KEfluCAN 1.98 0.143 ± 0.008 0.22 0.002 ± 0.0003 0.46 0.021 ± 0.004
KEfluCANMINk 0.91 0.136 ± 0.007 0.22 0.006 ± 0.0006 −0.66 0.023 ± 0.003
KEfluCANMINkOpt 0.88 0.11 ± 0.006 0.22 0.008 ± 0.0009 −0.68 0.022 ± 0.002
KLset 1.21 0.186 ± 0.008 0.22 0.003 ± 0.0005 0.50 0.053 ± 0.004
KLflu 1.2 0.168 ± 0.007 0.23 0.004 ± 0.0005 1.19 0.060 ± 0.005
KLsetMINk 0.26 0.203 ± 0.006 0.22 0.004 ± 0.0006 0.31 0.080 ± 0.007
KLfluMINk 0.29 0.22 ± 0.004 0.24 0.008 ± 0.0009 −0.15 0.022 ± 0.002

Fig. 2. The thick lines represent median values of ε estimated from in situ data (in black) and numerical experiments. The shades indicate 95% bootstrap confidence intervals. Water

depth z is non-dimensionalised with respect to the mixed layer depth MLD for each profile.
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increment of ε at =z MLD/ 1.1 that is absent in the numerical data.
We do not show values for z/MLD>2 because of the large boot-

strap error bars due to the lower number of profiles in that depth range.
Looking at the column as a whole, the numerical experiments with a

higher minimum value of kinetic energy (KEfluCANMINk,
KEfluCANMINkOpt KLsetMINk and KLfluMINk) have the lower average
error with respect to the measurements (see values of σ

ε
in Table 2)

because of the better agreement with in situ data below the MLD.
Median profiles of stratification N for the numerical outputs and

observations are shown in Fig. 3 vs. nondimensional depth z/MLD. Near
the surface, the in situ data are considerably more variable than the
numerical data. However, the numerical data are of the same order of
magnitude as the measurements. As we go below the MLD, the median
value of the in situ data increases in the depth range 1< z/MLD<1.8.
Overall, all the numerical experiments do not show such a marked in-
crease in magnitude and are rather similar one to another (as we expect
because all of them are nudged to the MERCATOR fields). However,
KEfluCANMINkOpt seems to be the numerical experiment that better
reproduce the in situ data’s trend right below the MLD.

Looking at the column as a whole, KLsetMINk has the lowest
average error with respect to the measurements (see values of σN in
Table 2).

The measurements of ε and N make it possible to calculate the
turbulence intensity parameter Reb. The probability density functions of
the observed Reb are reported in Fig. S1 in the Extra Materials. In
particular, in our dataset, 30% of the in situ Reb values fell in the dif-
fusive regime, 15% in the buoyancy-controlled regime, 29% in the
transitional regime and 26% in the energetic regime. If only the data
above the MLD are considered these numbers respectively become 17%,
10%, 31% and 42%; or 36%, 16%, 28% and 20%, if only the data below
the MLD are considered.

Median profiles of eddy diffusivity KZ for the numerical outputs and
observations are shown in Fig. 4 vs. nondimensional depth z/MLD. In
the surface layer the numerical values are often more variable than the
in situ ones. The opposite is observed below the MLD.

Among the four basic model’s configurations (KEset, KEflu, KLset
and KLflu), near the surface, KEflu shows the best agreement with the
observations among the simulations with the lower threshold on k.

Fig. 3. The thick lines represent median values of N estimated from in situ data (in black) and numerical experiments. The shades indicate 95% bootstrap confidence intervals. Water

depth z is non-dimensionalised with respect to the mixed layer depth MLD for each profile.
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KEflu is not as good as KEset, but it is significantly improved by using
the Canuto A stability functions. KLset and KLflu perform similarly but
have an error in opposite directions. Near the surface, KLset is higher
than KLflu. When a higher threshold on k is applied, KLsetMINk is
closer to the observations than KLfluMINk.

