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Abstract: Due to their inherent advantages such as low cost, robustness and wide speed
range, switched reluctance machines (SRMs) have attracted great attention in electrical vehicles.
However, the vibration and noise problems of SRMs limit their application in the automotive industry
because of the negative impact on driver and passengers’ comfort. In this paper, a new control method
is proposed to improve the vibratory and acoustic behavior of SRMs. Two additional control blocks
—direct force control (DFC) and reference current adapter (RCA)—are introduced to the conventional
control method (average torque control (ATC)) of SRM. DFC is adopted to control the radial force
in the teeth of the stator, since the dynamic of the radial force has a large impact on the vibratory
performance. RCA is proposed to handle the trade-off between the DFC and ATC. It produces an
auto-tuning current reference to update the reference current automatically depending on the control
requirement. The effectiveness of the proposed control strategy is verified by experimental results
under both steady and transient condition. The results show that the proposed method improves
the acoustic performance of the SRM and maintains the dynamic response of it, which proves the
potential of the proposed control strategy.

Keywords: switched reluctance machine; vibration and noise reduction; radial force control;
auto-tuning reference current adapter; dynamic response

1. Introduction

The great potential of electrical vehicles (EVs) has led to many studies on the topic. As the core
component of EVs, the electric motor and drive is very important. The peculiar operating modes and
working conditions of the vehicles poses specific requirements for electric motor and drive systems.
The switched reluctance machine (SRM) has been a strong candidate due to its inherent advantages
such as simple structure, good fault tolerance, applicability in harsh environments and low cost [1].
However, its double salient structure leads to high nonlinearity and serious vibration and acoustic
noise problems, which prevent it from being used in the automobile field. It has been pointed out that
the main source of the vibration and acoustic noise for SRM is the electromagnetic force between the
stator and rotor poles [2,3]. Different approaches have therefore been proposed to reduce the vibration
and noise from the aspects of both geometric-optimization design and control strategies.
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As it concerns the optimization-based design, several solutions have been proposed to
improve vibration, mainly focused on the radial force reduction [4–6], the motor natural frequency
manipulation [7,8], and the stator damping effect improvement [9].

Among the control approaches, the current shaping control method is usually adopted to reduce
the SRM vibration and noise in the early stage of the research, such as the turn-on and turn-off angle
advanced shift method [10], the random control angle method [11]; the two-stage [12] or three-stage
commutation method. Due to their piezoelectric properties, lead zirconate (PZT) actuators have become
an alternative method for semi-active/active vibration reduction [13,14]. However, all these control
solutions in [13,14] require additional components—PZTs. Since the main source of the vibration is
the variation of the radial force, it inspires the propositions of control strategies aiming to reduce the
vibration by controlling the radial force directly [15–19]. In [15], the authors propose a PWM-based
predictive control method, in which the direct instantaneous force control (DIFC) is adopted trying
to obtain a smooth total radial force. In [16], the authors propose a control method combining direct
instantaneous torque control with direct instantaneous force control, which tries to solve the torque
ripple increase caused by adopting DIFC alone in [15]. However, this method has the disadvantage
of increasing total losses, which can be up to 48% compared to the traditional method. In [17–19],
the authors propose a new current profile to minimize the variation of the total radial force under
unsaturated and saturated conditions. Besides, authors investigate the effect of control parameters
on torque ripple, efficiency and vibration reduction. Yet, this method has use limitation for the
three-phase SRM. Moreover, most of these research focus on the steady-state performance of the
proposed method. Considering the complex traffic conditions in urban region, a control method
used to reduce vibration and noise under both stable and transient conditions without slowing down
dynamic response is necessary.

2. Materials and Methods

The proposed Direct Force Control (DFC) and Reference Current Adapter (RCA) vibration
reduction control strategy for the SRM is presented in Figure 1. The average torque control, referred to
in the figure as ATC, is a traditional control strategy that uses look-up tables (LUTs) to achieve different
goals, such as torque ripple minimization, efficiency optimization at each operating point. The main
idea of this control structure that will be detailed in the following parts is to combine the ATC with
DFC, each controller being active depending on the characteristics of the machine related to the rotor
position. Each part of the proposed control structure will be described in the following sections:
ATC, DFC&RCA.
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Figure 1. Control structure of the proposed control method.

