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REAL STRUCTURES ON SYMMETRIC SPACES

LUCY MOSER-JAUSLIN AND RONAN TERPEREAU

Abstract. We obtain a necessary and sufficient condition for the existence

of equivariant real structures on complex symmetric spaces for semisimple

groups and discuss how to determine the number of equivalence classes for
such structures.
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Introduction

A (complex algebraic) symmetric space is a complex algebraic G-variety X =
G/H, where G is a complex reductive algebraic group, θ ∈ AutC(G) is a non-trivial
group involution, and H ⊆ G is a subgroup such that Gθ ⊆ H ⊆ NG(Gθ). The
historical motivation for the study of symmetric spaces comes from the Riemannian
symmetric spaces (see [Hel78] for an exposition); those arise in a wide range of
situations in both mathematics and physics, and local models are given by the real
loci of certain (complex algebraic) symmetric spaces. Therefore, given a symmetric
space, it is natural to ask whether it admits equivariant real structures (see § 1.2).
The present note aims at providing an answer to this question. In this article, we
restrict to the case where G is semisimple (see Rk. 0.2).

A homogeneous space G/H is spherical if a Borel subgroup of G acts with an
open dense orbit; see [Tim11, Per14] for an exposition of the theory of spherical
homogeneous spaces and their equivariant embeddings. Spherical homogeneous
spaces are classified in terms of combinatorial data called homogeneous spherical
data [Tim11, § 30.11]. By Vust [Vus74] symmetric spaces are spherical, thus sym-
metric spaces are also classified by the homogeneous spherical data. However, these
data are quite complicated to handle and also, those corresponding to symmetric
spaces have no particular features to distinguish them from those corresponding to
non-symmetric spaces. Using these data, a criterion for the existence of equivariant
real structures on general spherical homogeneous spaces was obtained by Borovoi
and Gagliardi [BG, Th. 1.17] (generalizing results of Akhiezer and Cupit-Foutou
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[ACF14, Akh15, CF15]). However, this criterion can be difficult to apply in spe-
cific cases. In particular, in the case where the spherical homogeneous space is a
symmetric space, the involution θ is not used. The leading goal of this article is to
obtain an independent practical criterion using the involution θ.

Our main result in this note is the following (Th. 2.9 and Prop. 3.4):

Theorem 0.1. Let (G, σ) be a complex semisimple group with a real group struc-
ture. Let θ be a (non-trivial regular) group involution on G, and let Gθ ⊆ H ⊆
NG(Gθ) be a symmetric subgroup. Then there exists a (G, σ)-equivariant real struc-
ture on the symmetric space G/H if and only if the following holds:

• the involutions σ ◦ θ ◦ σ and θ are conjugate by an inner automorphism;
• the Z/2Z-action on NG(Gθ)/Gθ induced by σ (see Def. 2.8) stabilizes H/Gθ; and
• ∆H(σ) = 0, where ∆H is the map defined by (*) at the end of § 1.1.

Moreover, if such a structure exists, then there are exactly 2n equivalence classes of
(G, σ)-equivariant real structures on G/H, where n is a non-negative integer than
can be calculated explicitly (see § 3 for details).

Remark 0.2. The fact that G is assumed to be semisimple, and not just reductive,
is crucial for Prop. 1.16, Prop. 2.3 (see also Rk. 2.4), and Cor. 2.7.

Remark 0.3. The fact that symmetric spaces are spherical is used in the proof of
Prop. 1.16, to say that NG(H)/H is an abelian group, and in the proof of Cor. 2.7,
to apply Prop. 2.5 (which is the only result where some knowledge on the theory
of equivariant embeddings for spherical homogeneous spaces is required).

Remark 0.4. Let X = G/H be a symmetric space with a (G, σ)-equivariant real
structure µ such that X(C)µ is non-empty. Then G(C)σ acts on X(C)µ with finitely
many orbits and a combinatorial description of these orbits using Galois cohomology
is provided in [CFT18] (see also [BJ06, Chp. 6]).

In [MJT] we studied the equivariant real structures on horospherical varieties
which are another class of spherical varieties. The main result [MJT, Th. 0.1]
regarding the existence of equivariant real structures on horospherical homogeneous
spaces is quite similar to Th. 0.1 but the case of horospherical homogeneous spaces
differs greatly from the case of symmetric spaces for the following reasons:

• The homogeneous spherical data corresponding to horospherical homogeneous
spaces are easy to discriminate and take a very simple form (see [MJT, § 3.1] for
a recap) contrary to the case of symmetric spaces.

• The group AutGC (G/H) ' NG(H)/H, which plays a key role when counting
the number of equivalence classes of equivariant real structures on G/H, is a
torus for horospherical homogeneous spaces while it is a finite abelian group for
symmetric spaces (Prop. 1.16).

