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Abstract 

 

The exact bridge function of the Lennard-Jones dipolar (Stockmayer) fluid is extracted from 

Monte Carlo simulation data. The projections gmnl(r) onto rotational invariants of the non-

spherically symmetric pair distribution function g(r,) are accumulated during simulation. 

Making intensive use of anisotropic integral equation techniques, the molecular Ornstein-

Zernike equation is then inverted in order to derive the direct correlation function cmnl(r), the 

cavity function ymnl(r), the negative excess potential of mean force lny|mnl(r) and the bridge 

function bmnl(r) projections. b(r,) presents strong, non-universal anisotropies at high dipolar 

coupling. This simulation data analysis may serve as reference and guide for approximated 

bridge function theories of dipolar fluids and is a valuable step towards the case of more 

refined, nonlinear water-like geometries. 
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I. INTRODUCTION 

 

The basic problem in statistical physics of liquids consists to derive the pair distribution 

function (pdf) g from the pair potential v. A formal exact relation which involves total h=g-1 

and direct c correlation functions reads 1: 

 

     (12) exp (12) (12) exp (12) ln (12) exp (12) (12) (12) (12)g v y v y v h c b           

 (1) 

where y is usually called the cavity function, b is the bridge function and =1/kT the inverse 

thermal energy. For spherically symmetric fluids, each function depends on the distance r 

between particles only, (12)≡(r12)≡(r), while for anisotropic fluids as the dipolar system under 

the present study, it depends on the (relative) orientations of the two particles 1, 2 and the 

vector joining them 
12
ˆr r  as well, (12)≡(r, ). The Ornstein-Zernike (OZ) equation gives a 

second exact relation between h and c correlation functions 1: 

 (12) (12) (12) (13) (32) 3h c h c d      (2) 

where  is the number concentration. The negative excess potential of mean force 

lny(12)≡(12)+b(12) is thus the sum of two contributions: the first one, , can be easily related 

through the OZ convolution product (2) (algebraic product in Fourier space) to the pair 

distribution function while the second one, b, despite existing formal diagrammatic or 

functional exact expressions, is usually unknown. The ultimate goal in such basic statistical 

mechanical problem is to make a reasonable (if not the best possible) assumption for the 

bridge function b and to solve the corresponding approximated closure or integral equation (1) 

coupled with the OZ equation (2) through an iterative procedure which makes an intensive 

use of numerical Fourier transforms (FT). A comparison of the derived pdf with exact 

reference data provided by numerical simulation reveals a posteriori the quality of the 

assumed b. 

The simplest choice consists to neglect the bridge function, b(12)=0; that defines the very 

popular HNC integral equation. This approximation has been widely used with clear success 

for various systems since the 1960’s, from neutral atomic liquids 2 to molten salts 3 or 

electrolytes 4, from asymmetrical charged colloids 5 to molecular polar solvents 6… Then, 

approximated bridge functions have been proposed following different directions. For 40 

years, the literature is full of theories based for instance on ad-hoc universality hypothesis 

borrowing bridge from a reference hard-sphere fluid 7, on diagrammatic expansions 8, on 

phenomenological mixed closures 9 10, on density functional approach 11, on three-body 

distribution functions 12… 

Rather to compare and test theories with exact simulation data at the pdf level, it is also 

interesting to do it at the bridge function level itself. For that purpose, the exact bridge 

function must be extracted from given g(r) simulation values (inverse problem). In principle, 



3 

 

the extraction is straightforward, at least for spherically symmetric potentials: the (r) 

function is derived from the numerical g(r) data through the OZ equation (2) and two (one 

direct, one inverse) FTs. Then, (1) gives the desired b function via the simple identity 

b=lng+v-. In practice, the situation is not so simple. Beyond the problem of statistical noise 

intrinsically always present in any numerical simulation, the "measured" profile g(r) is neither 

complete nor exact, due to the finite size L of the simulation cell. First, information is 

available in a limited r range only (r<rmax≈L/2). For most standard simulations, that cut-off is 

not large compared to the correlation range, especially in dense systems and/or at high 

electrostatic coupling, and the missing tail of g(r) cannot be safely ignored. That opens to the 

general problem of extending simulation data beyond rmax with some extrapolation scheme, 

based for instance on approximate bare integral equations 13 (in that spirit, the extraction of 

bridge function starts by facing the same difficulties than in the calculation of the so-called 

Kirkwood-Buff integrals of the pdf which are related to thermodynamic derivative properties; 

this domain is the subject of recent intense studies, see for instance 14). Secondly, even the 

available information below rmax is corrupted by systematic corrections. Despite these 

numerical limitations and difficulties, exact bridge functions are now known in the literature 

for a limited number of simple spherical potentials like the Lennard-Jones (LJ) 15, the soft 

sphere 16 or the hard-sphere 17 ones, which can serve as benchmarks for approximated 

theories. 

On the other hand, little has been done in that respect for non-spherical particles. The 

reason is certainly due to the numerical difficulty to deal with correlation functions that 

depend on separation r and orientations . As usual in the treatment of anisotropic particles, 

rather to manipulate the complete g(r,) as explicit function of the different Euler angles, it is 

more fruitful to project it onto a basis of angular functions and to play with the projections 

that depend on the separation r only. Following Blum's notation and normalization 18 19: 

 
1 2 1 2

, , , ,

ˆ ˆ( , ) ( , , , ) ( ) ( , , )mnl mnl

m n l

g r g r r g r r 
 

         (3) 

with 

 1 2 ' 1 ' 2 '0

', ', '

ˆ ˆ( , , ) (2 1)(2 1) ( ) ( ) ( )
' ' '

mnl m n l
m n l

r m n R R R r     
     

 
        

 
  (4) 

Similar expansions (3) hold for each correlation function. The coefficients 
' ' '

m n l

  

 
 
 

 are 

the usual 3-j-symbols. The ' ( )mR    are Wigner generalized spherical harmonics (definition 

and notation from Messiah 20). The 
mnl

  rotational invariants (independent of the reference 

frame) form an orthogonal basis. They depend on the relative orientation of the two molecules 

and of the vector joining them (five Euler angles) and are characterized by five indices m, n, l, 

, . For linear particles (axis ̂ ) as in the present dipolar fluid study, three Euler angles are 

sufficient, m+n+l  is even and =0. In the following, although much of the analysis will be 

valid for any anisotropy, the indices ,  will be dropped to simplify the notation. The first 
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terms are  000 110 112

1 2 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1, 3 , 3 /10 3( )( ) ,...r r              (note the 

coefficients -√3 and √3/10 instead of the more standard value 1 for the definition of the 110 

and 112 invariants, respectively, which results from Blum's normalization; that induces the 

inverse coefficients in the corresponding projections). The coefficients ( )mnlg r  are derived 

from the complete function by angular projection: 

 
2

* *( ) ( , ) ( ) / ( ) (2 1) ( , ) ( )mnl mnl mnl mnlg r g r d d l g r d               (5) 

In short notation, if  stands for mnl, expansion and projection read: 

 ( , ) ( ) ( )g r g r 


     (6) 

 *( ) ( , ) ( )g r g r      (7) 

where the brackets in (7) represents a (normalized) triple angular integral. The first projection 

g1≡g000 represents the center of mass-center of mass pdf (averaged over all orientations).  

In principle, the basis is infinite. In practice, it is assumed and verified that a limited number 

max of projections, characterized by m, n≤nmax, is sufficient, at least for the excess potential 

of mean force lny, to quantitatively capture the angular dependence of the correlations.  