2.1. Conventional Control Strategy—ATC

The proposed method in this paper is based on the traditional control method ATC, whose block
diagram is shown in Figure 2. There are two controllers: the speed controller of the outer loop and
the current controller of the inner loop. LUTs store the optimized control parameters. By using
the reference torque and actual rotor speed as inputs, the control parameters I*ref, ψ and θp are
then constantly updated, whose definitions are presented in Figure 3. Thus, the error between the
reference current I*ref and the phase current I is used by the current control to compute a variable
duty ratio such that the phase current emulates the reference value. It should be noted that Integral
Proportional (IP) controller is adopted for the speed loop considering both overshoot and disturbances
rejection [20] and Proportional Integral (PI) controller is introduced in the current loop to guarantee
the dynamic response.
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Figure 3. Definition of control variables.

2.2. Vibraiton Reduction Block—DFC

DFC is a control strategy inspired by direct instantaneous torque control (DITC) [21], whose aim
is to obtain a smooth total torque by controlling the instantaneous phase torque. The objective of the
adoption of DFC is to reduce the variation of the radial force so that to limit the mechanical excitation
to reduce the vibration and noise of SRM. The control scheme of the SRM based on DFC is illustrated
in Figure 4.
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Figure 4. Structure of direct force control drive system.

In Figure 4, the switching signals of the power converter are generated by the DFC block to reduce
∆F (Fref − Fs), defined as the difference between the desired total radial force Fref and the actual sum of
the radial forces Fs. An asymmetric half-bridge converter is adopted, which can produce three different
terminal voltages (positive, zero, negative) to the connected phase winding.

The introduced DFC block consists of three hysteresis controllers that produce the switching
signals for each phase of the SRM. Depending on the position of the rotor, the whole controlling process
can be divided into two conditions: the commutation mode and single excitation mode. In commutation
mode, two adjacent phases are excited at the same time (periods I and III in Figure 5). In this case,
the switching states S of the outgoing phase (phase D, period I or phase A, period III) and the
incoming phase (phase A, period I or phase B, period III) follow the rules in Figure 6a,c, respectively.
In single excitation mode, just one phase is excited (phase A, period II) following the rules in Figure 6b.
The hysteresis bands are defined within the intervals [−∆F*, ∆F*], where ∆F* is the hysteresis band
chosen by the user.
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As shown in Figures 5 and 6, different hysteresis controllers are adopted in different regions,
the hysteresis controllers used in this work are designed considering the output torque performance,
the efficiency and the vibration of the machine. In part I, the force from phase A of the SRM is smaller
than the one of phase D, and then hysteresis (a) allows a limited switching rate and a fast increase of
the current in order to provide the requested output torque. In part II, a high dynamic is required,
so that the actual total force can emulate the reference value, which can be obtained by hysteresis (b).
In part III, the force of phase A is high (near aligned position) and hysteresis (c) has shown to allow
a restricted variation of the force around Fref to limit the vibration during the commutation period.

It can be seen in Figure 4 that there is no current limitation for DFC. To obtain a smooth DFC,
a peak current is required, which will lead to peak phase torque that causes a problem of torque
ripple. In traction applications, torque ripple can potentially excite the downstream power train,
which can lead to undesirable jerking of the vehicle or secondary noise radiating as gear whine from
the transmission. Thus, torque ripple is also not desirable. Therefore, a reference current is induced to
limit the peak torque in each phase.

2.3. Blocks Ajustment—RCA

In this paper, RCA block is proposed to balance torque ripple and vibration problem. The purpose
of RCA is to manage the tradeoff between torque ripple minimization and vibration reduction by
updating the current reference. The value of the current reference is constantly adapted based on
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the variations of the torque and radial force within an electrical period, noted σT and σF respectively.
These criteria are calculated using the following expressions:

σT =

√∫ Tc

0
(T(t) − Tavg)

2dt/(T2
avgTc) (1)

σF =

√∫ Tc

0
(F(t) − Fre f )

2dt/(F2
re f Tc) (2)

where, T(t), F(t) are the transient total torque and total radial force, respectively; Tavg, Fref are the mean
value of the total torque and the total radial force reference during one electrical period, respectively;
Tc is the cycle time of one electrical period.