Below the MLD, the numerical experiments appear to be grouped on
the base of the threshold on k: no differences between different SMC
and boundary conditions appear obvious. Noticeably, below the MLD,
the numerical experiments with a higher threshold on the kinetic en-
ergy k are more compatible with the in situ data than the other nu-
merical experiments. The median value of KZ below the MLD appears to
have a seasonal behavior. In particular, it is equal to × −5.90 10 m /s6 2 2

in spring, × −3.02 10 6 in summer, × −3.27 10 m /s6 2 2 in autumn and
× −5.57 10 m /s7 2 2 in winter.
Overall, the numerical experiments that have the lower average

error with respect to the measurements are the four numerical experi-
ments with a high threshold on k, as the values of σKZ in Table 2 in-
dicate.

3.2. In situ and numerical probability density functions

We now focus on the comparison of the in situ and numerical PDFs
of ε, N and KZ values.

Above the MLD, the in situ dissipation rate data (in black in Fig. 5a-
b), show a clear bimodal behavior with one peak at ≈ × −ɛ 5 10 m /s9 2 3

and one at ≈ × −ɛ 5 10 m /s6 2 3. The numerical distributions show this
feature in a less marked way and are generally biased low with respect
to the in situ data’s PDF. As values of S

ε
and ∆ɛ

2 in Table 3 show, above
the MLD, the distribution more aligned to the in situ data one are KE-
fluMINk and KEfluMINkOpt, while the distribution with the shape more
resembling the in situ data one is KEfluMINkOpt.

Below the MLD (Fig. 5c-d), all the numerical PDFs have mean values
similar to the ones of the corresponding PDF in the mixed layer, but
they all are much more narrow than the in situ data. KL numerical
experiments have higher mean values than KE ones and the numerical
experiments with a threshold on k have higher mean values than the
corresponding numerical experiments without threshold. As we see in
Table 4, below the MLD, KLsetMINk and KLfluMINk have the same shift

Fig. 4. The thick lines represent median values of KZ estimated from in situ data (in black) and numerical experiments. The shades indicate 95% bootstrap confidence intervals. Water

depth z is non-dimensionalised with respect to the mixed layer depth MLD for each profile.
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Fig. 5. a) and b): ε probability density functions is-

sued from all the in situ (black shade) and numerical
data (thick lines) in the surface mixed layer for the

KE closure scheme and the KL closure scheme re-
spectively. c) and d): the same but below the surface

mixed layer.

Fig. 6. a) and b): N probability density functions is-

sued from all the in situ (black shade) and numerical
data (thick lines) in the surface mixed layer for the

KE closure scheme and the KL closure scheme re-
spectively. c) and d): the same but below the surface

mixed layer.
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with respect to the in situ distribution, while KEfluCANMINkOpt and
KLfluCANMINkOpt have the lower value of ∆ɛ

2. But we note that the
differences between the values of ∆ɛ

2 below the MLD are due to small
differences in the low right-end tails that are unlikely to be significant.

The probability density functions of the in situ stratification data (in
black) and of the numerical data are shown in Fig. 6. Both above and
below the MLD, there is no drastic difference between the numerical
distributions in both shape and peak. The similar behavior of all the
numerical experiments can be due to the low frequency nudging to the
MERCATOR fields. Overall, above the MLD (Fig. 6a-b), the numerical
experiments overestimate the stratification. Note that this is not evident
by just looking at the median profiles in Fig. 3. As values of ∆N

2 in
Table 3 indicate, the distribution more resembling the in situ one is
KEfluCANMINkOpt.

Below the MLD (Fig. 6c-d) the peaks of the numerical PDFs are less
aligned than above the MLD. In this layer, the numerical distributions
show a peak at ≈ × − −N 5 10 s3.3 1 that is not present in the measure-
ments. As values of ∆N

2 in Table 4 show, KEfluCANMINk is the dis-
tribution with the shape more resembling the in situ one above the
MLD, while KEfluCAN is the more resembling below the MLD. How-
ever, we note that, when the secondary peak is removed, the numerical
experiments with the better PDF of N are KEfluCANMINk and KEfluC-
ANMINkOpt.