The first projections bmnl(r) of the bridge function have been recently extracted from Monte 

Carlo (MC) projections gmnl(r) for hard spheroid 21 and hard platelet 22 fluids. As for the case 

of spherical interactions, the MC data available at r<rmax have been first completed with the 

MSA approximation (here c(r)=0) at larger distances, r>rmax. Then, the projections cmnl(r) of 

the direct correlation function have been derived by inverting the OZ equation. The key final 

point is to calculate the projections of lny (the exponent) from those of g (the exponential). 

That difficult step requires careful methodologies based on the techniques developed for 

solving integral equations in the case of anisotropic particles 6. 

The purpose of the present study is to derive the exact bridge projections bmnl(r) from pdf 

gmnl(r) data provided by MC simulation for the LJ dipolar (or Stockmayer) fluid. To the 

author's knowledge, no such information is available in the literature. Only the direct 

correlation function has been derived from MC data (completed again with MSA 

approximation at large distances), not for extracting the bridge but for feeding the density 

functional theory to describe solvation properties of molecular solutes 23. The pair potential is 

the sum of spherical LJ and highly anisotropic dipole-dipole contributions: 

  
2

12 6

1 2 1 23

0

ˆ ˆ ˆ ˆ ˆ ˆ( , ) 4 ( ) ( ) 3( . )( . ) ( . )
4

v r r r
r r r

  
    



 
     

 
 (8) 

 and  are the usual size and energy LJ parameters,  is the dipole moment. The LJ term 

contributes to v000 while the dipole-dipole potential reads
2

112

3

0

( ) 10 / 3
4

v r
r




  . For such 
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purely dipolar anisotropy, 
1 2( , )   and 

1 2( , )    configurations are equivalent and the 

projections m, n, l are restricted to even l (and so even m+n). 

All systems investigated in this paper correspond to T*=kT/=2, *=3=0.8 and three dipolar 

coupling 
2

*2

3

04 kT




 
  =1.5, 2.25 and 3. The LJ potential is truncated, shifted at rc=2.5. 

These systems correspond to dense polar solvents of increasing dielectric constants and are 

characterized by strong short and long range correlations. 

The MC simulation is described in section II; beside the standard construction of the pdf 

from the neighbor configurations inside the cell, a special technique based on the Henderson 

method 24 is needed to get information on the cavity function inside the soft core. Section III 

presents the extraction of the bridge function by solving the inverse problem and making use 

of all the technical machinery developed for the resolution of integral equations in the case of 

anisotropic potentials. The main difficulty is to relate projections of the exponent and of the 

exponential in (1), or ymnl and lnymnl (which must be understood in the following as (lny)mnl 

and not be confused with ln(ymnl)). The results in terms of the pdf, the direct correlation 

function, the cavity function, the excess potential of mean force and the bridge function are 

finally presented and discussed in section IV for the different dipolar strengths.

 

II. Monte Carlo simulation 

 

Since the simulation data are designated to be the source in the inverse problem, the 

required precision is much more restrictive than in a standard study which usually needs good 

looking pdf curves. That not only means large number N of particles and long simulations, but 

also correct control of all possible bias. 

N=100 to 800 dipolar particles are put in a cubic cell of edge L=5 to 10 (=N/L3) with 

periodic boundary conditions (N, V, T canonical ensemble). The long range dipole-dipole 

interaction is dealt with the standard Ewald technique 25. Beside the exact treatment of 

electrostatics in periodic systems, the advantage of this technique (compared to reaction field 

methods for instance) is that the possible artifacts arising in correlation functions due to 

periodic boundary conditions can be exactly evaluated (and possibly removed). The Ewald 

energy classically contains two sums, one in the r space with erfc(rij+nL|) typical terms, the 

other one expressed in the reciprocal k space with exp(-k2/42)=exp(-(m|/L)2) factors (n, m 

are vectors of integer components). The former is spherically cut at r=L/2 (so, only the 

minimum image distance, n=0, is retained). The screening constant  is chosen such that the 

factor r at the cut is equal to s=4, so L=8. In the latter truncated sum, the largest m vector is 

similarly chosen such that m/L=s=4, so mmax=4L/=10 (647 independent m vectors). With 

this choice, the relative precision in the dipolar energy is better than 10-6, each sum 

contributing on equal level to the uncertainty. Note that this precision is much better than the 

standard ones given in the literature which correspond to lower values (≈3) for the s 
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parameter. With this strong constraint, we are sure to avoid any bias related to a limited 

precision in the Ewald summation 26. 

Another key quantity in the Ewald technique is the dielectric constant ' of the external 

medium surrounding the central box and its replica, which explicitly appears in the energy 25. 

It is well known that choosing two different ' values leads to two pdfs which differ by 1/N 

leading corrections 27. In particular, the h110(r) projection presents a non-zero constant 

asymptote equal to: 

 
2

110

'

2 ( ' )( 1) 1
( )

(2 ' )3 3
h asymptote

Ny


  

  

 
 


 (9) 

where y=4**2/9 and  is the dielectric constant of the system itself, which can be derived 

from a relation which depends explicitly on ' 25: 

 

2

3

0

( 1)(2 ' 1) 4
3

2 ' 3 4

M
yg

L kT

  

  

 
 


 (10) 

The usually known g-factor, g=<M2>/N2, is given by the orientational order fluctuations of 

the box (M is the total moment of zero theoretical average <M>) or by the integral of h110: 

 110 21 ( )4
3

g h r r dr


    (11) 

The asymptote (9) guarantees that  is (fortunately) independent of the boundary conditions 

'in the thermodynamical limit 27. We have performed various MC simulations at different N 

and '. The 1/N detailed analysis of the observed differences will be presented in a future 

paper 28. For the present inverse problem and bridge extraction, it is important to start from 

simulation pdfs which represent infinite bulk volumes as close as possible. In particular, it is 

impossible to feed the inverse problem with non-zero h110 asymptote! Indeed, even if that 

asymptote behaves as O(1/N) and could be in principle arbitrary reduced by choosing large N, 

it leads to a O(1) term when integrated over the box volume (or over an important fraction of 

it). So, without precaution, the FT of the MC h110(r) function would present spurious behavior 

at low scattering vector q. So, it is at least necessary to subtract the known asymptote (9) from 

the accumulated h110(r) function, or better, to choose ' as close as possible to . That 

guarantees the absence of dielectric discontinuity between the system (central box + replica) 

and the external medium and kills the 1/N corrections (asymptote as well as more or less 

controlled short-range corrections). In practice, we first perform a short simulation with 

N=100 to derive an estimate of . Then, the long simulations at larger N are produced with ' 

equal to that estimate. At the end, we verify that the residual asymptote coming from a small 

difference between the accurate  and ' can be safely ignored.  

Each trial displacement is made of a local translation inside a cube (of size≈0.1-0.2) and of a 

rotation of the dipole axis inside a cone (of angle≈40-60°) and is accepted according to the 

Metropolis method. After equilibration, the projections gmnl(r) are constructed from the 
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relative positions and orientations of the particles in the box. For each retained configuration, 

the minimum image separations rij of all pairs i<j of dipoles are sorted into a histogram of 

width r (≈/80). The bin k corresponds to the distance interval Ik=[rk-1,rk] with rk=kr, and to 

the volume of the spherical cap Vk=4/3(rk
3-rk-1

3). So, following the definition (5), the 

projections are constructed according to: 

 *

2

2 1
ˆ ˆ ˆ(bin ) ( , , )

/ 2
ij k

mnl mnl

i j ij

i jk
r I

l
g k r

V N
 





   (12) 

Note the correct normalization factor N2/2 (and not N(N-1)/2). Due to the finiteness of the 

width r, that information in the bin k measures some average of g over the interval Ik and is 

usually attributed to the mean separation (rk-1+rk)/2. In order to reduce the convolution effect, 

we go a little bit further: the construction in histograms measures in fact numbers of 

neighbors, so calculates directly not g, but its primitive 
2

0
( ) ( )

r

G r g s s ds  at each r=rk. So, 

we make a spline cubic interpolation of the MC data G(rk), take the analytical derivative and 

divide by r2 to construct refined values of g(rk) for each projection. That procedure improves 

the final function lnymnl especially at the bottom of the first peak in g, near r=, where v and g 

vary rapidly. 