The basic idea of RCA is to increase or decrease the current reference to reduce the variation of the
radial force or the variation of the torque. Based on the fact that DFC needs a higher current to obtain
a smooth radial force to reduce vibration and noise, and ATC requires a relative smaller current to
reduce torque ripple, the flowchart of RCA is illustrated in Figure 7. εF and εT are the upper limits
for the variations of the total radial force and torque. The increment or decrement step of the current
adapter ∆I is a constant value that can be tuned by the user: a too small value will slow down the
current update, while a too big value will make the system unstable. In this paper, the RCA parameters
values are εF = 0.5, εT = 0.12 and ∆I = 0.5. The chosen values for εF and εT offer an acceptable tradeoff

between torque ripple minimization and vibration reduction. Iref [k] is the output of the reference
current adapter at time instant k. Inew [k] is the intermediate current reference value at time instant k.
I*ref [k] is the reference current obtained from the optimized look-up table in ATC.Energies 2018, 11, x FOR PEER REVIEW  7 of 15 
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Firstly, σT and σF are calculated with Equations (1)–(2) and compared to constants εT and εF to
determine the intermediate current reference Inew [k]. It follows the rules as: the torque criterion is
considered only if the vibration criterion is satisfied, that is to say, the current reference will be reduced
when σF ≤ εF, otherwise, it will be increased to reduce the variation of the radial force. If both variations
of total torque and total radial force are within their allowed range (σF ≤ εF, σT ≤ εT), the reference current
will not change and the intermediate current reference Inew [k] will be compared with the current reference
signal Iref* [k] from the ATC to ensure the torque output of the machine. Finally, the output of the reference
current adapter is equal to the maximum between I*ref [k] and Inew [k].

For instance, the adaption process handled by the reference adapter is shown in Figure 8.
The reference current Iref increases at the beginning (region (a)) to reduce the force variation σF and to
meet the requirement of εF. Within region (b), where σF ≤ εF and σT > εT, the adaption process is made
up of two parts: region (b.1) and region (b.2). Inside the region (b.1), Iref starts to decrease in order to
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reduce the torque ripple as soon as σF ≤ εF. Inside the region (b.2), the Iref increases at first and is equal
to reference current Iref*obtained from the optimized look-up table to guarantee the output torque to
emulate the reference speed nref. Then, the reference current I*ref from the LUT starts to decrease slowly
because the difference between the actual speed n and reference speed nref is reducing, which leads
to the reduction of the reference torque Tref (output of the speed controller). As the actual speed n
approaches the reference speed nref, the reference current I*ref decreases faster and becomes smaller
than the Iref the reference current adapter stops updating and enters the region (c) where the current is
constant and σF ≤ εF, σT ≤ εT.
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It should be noted that, after introducing block RCA, the reference current Iref is not always equal
to the I*ref from LUTs in ATC directly. It is the value, which can satisfy both the force and torque
variation standard aforementioned. Comparing Figure 1 to Figure 2, it can be seen that, the reference
current I*ref produced by LUTs in ATC is sent to RCA to generate a new reference current Iref, then,
Iref is delivered to commutating strategy block in ATC for current regulation by comparing with the
actual phase current.

3. Experimental Results

To validate the proposed control strategy, some experimental tests are evaluated by using an
8/6 SRM prototype (the machine parameters are given in Table 1). The test bench is presented in
Figure 9. The experiments are performance by using a microprocessor combined with a FPGA.
The FPGA board features the Xilinx Virtex-5 FPGA running at 100 MHz, with 6 ADC and 16 digital I/O
channels. The microprocessor has a CPU frequency of 1 GHz and level-2 cache of 1 MB. The FPGA and
microprocessor are connected by a Physical High Speed (PHS) bus. The phase currents are measured
by four Hall-effect current sensors, whose obtained data are sent to A/D of FPGA. The rotor position is
measured by an incremental encoder with a resolution of 0.1◦ mounted on the rotor shaft. The magnetic
particle brake (MPB) provide a controllable load torque which can be regulated via PC. The acceleration
data is acquired with an accelerometer (PZT) located over A-phase tooth, in the middle of the axial
lamination (see Figure 9). The accelerometer is MMF KS76C IEPE (102.11 mV/g) with MMF M32
conditioner. The noise is measured with a microphone which is placed near the test bench at a distance
close to 20 cm.
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Table 1. Electrical parameters of the investigated SRM.