The probability density functions of the in situ eddy viscosity data
(in black) and of the numerical data are shown in Fig. 7. Above the MLD
(Fig. 7a-b), the in situ values have three peaks with a higher peak at

≈ × −K 5 10 m /sZ
4 2 2. None of the numerical experiments reproduces

this behavior. As values of σKZ in Table 2 suggest, above the MLD the
distribution most aligned to the in situ one is KLsetMINk. Besides, ∆K

2
Z

values in Table 3 indicate that KEfluCANMINkOpt is the distribution
with the shape most similar to the observations above the MLD. The

effect of raising kmin is similar on the two SMC families: it shifts the
distribution towards higher values and modifies the peaks’ height.
However, KLsetMINk and KLfluMINk show a prominent first peak and
thus perform less well than KEfluCANMINk and KEfluCANMINkOpt.

Below the MLD (Fig. 7c-d), similarly to what seen for ε, the nu-
merical distributions are clearly different from the in situ one. ∆K

2
Z

values in Table 4 indicate that KEfluCAN, KEfluCANMINk, KEfluC-
ANMINkOpt and KLfluMINk are the distributions with the shape more
resembling the in situ one. But, as we already noted for the distributions
of ε below the MLD (Fig. 5), in this layer there is not a real difference
between the numerical experiments.

3.3. (ε, N, KZ) space

All the measurements of ε, N and KZ and the corresponding nu-
merical data are shown in Fig. 8. The point clouds reveal that the in situ
values are much less disperse than the model ones (not evident from the
picture; see Supplementary Data). In Fig. 8a-b we can see six main
planes corresponding to: KEfluCAN, KEset and KEflu, KLset, KLflu and
some in situ data at low KZ. Indeed, these last points lie on a plane with
constant =k kmin as prescribed by the parameterization we used (see
Methods and Discussion). Data belonging to the numerical experiments
with a higher threshold on k (KEfluCANMINk, KEfluCANMINkOpt,
KLsetMINk and KLfluMINk) are first found at ≈ × −K 2 10Z

6 (Fig. 8b).
The KE numerical experiments with = −k 10 m /smin

8 2 2 have planes with
an average value of ε that is lower than the average value of ε of the KL
numerical experiments with = −k 10 m /smin

8 2 2. These last ones have
lower average values of ε than the numerical experiments with

= −k 10 m /smin
7 2 2. This closely mirrors what we already noted in

Fig. 5c-d. But it turns out that the points lying on the planes in Fig. 8 do
not belong exclusively to depths greater than the MLD (the

Fig. 7. a) and b): KZ probability density

functions issued from all the in situ (black
shade) and numerical data (thick lines) in
the surface mixed layer for the KE closure

scheme and the KL closure scheme respec-

tively. c) and d): the same but below the

surface mixed layer. Note the difference in

the range of the y axes in a) and b).
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differentiation between above and below the MLD is not shown in
Fig. 8).

4. Discussion

By considering the median profiles, the values of logarithmic stan-
dard deviation and the shape of the probability density functions, we
can progress towards the identification of an optimal Symphonie’s
configuration with respect to our dataset.

From visual inspection of the median profiles it is apparent that the
default threshold on k (used for KEset, KEflu, KLset, KLflu) under-
estimates the turbulent activity (Fig. 5a-b). By using Eq. (1) and a value
of ≈ −ɛ 10 m /s4 2 3 that we can infer from the in situ data below the MLD
(Fig. 2), we estimated the value of a more appropriate threshold
( ≈ −k 10 m /s7 2 2) that was used for the numerical experiments with the
higher threshold (KEfluMINk, KEfluMINkOpt, KLsetMINk and KLflu-
MINk). As Figs. 2 and 6 and the values of σ

ε
and σKZ in Table 2 indicate,

this new threshold permitted to get better estimates of both ε and KZ.
The decadal standard deviation values are suited for whole-column

comparisons between numerical experiments and in situ data, when it is
interesting to have the general behavior of the numerical experiment
(e.g., Burchard et al., 2002). However, we are also interested to details
of the model’s configuration that likely have a major effect only in the
MLD and cannot be appreciated by this metric.