• In both cases, an equivariant real structure on G/H extends to a G-equivariant
embedding G/H ↪→ X if and only if the corresponding colored fan is stable for
the induced action of the Galois group Γ = Gal(C/R) (see [Hur11, Wed18]),
but in the horospherical case the quotient X/Γ is always an algebraic variety
while in the symmetric case it can be an algebraic space. Therefore the question
of the existence of real forms for symmetric varieties is subtler than for horo-
spherical varieties, and that is the reason why in this note we only consider the
homogeneous case.
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Remark 0.5. A homogeneous space G/H is horosymmetric if it is a homogeneous
fibration over a flag variety G/P , whose fibers are symmetric spaces. This class
of spherical homogeneous spaces, which contains both symmetric spaces and horo-
spherical homogeneous spaces, was introduced by Delcroix in [Del]. It would be
interesting to determine a nice criterion for the existence of equivariant real struc-
tures on horosymmetric spaces from Th. 0.1 and [MJT, Th. 0.1].

In § 1 we recall some definitions and results on real group structures, equivariant
real structures, and symmetric spaces. Then in § 2 we prove the necessary and
sufficient condition of Th. 0.1 for the existence of equivariant real structures on
symmetric spaces (Th. 2.9). Finally, in § 3 we show how to determine the number
of equivalence classes for such structures (Prop. 3.4).

Acknowledgments. We are very grateful to Michael Bulois, Jacopo Gandini, and
Bart Van Steirteghem for interesting exchanges related to this work.

Convention. In this article we work over the field of real numbers R and over the
field of complex numbers C. We denote by Γ the Galois group Gal(C/R) = {1, γ} '
Z/2Z. We will always denote by G a complex semisimple algebraic group. When we
write (semi)simple group we always mean connected (semi)simple algebraic group.
We refer the reader to [Hum75] for the standard background on algebraic groups.

1. General background on real structures and symmetric spaces

This first section is a short recollection of general results on real structures
detailed in [MJT, §§ 1-2] and on symmetric spaces.

1.1. Real group structures.

Definition 1.1. A real group structure on the semisimple group G is an antiregular
group involution σ : G→ G, i.e., a group involution over Spec(R) which makes the
following diagram commute:

G
σ //

��

G

��
Spec(C)

Spec(z 7→z) // Spec(C)

Two real group structures σ and σ′ on G are equivalent if there exists a (regular)
group automorphism ϕ ∈ Autgr(G) such that σ′ = ϕ ◦ σ ◦ ϕ−1.

Remark 1.2. The real locus G(C)σ of (G, σ) is a real Lie group.

We can always replace G by its universal covering space and assume that G is
a simply-connected semisimple group, in which case the real group structures are
easy to describe.

Lemma 1.3. [MJT, Lem. 1.7] Assume that G =
∏
i∈I Gi is a simply-connected

semisimple group, where the Gi are its simple factors, and let σ be a real group
structure on G. Then, for a given i ∈ I, we have the following possibilities:

(i) σ(Gi) = Gi and σ|Gi is a real group structure on Gi; or
(ii) there exists j 6= i such that σ(Gi) = Gj, then Gi ' Gj and σ|Gi×Gj is

equivalent to (g1, g2) 7→ (σ0(g2), σ0(g1)), where σ0 is any real group structure
on Gi ' Gj.
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The real group structures on complex simply-connected simple groups are well-
known (a recap can be found in [MJT, Appendix]); they correspond to real Lie
algebra structures on complex simple Lie algebras (see [Kna02, § VI.10] for the
classification of those in terms of diagrams).

Definition 1.4. If there exists a Borel subgroup B ⊆ G such that σ(B) = B, then
σ is called quasi-split. For c ∈ G we denote by innc the inner automorphism of G
defined by

innc : G→ G, g 7→ cgc−1.

If σ1 and σ2 are two real group structures on G such that σ2 = innc ◦ σ1, for some
c ∈ G, then σ2 is called an inner twist of σ1.

A quasi-split real group structure always preserves some maximal torus T ⊆ B.
Moreover, any real group structure on G is equal to the inner twist of a quasi-split
real group structure unique up to equivalence [Con14, Prop. 7.2.12].

Example 1.5. Let n ≥ 2. There are exactly two inequivalent quasi-split real group
structures on SL2n. The first one is the split real group structure σsp : g 7→ g,
whose real locus is SL2n(R), and the second is the real group structure defined

by σqs : g 7→ Kn,n
t
g−1Kn,n, where Kn,n =

[
In 0
0 −In

]
and whose real locus is

SU(n, n,R).