Parameters Value

Number of phases 4
Nominal power 1.2 kW
Nominal speed 3000 r/min

Nominal voltage 24 V
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3.1. Steady Condition

At first, the experimental results of ATC and DFC&RCA are compared under steady conditions,
which means the actual speed is equal to the reference speed. The curves of current, torque and radial
force are delivered to a four-channel oscilloscope for saving. In which, the torque and radial force are
estimated in FPGA by interpolating the torque and force profiles presented in Figure 1.

The experimental results of the closed-loop system, the phase current, the sum of radial forces
and the electromagnetic torque are illustrated in Figure 10 for a reference speed Ω* of 1000 r/min and
a load torque TL of 2 N·m. The root mean square currents of DFC&RCA and ATC are similar, which are
16.7 A (ATC) and 16.9 A (DFC and RCA), so that their copper losses are quite identical. The torque
ripple has been increased by 6% because of the concave part of the torque shown in Figure 10c (within
green circle). This concave part is caused by DFC, which is active during this period so that to reduce
the radial force variation to improve vibratory behavior. Besides, the system efficiencies with both
methods are 76.2%.
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Figure 10. Experimental results at Ω* = 1000 r/min and TL = 2 N·m. (a) phase current; (b) total radial
force; (c) torque.

In Figure 11, the corresponding vibration acceleration spectrums are presented. The maximum
vibration value near its natural frequency (2660 Hz) presents a reduction of 17.9 dB.
Moreover, according to the comparison results, the vibration also has been reduced in a wide
frequency range. The spectrum of the measured SPL (sound power level) is presented in Figure 12
showing a reduction of 13.7 dB near the natural frequency.
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Figure 11. Experimental results of vibration acceleration at Ω* = 1000 r/min and TL = 2 N·m.
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Figure 12. Experimental results of acoustic noise at Ω* = 1000 r/min and TL = 2 N·m.

It can be seen that the proposed method DFC&RCA can reduce both the vibration and acoustic
noise of the SRM system without sacrificing the efficiency and increasing significant torque ripple
under stable condition.

3.2. Transient Condition

In the previous section, the proposed control method is compared to a traditional one (ATC)
considering aspects related to vibration, acoustic noise and torque ripple when the speed has reached
the steady state. The transient periods when there are sudden changes in the reference speed or load
torque are also important if we consider urban driving conditions. Thus, this section investigates the
dynamic response of the proposed method under reference speed and load torque variations.

3.2.1. Reference Speed Variation

Figure 13 presents the experimental results of ATC and DFC&RCA when the reference speed is
increased from 200 r/min to 600 r/min at 5 s with a load torque of 2 N·m. As shown in this figure,
the phase current increases at 5 s when the reference speed changes, so that SRM can provide a higher
torque to enable the rotor to catch up with the new reference speed. According to the comparison,
the transient period of the speed for both controllers is the same about 0.5 s. And the phase current
peak value of DFC&RCA is always bigger than ATC so that to reduce the variation of the radial force.
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Figure 13. Transient curves for a step-change in the reference speed from 200 r/min to 600 r/min and TL

= 2 N·m. (a) ATC; (b) DFC and RCA.

The corresponding acoustic noise measurement results are given in Figure 14. The acoustic noise
increases with the increase of the speed. The noises below 700 Hz are mainly from the power supply
and MPB. In fact, there are two dominant frequencies for MPB, which are 540 Hz and 670 Hz. And the
noise from power supply increases near 400 Hz with current increase. It can be seen that DFC&RCA
has always less SPL than the traditional control method (ATC) whenever the speed is stable (before 5 s
and after 7 s) or during the transient period (from 5 s to 7 s).
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Figure 14. Cont.
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Figure 14. Experimental sonogram of acoustic noise for a step-change in the reference speed from
200 r/min to 600 r/min and TL = 2 N·m. (a) Sonogram with ATC; (b) Sonogram with DFC&RCA;
(a.1) Partial zoom-in of (a) for the transient period; (b.1) Partial zoom-in of (b) for the transient period.

