Platinum Supported Catalysts: Predictive CO and H 2 Chemisorption by a Statistical Cuboctahedron Cluster Model - Archive ouverte HAL
Article Dans Une Revue Journal of Physical Chemistry C Année : 2016

Platinum Supported Catalysts: Predictive CO and H 2 Chemisorption by a Statistical Cuboctahedron Cluster Model

Résumé

Chemisorption of probe molecules such as hydrogen and carbon monoxide on the surface of Pt particles is the most common chemical technique used to estimate the crucial parameters of metal catalysts, namely the dispersion (D), the particle size (d), and the metallic specific surface area (SPt). However, it remains a controversy concerning the stoichiometry of adsorbate per surface metal atom, leading to an inaccurate estimation of D, d, and SPt. A model describing the statistics of the surface atoms and sites on perfect cuboctahedron clusters was developed to assess values of D, d, and SPt, assuming the most favorable adsorption sites based on density functional theory (DFT) calculation of the literature. This model successfully predicted the experimental values of D, d, and SPt determined from H or CO chemisorption data, and it allowed providing a set of simple equations for the accurate determination of these parameters from chemisorption experiments on Pt.

Domaines

Catalyse
Fichier non déposé

Dates et versions

hal-02109715 , version 1 (25-04-2019)

Identifiants

Citer

Anthony Le Valant, Clément Comminges, Fabien Can, Karine Thomas, Marwan Houalla, et al.. Platinum Supported Catalysts: Predictive CO and H 2 Chemisorption by a Statistical Cuboctahedron Cluster Model. Journal of Physical Chemistry C, 2016, 120 (46), pp.26374-26385. ⟨10.1021/acs.jpcc.6b09241⟩. ⟨hal-02109715⟩
51 Consultations
0 Téléchargements

Altmetric

Partager

More