Recall that we denote Γ = Gal(C/R) = {1, γ} ' Z/2Z. Let σqs be a quasi-split
real group structure on G. We consider the short exact sequence of Γ-groups

1→ Z(G)→ G→ G/Z(G)→ 1,

where the Γ-action is induced by σqs. In other words, the element γ ∈ Γ acts
on G and Z(G) by σqs, and on G/Z(G) by the induced real group structure. Let
H1(Γ,−) denote the first Galois cohomology pointed set (see [Ser02] for more details
on Galois cohomology). Since Z(G) is an abelian group, there is a connecting map

δ : H1(Γ, G/Z(G))→ H2(Γ, Z(G)).

Tables where the map δ is calculated when G is a simply-connected simple group
can be found in [MJT, Appendix A].

Let now H be a subgroup of G such that σqs(H) = H and NG(H)/H is
abelian. Then σqs induces a real group structure on NG(H)/H, namely σ̂qs(nH) =
σqs(n)H, and we can consider the second cohomology group H2(Γ, NG(H)/H).
Since it is abelian, we will use the additive notation for this cohomology group,
with the neutral element equal to 0. The natural homomorphism χH : Z(G) →
NG(H)/H, induced by the inclusion Z(G) → NG(H), yields an homomorphism
between the second cohomology groups

χ∗H : H2(Γ, Z(G))→ H2(Γ, NG(H)/H).

In the rest of this article we will denote the composed map χ∗H ◦ δ by

(*) ∆H : H1(Γ, G/Z(G))→ H2(Γ, NG(H)/H).

We recall that H1(Γ, G/Z(G)) ' {c ∈ G | cσqs(c) ∈ Z(G)}/ ≡, where c ≡ c′ if
c−1b−1c′σqs(b) ∈ Z(G) for some b ∈ G.

Notation 1.6. If σ is a real group structure equivalent to innc ◦ σqs, then we
will write ∆H(σ) for the element ∆H([c]) of H2((Γ, NG(H)/H). (Note that if
innc ◦ σqs = innc′ ◦ σqs, then the classes [c] and [c′] are equal.)
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The element ∆H(σ) ∈ H2(Γ, NG(H)/H) is a cohomological invariant that plays
a key-role in our criterion for the existence of equivariant real structures on sym-
metric spaces; see Th. 0.1.

1.2. Equivariant real structures. Let σ be a real group structure on G.

Definition 1.7. A (G, σ)-equivariant real structure on a G-variety X is an anti-
regular involution µ on X such that

∀g ∈ G, ∀x ∈ X, µ(g · x) = σ(g) · µ(x).

Two equivariant real structures µ and µ′ on a (G, σ)-variety X are equivalent if

there exists a G-automorphism ϕ ∈ AutGC (X) such that µ′ = ϕ ◦ µ ◦ ϕ−1.

Lemma 1.8. [MJT, Lem. 2.4] Let X = G/H be a homogeneous space. Then X
has a (G, σ)-equivariant real structure if and only if there exists g ∈ G such that
these two conditions hold:

(1) (G, σ)-compatibility condition: σ(H) = gHg−1

(2) involution condition: σ(g)g ∈ H
in which case such a structure µ on X is given by µ(kH) = σ(k)gH for all k ∈ G.

Remark 1.9. The first condition implies that σ(g)g ∈ NG(H), and so if NG(H) = H
the second condition is automatically fulfilled.

Remark 1.10. If H ′ is conjugate to H, then G/H has a (G, σ)-equivariant real
structure if and only if G/H ′ has a (G, σ)-equivariant real structure.

Proposition 1.11. [MJT, Prop. 2.8] (see also [Bor, Th.1.6])
Let σ = innc ◦ σqs, where c ∈ G and σqs is a quasi-split real groups structure on G.
Assume that NG(H)/H is abelian and that σqs(H) = H. Then

(i) G/H has a (G, σqs)-equivariant real structure; and
(ii) G/H has a (G, σ)-equivariant real structure if and only if ∆H(σ) = 0,

where ∆H is the map defined by (*) at the end of § 1.1.

1.3. Symmetric spaces. In this section we recall some basic facts on symmetric
spaces that we will need in the following. The interested reader is referred to
[Tim11, § 26] for a detailed survey on symmetric spaces.

Definition 1.12. A subgroup H ⊆ G is symmetric if there exists a (non-trivial
regular) group involution θ on G such that Gθ ⊆ H ⊆ NG(Gθ). A homogeneous
space G/H is symmetric if H is a symmetric subgroup of G.

Example 1.13. The group G itself can be viewed as a symmetric space for the
action of G × G by left and right multiplication. Indeed, G ' (G × G)/H, where
H = (G×G)θ with θ(g1, g2) = (g2, g1).