The comparison of the shape of the numerical and in situ probability
density functions is more appropriate to examine the model’s behavior
above the MLD. In particular, it permits to investigate its response to
the different configuration choices on the full range of values of ε, N
and KZ. For example, Fig. 5a-b shows that the effect of raising the
threshold value of k is not just simply a shift, as is suggested by the σ

ε

values and the median profiles (Fig. 2). In fact, the numerical experi-
ments with a higher threshold (KEfluCANMINk, KEfluCANMINkOpt,
KLsetMINk, KLfluMINk) are not merely shifted towards higher values
but also show significant differences in the peaks’ heights. This is due to
two facts: (i) with higher values of kinetic energy, it is generally more
probable to observe higher values of dissipation, and (ii) the highest
values in each of the ε PDF’ peaks cannot be arbitrarily large because
the left-hand peak mainly contains values below the MLD and vice-
versa for the right-hand peak (data not shown).

Regarding the average value of the MLD estimated by the different
numerical experiments, we note that it is systematically lower than the
observed one. Generally, the numerical MLD coincides with the depth
at which the kinetic energy reaches its minimum value (Fig. S2 in the
Extra Materials). Possible reasons for the mismatch could be some
missing or not well parameterized surface turbulent phenomena (e.g.,
Langmuir turbulence), as well as the uncertainty on the drag coeffi-
cients.

The analysis of ε data above the MLD allows examination of the
effect of boundary conditions, stability functions and optical scheme.
The effect of the surface boundary conditions is readily seen by visually
inspecting the ε median profiles (Fig. 2). The KEset, KEflu, KLset and
KLflu profiles highlight that, at the surface, the equilibrium boundary
condition determines ε values lower than both the observations and the
values of the corresponding numerical experiments employing a flux
boundary condition. Note that the values of ε close to the surface that
one obtains using a given boundary condition also depend on the em-
ployed SMC. In fact, the −k ɛ and the −k ℓ schemes have different
values of the constants in the surface boundary condition for the kinetic
energy (see Appendix A).

As a consequence, an influence of the boundary conditions is also
found in the PDFs of ε (Fig. 5). In fact, the value of ε in the upper tail of
the PDF is different for the schemes employing the equilibrium
boundary condition and the ones employing the flux boundary condi-
tion as one would expect as the higher values near the surface are
predominantly affected by the surface boundary conditions rather than
by the threshold on k. Indeed, the right peak at higher ε values is mainly
due to values from the depth range 0≤ z/MLD≤ 0.5.

Regarding the average values of the MLD, we find that all the nu-
merical experiments predict a shallower mixed layer depth. A reason
for this behavior could be the uncertainty in the drag coefficient and/or
to the presence of some not well-parameterized mixing phenomenon.

Looking at the profiles of turbulent production terms P and B in
Eqs. (B.1) and (B.2) (Figs. S3 and S4 in the Extra Materials), we find
that turbulence is mainly due to shear. In particular, we find that shear
is enhanced at the mixed layer depth. This indicates that the increased
levels of turbulence right below the MLD that we observe in situ (Fig. 2)
are due to internal waves s or intermittent Kelvin–Helmholtz instability
within the stratified layer (Woods, 1968; Grant and Belcher, 2011). The
fact that the model does not reproduce this enhanced turbulence is due
to the too coarse resolution that does not permit resolving such pro-
cesses.

Secondly, the effect of the stability functions is made clear by both
the median profiles and the PDFs of ε. In Fig. 2 it appears that the

Fig. 8. a) All in situ (in black) and numerical data of KZ, N and ε. b) All in situ (in black)

and numerical data of KZ and ε. The color code is the same as in the other figures.
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Canuto A stability functions improve the agreement with respect to the
observations (cf. KEflu vs. KEfluCAN), especially near the surface. The
same information is given by the PDFs (Fig. 5; Table 3): KEfluCAN’s
PDF has just two peaks as the in situ PDF and, thus, it is in better
agreement with the observations. This result did not change when we
raised the threshold on the kinetic energy.