It is important to remember that the simulated fluid is not perfectly isotropic due to the 

periodic boundary conditions and the correlation (ij) depends not only on the relative 

orientations of ˆ
i , ˆ

j  and îjr  but also weakly on the absolute orientation of the ensemble 

with respect to the axes of the box. The expansion (3) in rotational invariants is recovered 

only by averaging over that absolute orientation, as in (12).  

In the present study, max,MC=7 projections are usually accumulated, which correspond to 

nmax,MC=2. For the highest dipole, we have refined the analysis by accumulating 13 projections 

(nmax,MC=3). For each pair, the spherical harmonics 110, 112 and 022 (or 202) are 

calculated from the scalar products between the three unit vectors. The remaining harmonics, 

22l (and 13l,33l) are deduced from products of the previous ones. No manipulation of 

trigonometric functions is required. At the end, the MC simulation provides 7 or 13 

projections of the pdf in the limited range r<rmax,MC=L/2 (we did not try to extent the r regime 

by exploring the corners of the box because these data are sensitive to bias 29). Beside the 

statistical noise related to the finite length of the simulation, the so constructed data are 

known to be subjected to systematic finite-size corrections, the explicit corrections due to the 

absence of fluctuations in the number of particles within the canonical simulation 30 and the 

implicit corrections due to the coupling between the environment around a given particle and 

that around its images in the neighboring cells 31. The detailed analysis of these different types 

of corrections for dipolar fluids will be given in the future paper 28. For the present study, it is 

necessary and sufficient to account for the finite-size explicit correction in the long distance 

asymptote of the pdf 30:
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 000

large large
lim ( , ) lim ( ) 1N N

r r
g r g r

N


     (13) 

where 
T

P






 
  

 
is the normalized isothermal compressibility (P is the pressure) which is 

related to the center of mass structure factor S000(q) at zero q, 

000 000 2

0
(0) 1 ( 1)4S g r dr  



    . The departure from the asymptote 1 in (13) simply 

means that the number of neighbors available to the far field environment around a given 

particle is N minus 1 (the central particle itself) and minus the excess particles locally 

adsorbed or desorbed around it (given by the integral of g-1), so is N-. In grand-canonical 

conditions, this finite-size correction exactly vanishes due to the exchange of particles with 

the reservoir. As before, this O(1/N) asymptotic correction, which may be in the 10-3-10-4 

range,  leads without precaution to a O(1) spurious effect in S000(q) at low q. So, all MC 

projections have been multiplied by the factor 1/(1-/N)≈1+/N before use in order to recover 

the bulk asymptote 1. For the very same reason, the value of  needed in this renormalization 

cannot be extracted from some extrapolation of a non-corrected MC S000(q) at zero q. So,  is 

rather derived either from the hypervirial function accumulated during the simulation 25 (with 

a proper account of the truncated LJ force discontinuity at the cut-off rc) or from discretized 

differentiation of the virial pressures measured at neighboring densities. We have verified that 

both values agree within statistical uncertainty and are consistent with the measured pdf 

asymptote when a clear long-range plateau is available. It is also verified a posteriori that the 

 value given by the exact integral equation after the inverse bridge problem resolution 

matches the original MC prediction. With this procedure, the remaining finite-size explicit 

and implicit corrections are of short-range nature. Without anticipating the results of the 

future paper, it is sufficient to note that the order of magnitude of these corrections is below 

0.015 for N=100 and below 0.001 for N=800 for the present dipolar fluids. This last error is 

low enough to guarantee precise bridge functions. 

As usual, the standard construction of the pdf from the pair configurations gives nothing 

except g(r)=0 at short distance where the soft core repulsion prevents overlap and no 

information about the bridge function can be gained at r≤0.85. Although the value of b(r) in 

this distance regime is irrelevant for the pdf and for the thermodynamics, it is still interesting 

to know it for different reasons, in particular here to appreciate the quality and consistency of 

the inverse problem resolution. The MC construction of the cavity function y (rather than g) 

inside the core is based on the Henderson method 24, described now. 

 

Cavity function inside the core 

 

The method is based on the Widom insertion technics 32 that we briefly recall first. The excess 

chemical potential exc can be calculated by randomly inserting a test particle (labeled 0) 

inside the box, calculating the energy vtest of that particle with all fluid particles (and, within 
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the Ewald summation, with all images including its own ones and with the external medium) 

and statistically average the Boltzmann factor: 

 ln exp( )exc testv     (14) 

In fact, Widom has shown that this expression remains valid even in an inhomogeneous fluid 

33: in that case, the test particle is inserted at a given position (+orientation for us) (0) and the 

average gives the excess chemical potential at that (0), (0) ln exp( (0))exc testv    . 

Moreover, the total chemical potential (0) (0) ln( (0)) (0)id exc exckT         must be 

uniform at equilibrium. If one formally considers that the source of the heterogeneity inside 

our simulation box is one of the fluid particles, say i, inserting the test particle at a given 

distance r≡r0i and relative orientation  ≡(0, i, r0i) from i gives: 

 ln( ( , )) ln exp( ( , ))testg r v r        (15) 

or, finally 

 
exp( ( , ))

( , )
exp( )

test

test

v r
g r

v





 
 


 (16) 

If one is interested in the cavity function rather than the pdf (that is obviously the case inside 

the core), it is sufficient to not count the energy of the test particle with the source i (and with 

its images) in the energy vtest, so defining vtest
*: 

 

*exp( ( , ))
( , )

exp( )

test

test

v r
y r

v





 
 


 (17) 

That is the basis of the Henderson method. In practice, one cannot avoid to first calculate the 

mean excess chemical potential (denominator in (16), (17)) by inserting the test particle at 

random positions/orientations inside the box. As usual, the statistics may be slow in dense 

fluids. For the construction of the numerators, different strategies have been investigated 

which treat the angular dependence in different manners: 

i) We first accumulate y(r,) for a limited number of r distances (say, from 0 to 1.5 with 

0.1 steps) and Euler angle triplets by inserting the test particle at the corresponding 

positions/orientations relative to any of the fluid particles. The price to pay is the 

manipulation of a big four dimension array! The reward is that the projections lnymnl(r) can be 

directly derived from the angular averaged of the lny(r,) data, just in parallel to the ymnl(r). 