Example 1.14. Let n ≥ 2 and let G = SL2n. Then θ : g 7→ J(
t
g−1)tJ , with

J =

[
0 In
−In 0

]
, is a group involution on G. We have Gθ = Sp2n and NG(Gθ) =〈

Z(G), Gθ
〉
, and thus NG(Gθ)/Gθ ' Z(G)/(Z(G) ∩Gθ) ' Z/nZ.

As in the case of real group structures (see Lem. 1.3) we can always replace G
by its universal covering space and assume that G is simply-connected, in which
case the (regular) group involutions are easily described.
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Lemma 1.15. Let θ be a group involution on a simply-connected semisimple group
G =

∏
i∈I Gi, where the Gi are the simple factors of G. Then, for a given i ∈ I,

we have the following possibilities:

(i) θ(Gi) = Gi and θ|Gi is a group involution on Gi; or
(ii) there exists j 6= i such that θ(Gi) = Gj, then Gi ' Gj and θ|Gi×Gj is

conjugate to (g1, g2) 7→ (g2, g1).

Proof. We use the fact that the factors Gi are the unique simple normal subgroups
of G (see [Con14, Th. 5.1.19]). In particular, any group automorphism of G per-
mutes the factors. Since θ is a group involution, either θ(Gi) = Gi and we get (i),
or θ(Gi) = Gj for some j 6= i. In the second case, Gi and Gj are then isomorphic.
ThereforeGi×Gj ' H×H, for some simply-connected simple groupH, and θ|Gi×Gj
identifies with θH×H : (h1, h2) 7→ (ψ(h2), ψ−1(h1)) for some group automorphism
ψ on H. But then it suffices to conjugate θH×H with the group automorphism
defined by (h1, h2) 7→ (ψ(h2), h1) to get the involution (g1, g2) 7→ (g2, g1). �

Conjugacy classes of (regular) group involutions on simple groups can be classi-
fied by using either Kac diagrams or Satake diagrams; see [Tim11, § 26.5] for more
details on these classifications and [Tim11, Table 26.3] for the list of conjugacy
classes of (regular) group involutions on simple groups.

Proposition 1.16. For any symmetric subgroup Gθ ⊆ H ⊆ NG(Gθ), the quotient
group NG(H)/H is abelian and finite. Moreover, if G is simply-connected, then Gθ

is connected, and so Gθ = H0 = NG(H)0 = NG(Gθ)0.

Proof. Symmetric subgroups are spherical (see [Vus74] or [Tim11, Th. 26.14]), and
if H is a spherical subgroup of G, then NG(H)/H is abelian (see [BP87, § 5.2] or
[Kno91, Th. 6.1]). The connectedness of Gθ for G simply-connected was proved
by Steinberg in [Ste68, § 8], and the finiteness of NG(H)/H then follows from the
work of De Concini and Procesi in [DCP83, § 1.7] (see also [Vus90, § 2.2]). �

2. Existence of equivariant real structures on symmetric spaces

In this section we will always denote by θ a (regular non-trivial) group involution
on G, by σqs a quasi-split real group structure on G, and by σ = innc ◦ σqs a real
group structure on G obtained as an inner twist of σqs.

Notation 2.1. To simplify the notation we will denote ψθ = ψ ◦ θ ◦ ψ−1 for any
(regular or antiregular) group automorphism ψ. Also, if θ1 and θ2 are two group
involutions on G, we will write θ1 ∼ θ2 when they are conjugate by an inner
automorphism of G.

The following example shows that the combinatorial invariants of the conjugacy
class of θ (such as Kac diagrams or Satake diagrams) are too coarse to determine
the existence of a (G, σ)-equivariant real structure on the symmetric space G/Gθ.

Example 2.2. Let G = SL×3
n with n ≥ 2, and let σ : (g1, g2, g3) 7→ (g2, g1,

t
g3
−1)

be a real group structure on G. We give an example of two group involutions
θ and θ′ that are conjugate (by an outer automorphism of G) such that G/Gθ

admits a (G, σ)-equivariant real structure but G/Gθ
′

does not. Let θ : (g1, g2, g3) 7→
(g2, g1,

tg−1
3 ), let ψ : (g1, g2, g3) 7→ (g3, g2, g1), and let θ′ = ψθ. Then σ(Gθ) = Gθ

while σ(Gθ
′
) is not conjugate to Gθ

′
in G, and we conclude with Lem. 1.8.
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Therefore, a criterion for the existence of a (G, σ)-equivariant real structure on
G/Gθ should depend on θ up to a conjugate by an inner automorphism of G, which
is indeed the case in Th. 0.1.