Thirdly, the effect of the optical scheme is best seen by looking at
the ε PDF (Fig. 5). Indeed, we see that the modified optical scheme
enables KEfluCANMINkOpt to reproduce remarkably well the in situ
distribution. We attribute this significant improvement to the better
estimate of the temperature and salinity profiles (see Figs. S5 and S6 in
the Extra Materials) that, in turn, improves the stratification. Indeed,
the profile of N (Fig. 6) of KEfluCANMINkOpt is slightly better than the
one of KEfluCANMINk. Even if this is not captured by the values of SN
(Table 3), we note that, right below the MLD, KEfluCANMINkOpt better
reproduces the peak that we observe in the in situ stratification.
However, it is not straightforward to say how this can influence the
dynamics above the MLD.(indeed the KEfluCANMINkOpt’s N PDFs are
totally comparable with the ones of KEfluCANMINk). The only obvious
difference that we observe above the MLD between the KEfluC-
ANMINk’s and KEfluCANMINkOpt’s stratifications is that the median
profile of the buoyancy turbulent production term B of KEfluC-
ANMINkOpt is significantly higher than the one of KEfluCANMINk (Fig.
S4 in the Extra Materials).

The analysis of the PDFs of N indicates that all the numerical ex-
periments overestimate the stratification above in the surface layer
(Fig. 6a-b). On the other hand the stratification is well reproduced by
all the numerical experiments below the MLD. The only absent feature
in the numerical data of N is a bump of high values right below the MLD
where the entrainment takes place and where we also observe higher
levels of turbulence (see Fig. 2). Overall, below the MLD the numerical
PDFs of ε and KZ markedly differ from the in situ ones: they are more
peaked than the in situ PDFs. A possible cause for this behavior could be
the too coarse resolution of the model that does not permit to ade-
quately resolve turbulent processes below the MLD or to the different
natures of mixing mechanisms.

Also the analysis of the KZ probability density functions leads to the
conclusion that KEfluCANMINkOpt is the better configuration. Even
though the values of ∆K

2
Z
in Table 3 indicate that there is not a clear

difference between KEfluCANMINk and KEfluCANMINkOpt, we note
that KEfluCANMINkOpt KZ PDF has three peaks as the in situ PDF
whereas KEfluCANMINk’s PDF has only two. In general, the −k ɛ

scheme performs significantly better in reproducing the in situ PDF of
KZ. This is likely due to the advantage of −k ɛ in estimating ε with
respect to −k ℓ.

The inclusion of the molecular diffusivity DT in the formulation of
KZ did not cause significant differences, probably because the turbu-
lence level is too high to allow to appreciate the difference. Here we did
not show a numerical experiment in which we change only this aspect
of the model’s implementation. However, one example is given in the
Extra Materials (Fig. S7).

The analysis of the data below the MLD shows a sharp disagreement
between the numerical and the in situ values of ε and KZ. However, we
can observe three main features: i) the typical value of numerical ε

depends on the SMC that one employs; ii) the model values of ε and KZ

are much less variable than the measurements; iii) setting a hard
threshold on the kinetic energy limits the reliability of the modeling in
this layer.

The first point is made clear by Fig. 2. In fact, we can see that when
the same threshold on k is applied, the ε values obtained with the −k ɛ

scheme are one order of magnitude smaller than the ones obtained with
the −k ℓ scheme. This is partially explained by the fact that the two
SMCs use different values for the constants in Eqs. (B.1) and (B.2) that
relate ε to the kinetic energy. Indeed, −k ɛ uses a lower value
( =c 0.550 ) than what −k ℓ does =c 0.88ɛ . However, this fact alone
cannot explain the one-order-of-magnitude difference that we observe

below the MLD.
The second point is illustrated by Figs. 5c-d and 6 c-d. Therein, the

numerical PDFs in the lower layer are much less spread out than the in
situ ones. A possible cause for this could be the resolution of the model
that does not permit to adequately resolve the turbulent processes in
this layer.