The Euler angles are chosen to allow for Gauss quadrature. Even if 6 values per angle seem to 

be sufficient, that technique corresponds to a tremendous work and the statistics is somewhat 

poor. 

ii) In a second strategy, we do not try to construct explicitly the angle-dependence of y but we 

rather accumulate directly, on the fly, the projections ymnl, as it was done for gmnl from the pair 

configurations of the fluid (the lnymnl
 calculation being postponed in the inverse problem 
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resolution). For a limited number of given distances r, we evaluate the different projections of 

the average *exp( ( , ))testv r   by inserting the test particle at the distance r of any fluid 

particle i and at random orientations: 

 * * *

0 0 0 0

2 1
ˆ ˆexp( ( , )) exp( ( , , , )) ( , , )

mnl
i mnl

test test i i i i

insertioninsertion

l
v r v r r r

N
 


         (18) 

vtest
*i must be again understood as the energy of the test particle minus the interaction with i. 

iii) In fact, the procedure ii) can be performed directly during the standard Widom 

construction of the excess chemical potential without extra work: instead of fixing a priori 

some distances r, we rather use as distance information the observed distances to all fluid 

particles once the random insertion (random both in position and orientation) has been 

chosen. As before, a histogram of r is constructed from the r0i: 

 

0

* * *

0 0 0 0 03

2 1
ˆ ˆexp( ) (bin ) exp( ( , , , )) ( , , )

/
i k

mnl
i mnl

test test i i i i i

insertion iinsertion k
r I

l
v k v r r r

N NV L
 




        

 (19) 

A similar expression, without star label for vtest, holds for the numerator of the pdf, (16). There 

is no extra cost to calculate the different vtest
*i. In fact, in practice, for the present dense 

dipolar fluids, a majority of the random insertions lead to at least two simultaneous "overlaps" 

and do not contribute to the denominator nor to the numerators. When the insertion leads to a 

single overlap, say with i, no information is gained for the chemical potential nor for g but the 

0i configuration alone brings information for y. Lastly, for the very rare insertions without any 

overlap, information is available for the chemical potential as well as for g and y from all 0i 

pairs. 

Whatever the choice i) or iii) for the strategy, it is important to note that the "Widom" gmnl, 

ymnl and lnymnl data will be always more noisy than the corresponding data extracted from the 

pair configurations, especially at high dipolar coupling and for the higher order projections. 

While one particle configuration gives N(N-1)/2 meaningful data, one insertion gives only N 

random data, most of them being irrelevant. 

 

III. Integral equation inversion 

 

Standard integral equation resolution 

 

We first briefly recall the powerful technique developed for the direct numerical 

resolution of the OZ and integral equations (say HNC with or without a priori bridge 

prescription) in the case of non-spherically symmetric potentials 34 6. 
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a) An iterative cycle starts from estimates of the projections (rk) on the finite basis, 

=1,2..max, and discrete r values, rk=kr, k=0,1,..kmax-1 (kmax=2048 and r=/80 here). The 

prescribed bridge projections, if any, are added to give the lny(rk). The higher order 

projections of lny, >max, are assumed to be negligible and are ignored.  

b) For each distance rk, the max first projections of the pdf are derived from the pair potential 

and the closure (1). Calculating the projections of the exponential from those of the exponent 

is the most time-consuming part of the resolution. Different approximated short-cut 

procedures have been proposed in the literature which try to avoid angle manipulation 6 but 

none reach the precision of the exact bare definition (the symbol r is dropped for clarity): 

 
max

*

' '

' 1

exp ( ) ln ( ) ( )g v y


   





 
        

 
  (20) 

The lny() function is reconstructed on an array of Euler angles (molecular frame) from its 

projections, the potential v() is subtracted, the simple exponential function is applied at 

each angle triplet and the result is projected back onto the desired spherical harmonics by 

angle averaging. We benefit from the very powerful Lado's technics which makes use of 

Gauss quadrature 35. In practice, 20 values for each Euler angle is sufficient to guarantee a 10-5 

precision in the g. At sufficiently long distance where the exponent is small (below 10-5), the 

exponential is linearized. 

c) The Hankel transform ˆ ( )mnlc q (of order l) 34 6, normalized by the density , of the projection 

cmnl(r)=hmnl(r)-mnl(r) is calculated from spline cubic interpolation and Fast Fourier Transform 

(FFT) 36 at the discrete q values  qk=kq k=0,1,..kmax-1 (q=2/kmaxr). The long range 1/r3 

asymptote of c112(r)≈-v112(r) is carefully monitored by first subtracting a reference function 

of identical asymptote and known Hankel transform. A signature of the dipole-dipole 

interaction is 112ˆ (0) 0c  . 

d) The molecular OZ equation is solved for the ˆ ( )mnl q . The algebraic OZ equations are 

better expressed in the molecular frame ( q̂  taken as the reference axis) by using the so-called 

-transforms of Blum ˆˆ ,mn mnc 
 19. For each  value, the matrices of the m, n projections are 

related through 6: 

 
 

 

1

1
2

( ) 1 ( 1) ( ) 1 ( 1) ( )

( ) ( 1) ( ) 1 ( 1) ( )

S q H q C q

q C q C q

 

  

 

  





     

    

 (21) 

e) Finally, new (rk) values are recovered by inverse Hankel transforms of the ˆ ( )kq . 

In general, input and output functions do not match and the cycle a)-e) is repeated with new, 

improved input. For that purpose, we have extended to anisotropic systems the full Newton-

Raphson (NR) technics 37 which has been proven to be very powerful in the case of spherical 



12 

fluids or mixtures for 25 years 38. The procedure which does not require any angle 

transformation is detailed in Appendix A. The efficiency is conserved for the present dipolar 

fluids and the convergence is reached quadratically as expected, in 5-10 cycles. In practice, 

the calculation is stopped when the difference between input and output functions vanishes 

below 10-5
. 

 It is important to remember in the following that the expansion in rotational invariants 

is known to be less convergent for the pdf or the cavity function y than for the excess potential 

of mean force lny, mainly because of the exponentiation which emphasizes the anisotropy. So, 

even if the expansion of lny can be safely cut at =max, that does not imply that the 

projections g (or Widom y), >max are negligible and, indeed they are not, especially near 

the first peak, r≈ for g and at short separations, r< for y. Ignoring them in the previous 

cycle just means that the higher order projections c would have a negligible effect on the first 

projections  when injected into the molecular OZ equation (step d). This is safely true 

because the function  is a convolution product and the higher order projections 
max

ˆ ( )c q   

would interfere essentially in quadratic manner. 

 

Bridge function extraction 

 

 We now impose the MC data g(r) (and/or Widom y (r)) provided by the simulations. 

They are known on a limited distance r regime, r<rmax,MC, which is narrower than that 

required to solve the cycle, rmax,MC<rmax=(kmax-1)r, and on a reduced basis ≤max,MC. Let us 

first describe the procedure when the number of known MC projections is identical to the 

number of projections required for lny, max,MC=max. If the MC grid differs from that of the 

integral equation resolution, the MC data are first interpolated (spline cubic) to give the g(rk) 

in the domain r≤rmax,MC. Since the pdf does not reach its asymptote 1 at the cut-off rmax,MC, the 

MC data must be completed at larger distances rmax,MC<r≤rmax with some approximation. 

Following Verlet 13, we must choose among the bare integral equations. Two different 

closures have been investigated in that large separation domain, the HNC (b=0) and the 

popular MSA (c=-v) chosen in numerous works 21 23 within this context. Nothing can predict 

which choice is the best a priori. Fortunately, provided that rmax,MC is large enough (5 is 

sufficient here), both approximations lead to almost identical final b (mainly because h2<<b at 

large distances) and the precise choice is not critical. It is only with reduced values of rmax,MC 

that differences will emerge, see Section IV. With the HNC choice, the MC/HNC closure, 

step b) in the cycle, becomes: 

 

max,

*

' ' max,

'

( ) ( ) ( ) ;

exp ( , ) ( ) ( ) ( ) ;

MC

MC

g r g r MC r r

v r r r r

 

  


 

 

 
         

 


 (22) 

Similarly, MC/MSA reads:  
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max,

max,

( ) ( ) ( ) ;

( ) ( ) ;

MC

MC

g r g r MC r r

c r v r r r

 

 

 

  
 (23) 

Each approximation can be justified only a posteriori by verifying that, indeed, the bridge 

function b or the excess direct function c+v is negligible at r>rmax,MC or, equivalently, that 

the final lny(r) functions do not exhibit any discontinuity at rmax,MC. The rest of the cycle is 

unchanged and convergence is obtained as before, with straightforward modification of the 

NR procedure. 