The next result is well-known to specialists but we give a proof because of a lack
of suitable reference. We thank Michael Bulois for indicating us the sketch of the
proof.

Proposition 2.3. The group involution θ on the semisimple group G is uniquely
determined by its fixed locus Gθ.

Proof. Any group involution on G lifts uniquely to a group involution on the univer-
sal covering space of G. Therefore, we can assume that G is simply-connected. As
group involutions on simply-connected semisimple groups correspond to Lie algebra
involutions on semisimple Lie algebras (see [Pro07, § 4.3.4]), it suffices to prove that
if Θ(= Deθ) is a Lie algebra involution on g = Lie(G), then gΘ determines Θ.

Since g is semisimple, it identifies with a direct sum of simple Lie algebras g =⊕
i∈I gi. Let li = {(0, . . . , 0, ∗, 0, . . . , 0)} ' gi be the Lie subalgebra of g formed by

elements whose all coordinates but the i-th vanish. Any Lie algebra automorphism
of g permutes the li. Hence, either Θ(li) = li and Θ|li is a Lie algebra involution

on li or Θ(li) = lj for some i 6= j. We have li ∩ gΘ 6= {0} if and only if Θ(li) = li,
and so gΘ determines the set of indices I0 = {i ∈ I, Θ(li) = li}. Moreover, for all
i, j ∈ I \ I0, we have (li + lj) ∩ gΘ 6= 0 if and only if Θ(li) = lj , and so gΘ also
determines the pairs of indices corresponding to the li that are switched by Θ.

Let i < j such that Θ(li) = lj . Then

(li + lj) ∩ gΘ = {(0, . . . , 0, ϕ(z), 0 . . . , 0, z, 0, . . . , 0)},
where ϕ is some Lie algebra isomorphism lj ' li, and

Θ|li+lj : li + lj → li + lj
(0, . . . , 0, x, 0 . . . , 0, y, 0, . . . , 0) 7→ (0, . . . , 0, ϕ(y), 0 . . . , 0, ϕ−1(x), 0, . . . , 0).

So it remains only to prove that if Θ(li) = li, then lΘi (= gΘ ∩ li) determines Θ|li .

Hence, we can assume that g is simple. Let g0 = gΘ, and let g1 ⊆ g be the subspace
on which Θ acts as the scalar −1. We want to show that the Lie subalgebra g0

determines the g0-submodule g1.
If the involution Θ is an inner automorphism of g, then g0 contains a Cartan

subalgebra h of g (see [Tim11, § 26.3]), and so g1 is an h-stable complement of
g0 in g. Since the root subspaces of g are 1-dimensional, the h-submodule g1 is
necessarily the sum of all the root subspaces not contained in g0. Therefore g1 is
uniquely determined by g0, and so Θ is uniquely determined by gΘ.

If the involution Θ is an outer automorphism of g (only possible for ADE type),
then g1 is an irreducible g0-submodule of g by [Kac80, Prop. 3.1]. If the g0-
submodule g0 of g does not contain a summand isomorphic to g1, then there is
a unique g0-stable complement of g0 in g, and so this complement must be g1.
Using the classification of symmetric spaces given in [Tim11, Table 26.3] we verify
case by case that this is indeed the case. �
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Remark 2.4.

(1) Prop. 2.3 is true more generally for a connected reductive algebraic group
L whose center Z(L) has dimension at most 1. But it is not true if
dim(Z(L)) ≥ 2. Consider for instance L = Z(L) = G2

m, and the group
involutions θ1(x, y) = (y, x) and θ2(x, y) = (x2y−1, x3y−2). Then Lθ1 =
Lθ2 = {(t, t), t ∈ Gm} but θ1 6= θ2.

(2) If θ1, θ2 are two group involutions on a connected reductive algebraic group
L such that Lθ1 = Lθ2 , then we can verify that θ1 and θ2 are conjugate in
Autgr(L). Hence, for connected reductive algebraic groups, the fixed locus
determines the conjugacy class of a group involution.

The next result was proved by Akhiezer and Cupit-Foutou in [ACF14, Th. 4.4],
but stated for a split real group structure on G. It was then generalized over
arbitrary fields of characteristic zero by Snegirov in [Sne, Th. 1.1], but then the
proof is more technical. For sake of completeness and for the reader’s convenience,
we reproduce their proof in our setting.

Proposition 2.5. If H ⊆ G is a spherical subgroup satisfying NG(NG(H)) =
NG(H) and σqs(H) = gHg−1 for some g ∈ G, then there exists a subgroup H ′ ⊆ G
conjugate to H such that σqs(H

′) = H ′.