Also, a possible cause for the sharp discrepancy between numerical
and in situ PDFs below the MLD could be the use of a hard threshold for
k. In fact, Fig. 8 suggests that this choice leads to a non-physical result,
with many low-energy points on a single plane in the space (KZ, N, ε).
This behavior results directly from Eqs. (B.6) and (B.7) implying
= −Pr c c k Kɛ /k Z

1
ɛ

2 for the KL scheme and from Eqs. (B.3) and (B.4)
implying = c S k Kɛ 2 /M Z0

3 2 for the KE scheme (where ck, cε and c0 are
constants). This is exactly the behavior we observe in Fig. 8b, with the
planes following the line = − +K constlog ɛ log Z . Thus, the points on
the planes in Fig. 8 are values with a minimal kinetic energy. In situ
data do not show this behavior, suggesting that specifying a hard value
for kmin is likely not the best choice. A more suitable approach would
probably be a parameterization of kmin on the base of the different
turbulent processes at play. For example, Gaspar et al. (1990) hy-
pothesized the use of a parameterization on the internal wave field
activity when dealing with data in a depth range similar to the one in
our analysis. Note here that such a solution is likely to depend on the
amount of numerical mixing and to the processes that are resolved by
each model.

5. Conclusions

Vertical mixing in the surface layer of the ocean plays an essential
role in both physical and biochemical phenomena. Therefore, it must be
correctly estimated by numerical models. Different turbulence closure
schemes have different performances in predicting mixing. Moreover,
the problem is made more complicated by the interplay of the SMC with
other aspects of ocean dynamical numerical modelling like boundary
conditions, stability functions and optical scheme. The influence of the
minimum value of kinetic energy that is allowed has also been in-
vestigated.

We performed nine numerical experiments and compared their es-
timates of the turbulent quantities ε, N and KZ to in situ microstructure
measurements in the Gulf of Lion. In particular, two SMCs were con-
sidered: a −k ɛ scheme proposed by Burchard and Bolding (2001)
(herein KE); and a −k ℓ based on Gaspar et al. (1990) (herein KL). We
considered two surface boundary conditions: one supposing equili-
brium between the production and dissipation terms in the dynamic
equation for k (herein set); and one taking into account the effect of
breaking waves of all scales based on Craig and Banner (1994) (herein
flu). We considered the stability functions proposed by Kantha and
Clayson (1994) and Canuto et al. (2001). In addition, we also con-
sidered two different attenuation lengths for the photosynthetically
available radiation in the model’s optical scheme. The combinations of
these factors that we explored are resumed in Table 1.

A recent study by Reffray et al. (2015) showed that, in a 1-D si-
tuation, the KE closure scheme gives better mixing estimates than other
widely used SMCs. However, that study did not compare KE to a mixing
length scheme based on Gaspar et al. (1990). Our study fills this gap.
Moreover, our study exploits a 3-D model that, by definition, considers
more terms in the dynamical equations than what 1-D models do. Ad-
ditionally, it compares the modeled turbulence activity directly to mi-
crostructure turbulence measurements rather than with derived quan-
tities like the mixed layer depth.

The two SMCs do not show relevant differences when estimating KZ

both above and below the MLD. The fact that the two SMC perform
similarly in estimating KZ when KL has an advantage in estimating ε, is
not explained by differences in estimating N and need further in-
vestigation in the future.

Previous studies, in 1-D and 3-D numerical simulations, gave
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conflicting indications on the effect of the stability functions proposed
by Kantha and Clayson (1994) and Canuto et al. (2001) on the KE
scheme. We find that the effect of the Canuto A stability functions on
the KE is to improve the performance of the closure scheme when the
PDFs of ε and KZ are considered.

The value of the kinetic energy threshold plays a pivotal role in
approaching the observations below the MLD (see Figs. 2 and 4).
Nonetheless, we found a non physical behavior of the numerical ex-
periments for low kinetic energy levels. This supports the idea that the
minimum of kinetic energy should rather be parameterized as function
of different turbulent mechanisms rather than being a hard threshold
(as already hypothesized by Gaspar et al., 1990). Such a para-
meterization should also depend on the SMC that is employed. Indeed,
we found that the two SMC predict different turbulence levels below the
MLD even when they employ the same threshold on the turbulent ki-
netic energy.

We found that the attenuation length of the photosynthetically
available radiation plays an important role in determining the stratifi-
cation and, as a consequence, the performance of the model in pre-
dicting ε and KZ. This result highlights the importance of biological
activity in influencing physical processes.