The final, most crucial step in the bridge extraction is to deduce at each distance rk≤rmax,MC the 

max projections lny (the higher order ones being zero) from the imposed max first 

projections g. A naïve procedure, inverse of (20), would be: 

 
max

*

' '

' 1

ln ln ( ) ( )y g v


    





 
      

 
  (24) 

with a similar expression without the final v term when g is replaced by y. This procedure is 

approximated because it implicitly ignores the non-zero, hidden, higher order projections of g 

or y, and it fails, as expected, near the first peak or inside the core (some reconstructed g() 

take negative values in practice). So, we rather solve equation (20) in the direct way by an 

iterative procedure (see also 22). We start with an estimate of the lny, calculate the g (or y) 

from (20), compare to the imposed MC ones and start again with improved guesses proposed 

by a very powerful NR technics, similar to the previous one, described in the Appendix B. 

Full convergence (calculated and imposed g match down to the machine precision!) is 

obtained in less than 10 cycles. At the end, the bridge projections are given by difference, 

b=lny-. 

The situation is more complex when the basis of g provided by the simulation is more 

restricted than that required to describe lny, max,MC<max. Without any a priori justification, 

we impose the HNC approximation for the missing projections (this time, MSA should be 

avoided because, again, the expansion in projections converges more slowly for g or c than 

for lny or b) and the closure becomes: 

 
max, max,

max, max,

( ) ( ) ( ) ; and

ln ( ) ( ) ; and/or

MC MC

MC MC

g r g r MC r r

y r r r r

 

 

 

  

  

  
 (25) 

At r>rmax,MC, the situation is unchanged and the coefficients g are derived from the second 

line of (22) as before. On the other hand, at r≤rmax,MC, the resolution requires special treatment 

because some projections are imposed in the exponent, other in the exponential. A robust 

procedure, described in Appendix C, makes use of a new iterative cycle and generalizes the 

previous analysis. 

 In all cases, the integral equation and bridge extraction is solved in a few tens of 

seconds on a desk computer.  
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IV. Results 

 

 The first seven MC projections gmnl(r) calculated with N=800 are presented in figure 1 

for the three dipolar couplings. The corresponding thermodynamics is given in table 1. The 

dielectric constant of the external medium ' has been chosen close to that of the dipolar fluid. 

The variance in the equilibrium quantities has been derived from standard block average 

analysis 39. The less precise averages are the excess chemical potential due to the limitation of 

the Widom insertion technique in dense fluids and the dielectric constant  due to long-lived 

fluctuations in the total dipole moment M of the cell 40. Both effects are emphasized at high 

dipolar coupling. Note that the average <M>2 which vanishes exactly in theory is measured in 

practice as a negligible fraction of <M2>: Typical values recorded for the ratio <M>2/<M2> 

remain below 10-4, in agreement with the variance expected as the inverse of the number of 

independent configurations. The error bars in the main projections g000, g110, g112, estimated at 

different key r values using the same analysis, stay below 3.10-4 at the first peak (r≈) and 

below 5.10-5 at r=L/2=5, with the notable exception of g110(L/2) for *2=3 where the error 

bar reaches 10-4, even for such unusually long simulations. Incidentally, the insert in figure 1 

which focuses on the region r close to L/2 may be misleading: the visual noise apparent in the 

curves is due to the finite width of the histogram, r=/80. The error bar in g110 may be 

(much) higher than this noise due to long-range and long-lived collective fluctuations in the 

tail which are directly associated with the fluctuations in the g-factor and the dielectric 

constant. The different curves in figure 1 illustrate how the local arrangement inside the fluid 

is modified at increasing dipole-dipole coupling: the first peak in g000 slightly shifts to lower r 

from the pure LJ case; the negative g110 is amplified at all distances which, according to (11), 

leads to a higher dielectric constant  (from 16 to 80); simultaneously, the projection g112 

exhibits a higher long-range 1/r3 tail, in agreement with the theoretical prediction: 

 
2

112

3

10 / 3( 1) 1
( )

4r
g r

y r



 


  (26) 

Note the weakly damped oscillations that superpose on this tail. As a consequence, internal 

energy, pressure, inverse compressibility and chemical potential decrease with increasing 

dipolar strength (Table 1). Figure 1 also clearly confirms that the expansion of the pdf in 

projections converges very slowly: projections g22l shown in the insert are not really smaller 

than the first ones and higher-order projections (g13l, g33l,…), not shown in the figure, still 

remain of the order unity at the first peak. 

 Figure 2 presents the first seven projections ymnl(r) of the cavity function for *2=3 

measured using the Henderson equation (technique i) in Section III, y(r,) accumulated with 

0.1 steps in r). Note the scale in the vertical axis: the function y takes very high values near 

the origin which reveals the strong negative dipolar interaction of a particle with its neighbors 

inside the fluid. The corresponding curves for *2=0, 1.5 and 2.25 would be at r≈0 in the 
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range 2.103, 5.103 and 4.104, respectively. At the origin, the projections with l>0 vanish while 

the projections with l=0 must present a zero slope due to the absence of hard core.  

 Then, the MC/HNC mixed integral equation has been solved as explained in Section 

III and Appendix A with nmax=2 (7 projections) for *2=1.5 and 2.25 or nmax=3 (13 

projections) for *2=3. These choices guarantee that the , lny and b functions are correctly 

described by the finite basis and that their higher order projections can be safely ignored. In 

each case, we impose for the moment the same number of MC gmnl projections than that 

required for lny, max,MC=max. The MC data are completed with the HNC closure beyond 

rmax,MC=L/2=5. It should be noted that, with this r cut-off, replacing MC/HNC by MC/MSA 

leads to virtually indistinguishable results. As a first guess for the input  function in the 

iterative resolution, the HNC solution is sufficient at low dipole but is too far from 

convergence and leads to prompt divergence at high dipole. In that last case, it is necessary to 

impose the MC data in the mixed closure in a softer manner by, for instance, increasing the 

rmax,MC cut-off step by step from 1 to 5. As the thermodynamics is concerned, Table 1 

already confirms that MC/HNC perfectly reproduces the original MC data. Note the 

importance of properly correcting the MC pdf by the factor 1+/N before use (see discussion 

following (13)): even if this factor is very close to 1 (/N≈10-4), ignoring it leads to a clear 

discontinuity (in the 10-3 range) of g000(r) at r=rmax,MC and oscillations out of phase beyond 

that cut-off in the r-space and to spurious oscillations in the structure factor S000(q) at q≤2-1 

and incorrect compressibility S000(0) in the q-space (=0.058, 0.066, 0.078 instead of the 

correct values 0.078, 0.091, 0.110 of Table 1, respectively). The projections cmnl(r) of the 

direct correlation function are presented in Figure 3. They are the key ingredient in any 

density functional theory of the solvation properties of molecular/macromolecular solutes. As 

for the pdf, the expansion converges slowly. The c112 projection exhibits the exact long-range 

tail -v112(r)≈*2/r3. The inserts in figure 3 enable to appreciate how quickly the function 

c+v vanishes at long distance and, thus, to what extent the MSA closure should be valid in 

completing MC data, see below. 