Proof. (For this proof, and this proof only, the reader is assumed to be a bit familiar
with the theory of equivariant embeddings for spherical homogeneous spaces; see
[Tim11, Per14] for an exposition.)

Let N = NG(H). The condition σqs(H) = gHg−1 implies that σqs(N) = gNg−1.
Hence, by Lem. 1.8 and Rk. 1.9, the G-variety Y = G/N has a (G, σqs)-equivariant
real structure that we denote by µ. Also, this real structure is unique since
AutGC (Y ) ' NG(N)/N = {1}.

By [Kno96, Cor. 7.2] the variety Y admits a wonderful compactification Y , which
is smooth, projective (see [Avd15, Prop. 3.18]), and has a unique closed orbit Y0,
which is therefore a flag variety G/P . The colored fan of the G-equivariant em-
bedding Y ↪→ Y is determined by the cone (V, ∅), where V is the valuation cone
of Y , which is stable for the Γ-action on the set of colored cones induced by σqs
(see [Hur11] or [Wed18] for details on this Γ-action). Hence, the equivariant real
structure µ on Y extends on Y by [Wed18, Th. 9.1] (see also [Hur11, Th. 2.23]).

The restriction µ0 = µ|Y0
is a (G, σqs)-equivariant real structure on Y0 = G/P .

Thus, by Lem. 1.8, the parabolic subgroups σqs(P ) and P are conjugate. By
[MJT, Prop. 3.9], there exists a parabolic subgroup P ′ conjugate to P such that
σqs(P

′) = P ′ (since σqs is quasi-split). Hence, µ′0(kP ′) = σqs(k)P ′ is a (G, σqs)-
equivariant real structure on Y0, equivalent to µ0, with a fixed point eP ′. Thus
µ0 has a fixed point in Y0; in particular, µ has a fixed point in Y . By [Man17,
Cor. 2.2.10], since Y is smooth, the set of µ-fixed points is Zariski dense in Y , and
so µ has a fixed point in the open orbit Y = G/N .

Let g0N be a µ-fixed point in Y . Let σ′qs = inn−1
g0 ◦ σqs ◦ inng0 , and let µ′ be

the (G, σ′qs)-equivariant real structure defined by µ′(kN) = g−1
0 µ(g0kN). Then

µ′(eN) = eN , and computing the stabilizers on both sides yields σ′qs(N) = N .
Thus

N = σ′qs(N) = g−1
0 σqs(g0)σqs(N)σqs(g

−1
0 )g0 = g−1

0 σqs(g0)gNg−1σqs(g
−1
0 )g0
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and so g−1
0 σqs(g0)g ∈ NG(N) = N . It follows that σqs(H

′) = H ′, where H ′ =

g0Hg
−1
0 . This concludes the proof. �

Remark 2.6. We do not know whether the assumption NG(NG(H)) = NG(H) can
be dropped to get the conclusion of Prop. 2.5. Indeed, as remarked by Avdeev in
[Avd13], it is not true that NL(NL(H)) = NL(H) for any spherical subgroup H of
a connected reductive algebraic group L. Here we give a simple counter-example
pointed to us by Bart Van Steirteghem. Let

L = GL2 and H =

{[
a 0
0 1

]
with a ∈ C∗

}
.

Then NL(H) =

{[
a 0
0 b

]
with a, b ∈ C∗

}
and NL(NL(H))/NL(H) ' Z/2Z.

We thank Jacopo Gandini for pointing to us that ifH ⊆ G is a spherical subgroup
such that NG(H)/H is finite, then NG(NG(H)) = NG(H). This is crucial in the
proof of the following result.

Corollary 2.7. Let H be a symmetric subgroup of G such that σqs(H) is conjugate
to H. Then there exists a subgroup H ′ ⊆ G conjugate to H such that σqs(H

′) = H ′.
Equivalently, there exists σ′qs conjugate to σqs by an inner automorphism of G such
that σ′qs(H) = H.

Proof. Since symmetric subgroups are spherical, it suffices to verify thatNG(NG(H))
= NG(H) and then to apply Prop. 2.5.

Denoting K = NG(H0), we have the inclusions H0 ⊆ H ⊆ NG(H) ⊆ K. Then H
is a normal subgroup of K if and only if H/H0 is a normal subgroup of K/H0, which
is true because H0 is a spherical subgroup of G (since H is spherical), and so K/H0

is an abelian group (see [BP87, § 5.2] or [Kno91, Th. 6.1]). Hence, K ⊆ NG(H),
which yields K = NG(H). As H is a symmetric subgroup of a semisimple group,
the group NG(H)/H is finite (Prop. 1.16). Therefore H0 has finite index in K. It
follows that K0 = H0, and thus NG(K) ⊆ NG(K0) = NG(H0) = K.