Figure 15 presents the experimental results of ATC and DFC&RCA when the reference speed is
increased from 200 r/min to 600 r/min at 5 s with a higher load torque (TL = 6 N·m). Similar conclusions
can be obtained as in the case with a light load of 2 N·m.
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Figure 15. Transient curve for a step-change in the reference speed from 200 r/min to 600 r/min and TL

= 6 N·m. (a) ATC; (b) FC and RCA.

The corresponding acoustic noise measurement results are given in Figure 16. DFC&RCA also
has lower SPL than ATC both in stable and transient period. Comparing Figure 14 with Figure 16,
the SPL is higher with a load of 6 N·m than with a load of 2 N·m at the same speed. Besides, the noise
from the power supply is more serious with an increase of 10 dB when the load torque is added.
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DFC&RCA is a little smaller that of ATC during this transient period, both control methods assure a 
closed-loop response time about 0.5 s.  

Figure 16. Experimental sonogram of acoustic noise for a step-change in the reference speed from
200 r/min to 600 r/min and a load torque of 6 N·m. (a) Sonogram with ATC; (b) Sonogram with
DFC&RCA; (a.1) Partial zoom-in of (a) for the transient period; (b.1) Partial zoom-in of (b) for the
transient period.

3.2.2. Torque Load Variation

Figure 17 shows the experimental results of ATC and DFC&RCA when the load torque is increased
from 2 N·m to 6 N·m at 5 s with a reference speed of 600 r/min. As expected, the phase current increases
when the load torque is modified, so that SRM provides a higher torque to maintain the same speed.
However, there exists a period when the speed is smaller than the reference value. This period consists
of two parts: speed decrease part (Figure 17a-I) which is attributed by the lower output mean torque
compared to the load torque when the load changes and speed increase part (Figure 17a-II) where
the output mean torque is bigger than the load torque so that to enable the rotor speed up to emulate
the given reference speed 600 r/min. Even though the minimum actual speed of DFC&RCA is a little
smaller that of ATC during this transient period, both control methods assure a closed-loop response
time about 0.5 s.
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Figure 17. Transient curves for a step-change in the load torque from 2 N·m to 6 N·m at constant
reference speed Ω* = 600 r/min. (a) ATC; (b) DFC & RCA.

The corresponding acoustic noise measurement results are given in Figure 18. The high-order
acoustic harmonics are increased in Figure 18 (red dash line region) at the moment the load torque is
increased, this is caused by the increasing current to maintain the reference speed. It can be seen that
SPL of both methods near the natural frequency are increased when load torque is increased, however,
DFC&RCA has lower SPL than ATC at both steady state and during transients.
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Figure 18. Experimental sonogram of acoustic noise for a step-change in the load torque from 2 N·m
to 6 N·m at constant reference speed Ω* = 600 r/min. (a) Sonogram with ATC; (b) Sonogram with
DFC&RCA; (a.1) Partial zoom-in of (a) for the transient period; (b.1) Partial zoom-in of (b) for the
transient period.
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4. Conclusions

In this paper, a method to reduce the vibration and noise of switched reluctance machines is
proposed. It is an improved control method based on DFC aiming to reduce the radial force variation,
which is the main cause of the vibration and noise source of SRM. An auto-tuning current adaptor is
proposed to handle the trade-off between vibration reduction of DFC and torque ripple minimization
of ATC. Some experimental results are presented to validate the effectiveness of the proposed method
DFC&RCA by comparing it to the traditional control method ATC under both steady state and transient
state. Under steady state conditions DFC&RCA is compared to ATC analyzing the vibration, the torque
ripple, the efficiency and the acoustic noise. According to the comparison results, the maximum
reduction of vibration near the natural frequency is up to 17.9dB without sacrificing the efficiency
and without important penalizing the torque ripple. The reduction of maximum SPL near the natural
frequency is up to 13.7 dB. Regarding transients, both speed variation with same load torque and load
variation with same reference speed are tested. The results show that the proposed method improves
the acoustic performance of the SRM and maintains the dynamic response (both methods are with
a response time of 0.5s) of it, which proves the potential of the DFC&RCA strategy.
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