 The final step is to extract the lnymnl projections from those of g and y as described in 

Appendix B. Figure 4 gathers the central results of the paper and deserves detailed discussion. 

First, one notes that, contrary to what happened to g, y or c, the expansion in lny converges 

this time very quickly. The most important coefficients are 000, 110, 112 and 022. The next ones 

like 22l or 13l which are clearly resolved at least for r>0.9 (see insert) remain below 0.05 even 

for *2=3. That illustrates the fact that working with nmax=2 or 3 is sufficient in the MC/HNC 

analysis (incidentally, the bare HNC requires nmax≥4 for a precise determination of the 

dielectric constant at *2=3; that does not contradict the previous statement because g110 is 

fixed by MC within the MC/HNC). Oppositely, working with nmax=1 (only 3 projections) 

would be insufficient due to the neglect of the 022 coefficient and, indeed, such incomplete 

analysis would lead to different first 3 c and lny projections. Secondly, a careful observation 

of the inserts in figure 4 reveals the absence of any visual discontinuity in the lnymnl(r) 

functions at r= rmax,MC=5, even at the 10-3 level, the MC data being "perfectly" prolonged by 

the HNC closure at larger distances. That a posteriori justifies the use of HNC in the large r 

domain and anticipates that the bridge function is indeed negligible at distances around and 
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beyond rmax,MC. This result is especially important when one notes that the lny projections are 

far from being negligible in this long range domain (in particular, lny112 has a 1/r3 tail); so any 

simple truncation in h or lny is hopeless and it is crucial to be able to complete the MC data 

with correct closure at larger distances. Third, the branches r<r*≈0.87 and r>r* which 

correspond to the use of the MC y and g data, respectively, agree clearly each other. We have 

used the three separate techniques described in Section III for constructing the y function and 

all lead to consistent lny projections. It is obvious that the y data are much noisier than the g 

data due to the standard limitation of the Widom insertion technique, especially for the 

highest dipole. So, the lnymnl projections coming from y are less precise. The estimated 

uncertainty for *2=3 is visualized by the size of the symbols in figure 4. Within this noise, 

both branches connect with precision at r* for the first 4 projections and coincide in the 

overlapping region r=0.87-1.5. In parallel, the higher-order projections lny22l at r<r* cannot be 

distinguished from the noise. The overall agreement between y and g sets of data validates the 

analysis. As counterexample, working with nmax=1 would lead to clear discontinuities of the 

order of 0.5 in the first 3 lny projections at r*! 

 Lastly, subtracting  from lny leads to the desired projections bmnl(r) of the bridge 

function, plotted in figure 5. The expansion in b converges equally well. The coefficients b13l 

are negligible for *2=1.5 and 2.25 and remain below 0.04 for *2=3. At large distances, the b 

projections vanish much faster than the lny ones (compare the inserts of figures 4 and 5). They 

remain below 4.10-4 at r>4. That very small value, consistent with the previously noted 

absence of discontinuity in the lny curves, validates the use of the HNC approximation 

beyond the cut-off rmax,MC=5 and confirms that a truncation in b is better than in h or in lny. 

At shorter distances, the y-originated data inside the core are affected by the previously 

discussed statistical noise but remain consistent with the g-originated data at r*. Note that the 

b22l projections for *2=3 are clearly visible near the origin, contrary to what happened to lny; 

that means that they are nearly opposite to the corresponding 22l
 projections.  

It is difficult if not meaningless to derive some hypothetic universality law from the whole b 

curves of figure 5. Even if the general shape of b000 looks like that of the bridge function for 

spheres (see the pure LJ curve), the complex next-order projections are specific to dipolar 

systems and reveal the strong anisotropy of the bridge function. As an illustration, b(r,) can 

be constructed from these projections and (3) for some characteristic relative orientations  

and plotted as a function of r, see figure 6 for the highest dipole. The different curves present 

very different shapes in the relevant domain r≈1-3.  We note in particular the clear peak at 

r≈2 for the aligned/oriented configuration of the two dipoles which results from the 

corresponding peaks  in the different projections in figure 5; that reveals the difficulty of the 

bare HNC closure (which entirely neglects the bridge) to deal with favorable configurations of 

aligned triplets of dipoles near contact.  

In order to test and compare the relative merits of the MSA and HNC closures in completing 

the MC data at large distances, the c+v and b projections have been plotted for *2=3 using 

the same scale in the inserts of figure 3 and 5, respectively. First, one notes again that both 

sets of projections are equally negligible (less than a few 10-4) at r>4, thus explaining why 
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MC/HNC and MC/MSA treatments are identically "exact" with the choice rmax,MC=5. 

Moreover, the function c+v clearly vanishes faster than b in the intermediate region r=2-5 

for this high dipolar coupling. To the author's knowledge, this important observation could 

not be anticipated from theoretical arguments. On one side, it is well known that the bare 

MSA closure, of linearized nature, gives very bad results at high *2 while the bare HNC 

closure behaves quite well; so, the opposite trend c+v>>b applies near the first peak. On the 

other side, in absence of known theoretical asymptotic law, one could just say that an 

expansion of (1) gives c+v≈b+½h2… for the tail. At large distances, if h2<<b, then c+v and 

b coincide. At intermediate distances, the 1/r3 h112 tail (26) dominates in h and contributes to 

1/r6 non negligible terms in some projections of h2 (000, 022…), especially at high dielectric 

constant. The fact that c+v<<b in practice just means that these terms are recovered in b with 

the factor -½. In order to illustrate the present observation and to bring MSA and HNC 

closures against more severe tests, we have performed again the MC/HNC and MC/MSA 

treatments for *2=3 but with limited sets of MC data characterized by lower values of 

rmax,MC<5. Figure 7 corresponds to the choice rmax,MC=3. In the domain r=3-5, both mixed 

equations reproduce with very good accuracy the original lnymnl MC data of figure 3, with 

nevertheless clear advantage for MC/MSA. This is not unexpected since we knew that 

c+v<0.001 and b<0.003 at r>3. Table 2 gives the same kind of almost perfect agreement 

for the thermodynamics (the attentive reader may have noticed that the dielectric constant 

decreases from 81 to 80 when going from rmax,MC=5 to 3and becomes closer to the original 

MC value; that small but relevant effect is not fortuitous and illustrates the fact that the MC 

pdf is affected by finite-size implicit corrections at large distances, close to L/2 28). Figure 8 

goes further and investigates the more severe choice rmax,MC=1.8 both in hmnl and in bmnl. 

This time, the MC/HNC treatment ignores by construction the previously discussed peak of 

the bridge projections localized around 2, of height in the range 0.05 (see insert of figure 5). 

As a consequence, the original MC pdf is not well reproduced at r>1.8, the dielectric 

constant is grossly overestimated (Table 2)and the bridge function becomes qualitatively 

incorrect, even below the cut-off, r<1.8 (insert of figure 8). On the other hand, since the 

c+v projections were bounded in the 0.01 range at r≈2 (see insert of figure 3), the 

MC/MSA treatment with this reduced cut-off remains very powerful in reproducing the pdf, 

the thermodynamics (Table 2) and the whole bridge function, including its details at r≈2. To 

conclude this analysis, despite existing long-range correlations in the fluid, it is sufficient to 

impose only "short-range" MC data and to complete with HNC or, better, with MSA. That 

also opens the possibility to work with much smaller simulation cells (L/2=2.5 corresponds 

to N=100), provided that the MC are beforehand correctly cleaned from non-negligible finite-

size corrections 28.  