Finally, H ′ = cHc−1 satisfies σqs(H
′) = H ′ if and only if σ′qs = inn−1

c ◦σqs ◦ innc
satisfies σ′qs(H) = H, which proves the last statement of the corollary. �

Before stating Th. 2.9, which is the main result of this § 2, we need to define the
action of the Galois group Γ = Gal(C/R) on NG(Gθ)/Gθ.

Definition 2.8. Let σ = innc ◦ σqs be a real group structure on G. If σθ ∼ θ,
then σqs(G

θ) = gGθg−1 for some g ∈ G. Hence, by Cor. 2.7, there exists a quasi-
split real group structure σ′qs, equivalent to σqs, such that σ′qs(G

θ) = Gθ. Then

σ′qs(NG(Gθ)) = NG(Gθ), and so σ′qs induces a real group structure τ on NG(Gθ)/Gθ

defined by τ(nGθ) = σ′qs(n)Gθ. The Γ-action on NG(Gθ)/Gθ that we will consider
in the following is the one given by τ . (Note that this Γ-action does not depend on
the choice of σ′qs in the conjugacy class of σqs by inner automorphisms.)

Theorem 2.9. Let G be a complex semisimple group with a real group structure
σ = innc ◦ σqs. Let θ be a group involution on G and let Gθ ⊆ H ⊆ NG(Gθ) be a
symmetric subgroup. Then the following four conditions are equivalent:

(i) G/H has a (G, σqs)-equivariant real structure;
(ii) σθ ∼ θ and the Γ-action on NG(Gθ)/Gθ of Def. 2.8 stabilizes H/Gθ;

(iii) H is conjugate to σqs(H);
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(iv) H is conjugate to σ(H).

Moreover G/H has a (G, σ)-equivariant real structure if and only if the (equivalent)
conditions (i)-(iv) are satisfied and ∆H(σ) = 0 with ∆H the map defined by (*).

Proof. The equivalence of (i) and (iii) follows from Lem. 1.8 and Cor. 2.7. Indeed, if
H is conjugate to σqs(H), then we can find H ′ conjugate to H such that σqs(H

′) =
H ′. By Rk. 1.10, we can replace H by H ′ and then the two conditions of Lem. 1.8
are satisfied with g = 1.

The equivalence of (iii) and (iv) follows from the fact that σ = innc ◦ σqs.
We now prove the equivalence of (ii) and (iii). We can always replace G by its

universal covering space and assume that it is simply-connected. Then by Prop. 1.16
the group Gθ is connected and NG(Gθ)0 = H0 = Gθ. Also, by Rk. 1.10 and Cor. 2.7
we can replace (iii) by the condition (iii)’ given by σqs(H) = H. (This boils down
to conjugate θ by some inner automorphism.) Then

σqs(H
0) = H0 ⇔ σ(H0) = cH0c−1 ⇔ σ(Gθ) = cGθc−1

⇔ G
σθ = G

inncθ

⇔ σθ = inncθ ⇔ σθ ∼ θ

where the penultimate equivalence comes from Prop. 2.3. Also, σqs(G
θ) = Gθ

implies that σqs(NG(Gθ)) = NG(Gθ), and so the Γ-action on NG(Gθ)/Gθ stabilizes
H/Gθ if and only if σqs(H) = H. This finishes to prove the equivalence (ii)⇔ (iii).

Finally, the last claim of the theorem follows from Prop. 1.11. �

Remark 2.10. If NG(Gθ)/Gθ is a cyclic group, then the Γ-action stabilizes each
subgroup of NG(Gθ)/Gθ, which simplifies the condition (ii) in Th. 2.9.

Corollary 2.11. Let G, σqs, and θ be as in Th. 2.9. Then G/Gθ has a (G, σqs)-
equivariant real structure if and only if G/NG(Gθ) does, and this is the case if and
only if σθ ∼ θ.

Proof. If H = Gθ or H = NG(Gθ), then the Γ-action on NG(Gθ)/Gθ trivially
stabilizes H/Gθ, and so the result follows from the equivalence of (i) and (ii) in
Th. 2.9. �

Example 2.12. Let G = SLn×SLn with n odd and n ≥ 3, let σ : (g1, g2) 7→
(g2, g1), and let θ : (g1, g2) 7→ (tg−1

1 , tg−1
2 ). Then σθ = θ and NG(Gθ)/Gθ '

Z/nZ × Z/nZ on which Γ acts by γ · (a, b) = (b−1, a−1). Thus, since σ is quasi-
split (it preserves the usual Borel subgroup), it follows from Th. 2.9 that there
exists a (G, σ)-equivariant real structure on the symmetric space G/H if and only
if (a, b) ∈ H/Gθ implies (b, a) ∈ H/Gθ, that is, H/Gθ is stable under the operation
of exchanging the two factors of NG(Gθ)/Gθ.