Our study shows that the comparison with in situ microstructure
data can effectively help in setting up the implementation of a SMC for
an ocean numerical model. In the future, we should expect more uti-
lization of microstructure data as new automated instrumentation be-
comes available. In particular, microstructure and wave height probes

mounted on autonomous platforms, such as drifting profilers or gliders,
will permit new and bigger datasets, especially during adverse me-
teorological situations. This kind of data will provide essential data to
developers of future ocean-wave coupled models, as these are expected
to significantly advance the ocean modelling state of the art by reducing
the need of general surface boundary conditions.
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Appendix A. Boundary conditions

A1. Surface boundary conditions for k

A1.1. Equilibrium

The k surface boundary conditions can be obtained hypothesizing equilibrium between production and dissipation. The surface energy pro-
duction due to wind shear can be expressed as:

⎜ ⎟⎛
⎝
∂
∂

∂
∂ ⎞
⎠ =K

u

x

v

y

τ τ

ρ
,

( , )
Z

x y

0

where = +τ τ τx y
2 2 is the wind stress and ρ0 is the reference density of sea water.

By inserting this last equation in the expression for the shear production term (Eq. (B.1)) and using the expression for ε proposed by
Galperin et al. (1988) (Eq. (B.1)), we obtain the surface boundary condition for k:

=k
τ ρ

c S

/

2
s

M

0

1/2
0
3

Herein, SM is obtained by supposing a null stratification (i.e., =G 0h in Eq. (24) in Galperin et al., 1988). Under this hypothesis, SM becomes constant.
In the general case, the expression for SM are given by Kantha and Clayson (1994) and Canuto et al. (2001). The value of the stability coefficient c0
for the −k ɛ scheme is issued from Warner et al. (2005). The value of c0 for the −k ℓ scheme is issued from Gaspar et al. (1990).

A1.2. Flux

Alternatively, the boundary conditions can be specified as surface flux conditions, namely:

∂
∂ =K
k

z
FZ (A.1)

where the surface flux can be computed as =F τ ρ100( / )0
3/2 (Craig and Banner, 1994) or directly prescribed from the ‘wave to ocean’ turbulence flux

computed by a wave model when available.

A2. Bottom and surface boundary conditions for ε

The ε surface and bottom conditions are computed on the first level under the surface and above. Let z1 denotes the distance between this level
and the considered boundary. Boundary conditions for ε are obtained from k and Eq. (B.2), using the latter with some appropriate hypothesis for lB a
boundary length scale value. A simple formulation (Warner et al., 2005) is eventually given by = +l z z0.4( )B 1 0 , where z0 is a length scale re-
presenting the roughness of the bottom boundaries. Unfortunately, this formulation potentially leads to unrealistic high values when the underlying
hypothesis of neutral stratification is no longer valid (a situation that is more likely to occur in deep zone where the vertical grid resolution near the
bottom is generally coarse). One way to solve this problem is to introduce a dependency on the gradient Richardson number (Estournel and Guedalia,
1987; Michaud et al., 2012):
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Appendix B. Closure schemes

B1. −k ɛ scheme

Following Burchard and Bolding (2001), the equations describing the dynamics for k and ε are:

= ∂
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and

= ∂
∂B

g

ρ
K

ρ

z
T

0 (B.4)

are the production terms due to shear and buoyancy respectively. Parameters values issued from Warner et al. (2005).
The eddy viscosity KZ and the temperature eddy diffusivity KT used in Eqs. (B.3) and (B.4) are given by:

= =K k lS K k lS2 , 2Z M T H (B.5)

The turbulent length l is related to k, TKE and ε according to

= −l c k ɛ0
3 3/2 1 (B.6)

SM and SH, the quasi-equilibrium stability functions defined by Kantha and Clayson (1994), depend on the Richardson flux number.