 To what extent is it necessary to impose all available MC projections? Is it sufficient 

to accumulate and impose a few first-order MC gmnl only and to complete with the HNC 

closure for the higher-order ones (remember, MSA is not valid in this context)? To answer 

these questions, we have solved the new MC/HNC (25) for *2=3 with a number of fixed MC 

projections, max,MC, smaller than that required to describe lny, max=13. The numerical 

resolution follows the procedure described in Appendix C. Figures 9 (for the pdf) and 10 (for 
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the bridge) and Table 3 summarize the results for max,MC=3 (MC g000, g110, g112 fixed), 

max,MC=1 (MC g000 fixed only) and max,MC=0 (no MC projection fixed at all, bare HNC). The 

RHNC approximation which identifies the bridge function with that of the naked pure LJ fluid 

is added for comparison. First, it is clear that HNC and RHNC fail to describe properly the 

details of all pdf projections and the thermodynamics. Secondly, MC/HNC(max,MC=1) which, 

by definition, reproduces exactly the center of mass g000 of the dipolar fluid, brings no 

improvement for the higher-order pdf projections. That again illustrates the importance of the 

complete bridge function and its non-universal anisotropic character. Third, 

MC/HNC(max,MC=3) which accounts for this anisotropy through non zero b110 and b112 terms, 

matches much better the exact MC or MC/HNC(max,MC=13) data. For the thermodynamics, 

that is not unexpected since energy, pressure, compressibility and dielectric constant depend 

on the first three pdf projections only. Concerning the higher-order gmnl terms, figure 9 reveals 

good success for 022, 220 and 222 and quantitative disagreement for 224. Since all projections are 

mixed in the exponential (1) in a complex manner, imposing exact first three gmnl does not 

guarantee exact first three bmnl and, indeed, figure 10 illustrates how b000, b110 and b112 deviate 

from the exact reference functions in the relevant region, r=1-2. These small but clear 

effects arise from the neglect of the next-order bmnl projections (resolved in the inserts of 

figure 5) near the first peak and close to r≈2. 

 

V. Conclusion 

 

 With the help of powerful techniques specifically designated for the case of strongly 

anisotropic correlations, it has been possible to invert the OZ and integral equations and to 

extract the bridge function from exact MC pdf data for the dipolar Stockmayer fluid. The 

expansion in rotational invariants of the negative excess potential of mean force lny(r) and of 

the bridge b(r) converges quickly and a few projections (7-13) are sufficient to account for the 

orientation dependence, even at high dipole coupling. A characteristic peak at r≈2 is the 

signature of configurations of aligned dipole triplets near contact. The presence of long-range 

electrostatic correlations requires completing the MC data with approximated closures at large 

distances. HNC and MSA perform very well at r>3 while MSA remains astonishingly good 

at r>1.8. That opens the possibility to work with reduced numbers of dipoles in the 

simulation cell. The extension of the present analysis to more realistic models of water-like 

systems will deal with non-linear geometries and five Euler angles or five indices gmnl
 

descriptions. The procedure will be essentially unchanged and the increased difficulty will be 

of pure numerical nature.  


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Appendix A. Newton-Raphson algorithm for the integral equation resolution 

 

 The main cycle a)-e) in III for the iterative resolution of the OZ + closure equations 

starts with input (in)(rk) and finishes with output (out)(rk) values. Not too far from the 

convergence, we assume that the exact solution (in) + d (in)=(out) + d(out) (array notation) is 

sufficiently close to (in) to express d(out) linearly in function of d (in), d(out)
=Ad(in). The 

operator A is deduced from the main cycle by mathematical differentiation of each step a)-e), 

see below. The NR technics then consists to solve the linear system (1-A)X=B where X= d(in) 

and B=(out)-(in). Since it is impossible in practice to invert the large matrix 1-A of size 

(maxkmax×maxkmax), the linear system is solved by iteration using the powerful conjugate 

gradient method proposed by Zerah in the context of integral equations 37 and used with great 

success for 25 years in various spherical liquids and mixtures 38. Roughly speaking, each new 

cycle requires one calculation AX for some X and one ATY for some Y. The success of the 

procedure is directly linked to the convergence, as fast and complete as possible, of the linear 

cycle. The operator AT must be written as the exact numerical transpose of A (in particular, 

the FT with spline cubic interpolation is not self-transpose contrary to a bare FFT) and the 

effect of the round-off errors is minimized by working in double precision. For the present 

study, the linear cycle converges in practice in ≈50 iterations for the HNC equation and in 

≈200 iterations when MC noisy data are imposed. Once the convergence is attained for X, a 

new main cycle is started with the improved input function (in)+X. 

The OZ step d) of the operator A is given by the linearization of (21): 

 d S dC S dC        (27) 

The crucial step b) of the operator A is defined by the linearization of the exponential closure 

(1) which reads at each distance r (implicit in the following equations): 

 ( ) ( ) ( )dg g d     (28) 

 The key is to derive the projections of the product dg from those of each term g, d without 

time-consuming angle-triplet manipulation (so, the closure is not linearized in its (20) form). 

From the known expansion of the product of two rotational invariants, 
1 2 1 2

t     


     

with well-documented coefficients t 20, the desired relation reads: 

 
1 2 1 2

1 2,

dg t g d     
 

   (29) 

It is important to remember again that even if the basis of d is restricted to 2≤max and the 

required projections of dg are limited to ≤max, the projections of g which are relevant in 

(29) go beyond this same basis. Ignoring this fact and restricting 1≤max in the products (29) 

leads to an operator A which is not exactly the derivative of the main cycle. That does not 

affect the convergence of the NR linearized cycle but the new input d function proposed by 

the algorithm is not as improved as it should be and the main convergence is slower than 



21 

 

expected. In order to recover the full NR efficiency and the very fast, quadratic convergence 

of the main cycle, it is necessary to account for all g projections relevant in (29) (non-zero t 

coefficients). If the working basis is defined by m,n≤nmax, that corresponds to choosing 

m1,n1≤2nmax or 1≤max'. This necessitates calculating at each Lado's step (20) high-order 

projections of g. For the present linear dipolar molecules, the extra cost is modest: if nmax=2, 

15 extra projections are required, max'=22. This would not be as simple for non-linear, water-

like geometry! 

 

Appendix B. lny projections from Monte Carlo g projections 

 

 At each distance r, we are looking for the max projections of lny (the higher order 

ones being zero) which lead to the first max projections of g imposed by the simulation, gMC. 

In case of y (Widom) MC imposed data, it is sufficient to replace g by y and to discard the 

potential term in the closure. Equation (20) is solved iteratively with NR technics. At a given 

iteration, lny produces g, different from gMC. An increase dlny of lny would produce (linear 

expansion) the increase in g given by an equation similar to (29): 

 
max max max

1 2 1 2 1 2 1 2 2 2

1 2 2 1 2

'

,

, 1 1 1

ln ln lndg t g d y t g d y M d y
  

             
      

 
   

 
     (30) 

or, in matrix notation, dg=(M)dlny. Once again, it is crucial to account for all relevant g 

projections, 1≤max', in the construction of the matrix M. If not, the procedure would 

completely fail (no NR convergence or, even divergence) near the first peak or inside the 

core. The NR step consists to start the next iteration with the improved solution, lny+M-

1(gMC-g). The first estimate is chosen from a previous neighboring case, from the approximate 

equation (24) or, if not sufficient, from linear extrapolation of higher distances r, previously 

treated with more ease. Once the first estimate is close enough to the true solution, the NR 

quadratic convergence is very fast and calculated and imposed g functions agree down to the 

machine double precision.  

 

Appendix C. lny projections from limited Monte Carlo g information 

 

 This time, the simulation provides a limited number of g projections, max,MC<max 

and the HNC closure is assumed for the higher order projections, (25). Since the exponential 

operation mixes known and unknown projections at r≤rmax,MC, the resolution cannot be as 

"simple" as in the previous cases and must use an extra iterative resolution. After many trials, 

the most stable algorithm seems to be the following. 

1) An estimate is made for the projections , max,MC at r≤rmax,MC and fixed during step 2). 
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2) At each distance r≤rmax,MC, we extract the max,MC first projections of lny which lead to the 

imposed max,MC first projections of gMC through (20), at fixed lny≡, max,MC of step 1).  

The procedure is identical to that described in Appendix B. These projections are then fixed 

during step 3). 

3) We solve in terms of the  projections the integral equation problem with closure: 

 
max, max,

max, max,

ln ( ) (step 2) ; and

ln ( ) ( ) ; and/or

MC MC

MC MC

y r r r

y r r r r



 

 

  

  

  
 (31) 

This time, all projections of the potential of mean force are described simultaneously and the 

resolution is similar to the previous ones. At convergence, the max,MC first projections of g are 

(slightly) different from the MC data because the , max,MC have changed between steps 

1) and 3).  

4) The procedure is repeated at step 1) with the new , max,MC of step 3). 

In practice, the full convergence is obtained in 2-4 extra iterations. 
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Table 1. Thermodynamics 

 

  Ncycles ' -U/NkT P/kT  ex 
1.5 HNC   3.6059 3.638 0.130 2.152 15.52 

 MC 5 106 16 3.7927±10-4 2.535±10-3 0.0785 0.755±0.005 16.4±0.1 

 MC/HNC   3.793 2.538 0.0790  16.30 

2.25 HNC   5.004 2.883 0.159 0.325 33.32 

 MC 1 107 37 5.2118±10-4 1.778±10-3 0.0925 -1.10±0.01 36.9±0.1 

 MC/HNC   5.2120 1.783 0.091  37.2 

3 HNC   6.603 2.158 .217 -1.636 92.3 

 MC 1 107 80 6.8045±10-4 1.064±10-3 0.110 -3.10±0.03 80.0±0.5 

 MC/HNC   6.805 1.066 0.111  81.0 

Within the MC/HNC approach, the MC data (N=800) are imposed at r<rmax,MC=5 and 

completed by the HNC closure beyond rmax,MC. ' is the imposed dielectric constant of the 

external medium in the Ewald summation; the pressure P is derived from the virial equation; 

the compressibility  is calculated from the hypervirial equation (MC) or from S(0) (HNC and 

MC/HNC). The excess chemical potential ex is obtained from the Widom insertion technique 

(MC) or from integral of correlation functions (HNC). The dielectric constant of the medium 

 is derived from (10) and the total moment fluctuations <M2> of the cell (MC) or from the 

Kirkwood equation ((10) with '=) with the g-factor given by the integral (11) of g110(r) up 

to infinity. 
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Table 2. Thermodynamics for - Limited MC rmax,MC cut-off  

 

rmax,MC
    -U/NkT P/kT  

 MC   6.8045±10-4 1.064±10-3 0.110 80.0±0.5 

5 MC/HNC   6.805 1.066 0.111 81.0 

3 MC/HNC   6.805 1.069 0.112 80.0 

 MC/MSA   6.805 1.069 0.110 79.9 

 MC/HNC   6.813 1.062 0.123 97 

 MC/MSA   6.805 1.069 0.109 80.1 

Within the MC/HNC and MC/MSA approaches solved with max,MC=13 projections, the MC 

data are imposed at r<rmax,MC and completed by the HNC and MSA closures beyond rmax,MC, 

respectively. 

 
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Table 3. Thermodynamics for - Limited number max,MC of imposed MC 

projections in the MC/HNC model 

 

max,MC
 -U/NkT P/kT  

13 6.805 1.066 0.111 81.0 

3 6.806 1.068 0.111 81.0 

1 6.596 1.275 0.111 68 

RHNC 6.632 0.681 0.101 77 

The MC/HNC model is solved with max=13 projections. The MC data are imposed up to 

rmax,MC=5. The RHNC integral equation identifies the bridge function b=b000 with that of the 

pure LJ fluid.  
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Figure caption 

 

Figure 1: 

Main panel and upper right insert: MC projections gmnl(r) of the pdf for *2=1.5 (dotted lines), 

2.25 (dashed) and 3 (solid) constructed with N=800 particles. The thin solid line corresponds 

to the naked LJ fluid, *2=0. The bottom right insert focuses on the large r region, close to 

L/2=5, for *2=3. 

Figure 2: 

MC projections ymnl(r) of the cavity function derived from the Widom-Henderson insertion 

technique for *2=3 (symbols). The lines are guide for the eyes. 

Figure 3: 

MC/HNC projections cmnl(r) of the direct correlation function. Calculation with 

max=max,MC=7 projections (*2=1.5 and 2.25) or =13 projections (*2=3). MC data are 

imposed up to rmax,MC=5. Same legend as figure 1. The inserts give the first projections of 

c+v for *2=3. 

Figure 4: 

MC/HNC projections lnymnl(r) of the negative excess potential of mean force. Same legend as 

figures 1 and 3. The arrow at r*≈0.87 separates the two domains r<r* and r>r* where lny is 

constructed from the MC Widom y and the MC g, respectively. For *2=3, the y-originated 

data are marked by symbols whose size is of the order of the uncertainty. The two inserts 

focus on the tails for *2=3, with the arrow representing rmax,MC=5. 

Figure 5: 

MC/HNC projections bmnl(r) of the bridge function. Same legend as figure 4. The thin solid 

line corresponds to the naked LJ fluid, *2=0. The two inserts focus on the case *2=3 and use 

the same scale as in the corresponding inserts of figure 3. 

Figure 6: 

MC/HNC bridge function b(r,) at *2=3 for some characteristic orientations  pictured on 

the figure: the arrows indicate dipole orientations; the dot is for a dipole pointing out of the 

figure. Same legend as figure 4. 

Figure 7: 

MC/HNC and MC/MSA projections lnymnl(r) at *2=3. rmax,MC=5reference symbols; 

rmax,MC=3 (arrow), continuous lines (MC/HNC) and dashed lines (MC/MSA), mostly hidden 

behind the symbols. 
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Figure 8: 

MC/HNC and MC/MSA projections hmnl(r) and bmnl(r) (insert) at *2=3. rmax,MC=5reference 

symbols; rmax,MC=1.8 (arrow), continuous lines (MC/HNC) and dashed lines (MC/MSA), 

mostly hidden behind the symbols. 

Figure 9: 

Projections gmnl(r) of the pdf at *2=3. MC data (symbols); bare HNC (solid line); RHNC 

(bridge function borrowed from the pure LJ fluid, dotted line); MC/HNC (25) resolved 

(max=13) with a limited set of imposed MC gmnl projections up to rmax,MC=5:max,MC=1 

(dashed) or max,MC=3 (dotted-dashed).  

Figure 10: 

MC/HNC projections bmnl(r) of the bridge function at *2=3. max=13. The number max,MC of 

imposed MC gmnl projections up to rmax,MC=5 is 13 (reference symbols), 3 (dotted-dashed 

lines) or 1 (dashed line). The dotted line is the bridge function of the pure LJ fluid. 

 

 


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