B2. −k ℓ scheme

We used the −k ℓ closure scheme proposed by Gaspar et al. (1990). Therein the authors assume ε to be (following Kolmogorov, 1942):

= c k lɛ /ɛ
3/2

ɛ (B.7)

where k is the TKE, = ′ + ′ + ′k u u w2 2 2 and =c 0.7ɛ (following Bougeault and Lacarrere, 1989).
The eddy momentum diffusivity is related to TKE according to:

=K c l kZ k k

where ck has to be determined.
The dissipation and mixing length scales lk and l

ε
are the ones proposed by Bougeault and Lacarrere (1989):

=l l l( )u dɛ
1/2

=l l lmin( , )k u k

that are determined through
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where ρ is the water density.
As highlighted by Gaspar et al. (1990), these length scales have a straightforward physical interpretation: they are the distances traveled upward/

downward by a fluid particle by converting all of its kinetic energy into potential energy.
Hypothesizing the turbulence to be stationary and homogeneous Gaspar et al. (1990) show that, in stably stratified regions, the model para-

meterizations yields:

= − −K Pr c kN2Z k
1 1 (B.8)

= c kNɛ
1

2
ɛ (B.9)

from which it follows that =c 0.1k .
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Appendix C. Segmentation and quality fit

In order to apply the Batchelor’s theory to the temperature gradient one has to divide the data into segments in which turbulence can be
considered homogeneous, viz. the turbulent motion can be regarded as a random motion which average properties are independent of position in the
fluid. Given the fact that the first aim is to fit the data to a theoretical Batchelor’s spectrum, arguably the best segmentation method is the one giving
the fits with the best quality.

To determine the fit quality we use a Maximum Likelihood Estimation technique. Following Ruddick et al. (2000), we calculated the goodness of
a fit by maximizing the joint probability of the measured spectrum with respect to the theoretical Batchelor spectrum. Hence, the higher the joint
probability, the higher the fit goodness. In the following we call this joint probability JP (corresponding to C11 in Ruddick et al., 2000).

To make the fit goodness criteria more rigorous, following Sanchez et al. (2011) we also require that: i) the mean absolute deviation (MAD) of the
ratio between the in situ and theoretical spectra within the fitting domain be lower than 1.1; ii) the signal to noise ratio (SNR) be lower than 1.3; iii)
the likelihood ratio (LHR) –which quantifies if the measured spectrum fits the Batchelor’s spectra or a power-law spectrum better– be lower than 2.

We tested which of the following segmentation methods permitted to have the better fits in our dataset: a segmentation based on an eight order
AR model by Imberger and Ivey (1991) (II91); a constant segmentation of 1024 data points in which the values of temperature gradient variance in 7
sub-segments are in the same order of magnitude proposed by Sanchez et al. (2011) (S11), a constant segmentation of 1024 data points with no
overlap suggested by Cuypers et al. (2012) (C12); a constant segmentation of 128 data points with 50% overlap suggested by Moniz et al. (2012)
(M12); a constant 512 data points segmentation with no overlap; and a constant 1024 data points segmentation with 30% overlap. In practice, we
fitted the segmented data to the Batchelor’s spectrum following the fitting procedure of Steinbuck et al. (2009) and we compared the results
searching for the distribution of JP values with the greater proportion of high values. The results are depicted in Fig. 9.

TIn Fig. 9 the histogram of the JP values is plotted with the cumulative distribution of the latter. Note that each histogram is normalized to the
total number of segments obtained with the corresponding segmentation method. As it is evident by eye, the M12 is the segmentation method that
gives the highest percentage of good profiles, as highlighted by the higher histogram bars on the right end of the distribution with respect to the other
cases. Moreover this is the method that has the vertical line lying at the highest value, meaning that a higher percentage of segments have a better fit.
Furthermore cases b), e) and d) show that progressively reducing the segmentation window gives better results. Case f) also shows, when compared
to c), that adding overlap, though permitting to have a higher resolution, does not augment the percentage of good fits. These evidences suggest to
apply a 128 points (≈ 12.5 cm) segmentation with no overlap. Anyway, not needing such a high resolution in order to compare the in situ data with
the numerical data, we avoided the overlap. The distribution of JP values of this segmentation method did not significantly differ from the one of
M12 (data not shown).

Fig. 9. a) JP values distribution obtained with the II91 segmentation method, b) same as a) for S11, c) same as a) for C12, d) same as a) for M12. e) same as a) for a constant 512 points

segmentation. f) same as a) for a 1024 points segmentation with 30% overlap. The red curve is the cumulative distribution of JP values for each case and the vertical line marks the point

where the cumulative distribution equals 0.6. The database for this analysis comprehended 126 profiles with an average depth of 50 m in various meteorological conditions in the Gulf of

Lion. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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