Example 2.13. Let n ≥ 2 and let G = SL2n. Let σ be a real group structure on G
obtained by an inner twist of σqs, where σqs is the quasi-split real group structure
defined in Example 1.5, let θ be the group involution defined in Example 1.14,
and let Gθ ⊆ H ⊆ NG(Gθ). Then σqsθ = θ (and so σθ ∼ θ), and the Γ-action on
NG(Gθ)/Gθ ' Z/nZ stabilizes H/Gθ by Rk. 2.10. Hence, by Th. 2.9, the symmetric
space G/H has a (G, σqs)-equivariant real structure.

It remains to compute ∆H(σ) to determine whetherG/H has a (G, σ)-equivariant
real structure. Let S = {0, . . . , n}. The equivalence classes of the real group struc-
tures on G obtained as an inner twist of σqs are in bijection with S. For s ∈ S, we
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denote by σs the real group structure whose real locus G(C)σs is SU(n+s, n−s,R).
Borovoi determined in [MJT, Table 2] that H2(Γ, Z(G)) ' Z(G)/2Z(G) ' Z/2Z
and that δ(σs) = s mod 2. Let ξ be a primitive 2n-th root of unity. Then
H =

〈
ξrI2n, G

θ
〉
, for some positive integer r dividing 2n, and A := NG(H)/H '

Z(G)/(Z(G)∩H) ' Z/tZ with t = gcd(r, n). We verify that the Γ-action on Z(G)
(and so also on A) is trivial, thus

H2(Γ, A) ' A/2A '
{

Z/2Z if t is even;
{0} if t is odd.

The map χ∗H : H2(Γ, Z(G)) ' Z(G)/2Z(G) → H2(Γ, A) ' A/2A defined in § 1.1
is the map induced by the quotient map Z(G)→ A ' Z(G)/(Z(G) ∩H), hence it
is the identity map if t is even (resp. the trivial map if t is odd). It follows that
∆H(σs) = 0 if and only if s is even or t is odd. Therefore, G/H has a (G, σs)-
equivariant real structure if and only if s is even or t is odd.

3. Number of equivalence classes

As before let G be a semisimple group, let σ be a real group structure on G,
and let X = G/H be a symmetric space. We suppose that there exists a
(G, σ)-equivariant real structure µ on X. Then µ determines a Γ-action on

A = AutGC (X) ' NG(H)/H; indeed, the generator γ acts on A by µ-conjugation.

Notation 3.1. In this section, and contrary to the previous examples, we will
follow the usual conventions and use the multiplicative notation for the group law
in A, even if A is a finite abelian group in our case by Prop. 1.16.

Definition 3.2. If A is a Γ-group, then the first Galois cohomology pointed set is
H1(Γ, A) = Z1(Γ, A)/ ∼, where Z1(Γ, A) = {a ∈ A | a−1 = γa} and two elements
a1, a2 ∈ Z1(Γ, A) satisfy a1 ∼ a2 if a2 = b−1a1

γb for some b ∈ A.

Remark 3.3. If A is an abelian group, then H1(Γ, A) is an abelian group. Moreover,
a2 = a(a−1)−1 = a( γa)−1 ∼ 1 for all a ∈ Z1(Γ, A). In the case where H1(Γ, A) is
finite, this implies that its cardinal is a power of 2.

By [MJT, Lem. 2.11] the set of equivalence classes of (G, σ)-equivariant real
structures on X is in bijection with the set H1(Γ, A), hence our goal in this section
is to determine the cardinal of H1(Γ, A).

Before stating the next result, we need some extra notation. Let Γ′ = {e, γ′} '
Z/2Z acting on A by γ′

a = γa−1. (This Γ′-action is well-defined since A is abelian.)
For p a prime number, let Ap be the maximal p-subgroup of A.

Proposition 3.4. Let G be a semisimple group with a real group structure σ, and
let X = G/H be a symmetric space. We suppose that X has a (G, σ)-equivariant
real structure µ, and we consider the actions of Γ and Γ′ on A defined above.

(i) There exists n ≥ 0 such that H1(Γ, A) ' H1(Γ, A2) ' (Z/2Z)n. In particular,
there are 2n equivalence classes of (G, σ)-equivariant real structures on G/H.

(ii) The integer n can be calculated explicitly as follows: |AΓ′

2 | · |AΓ
2 |/|A2| = 2n.

Proof. (i): In our situation, the group A is a finite abelian group (Prop. 1.16).
Hence, A is isomorphic to a finite product of abelian p-groups A '

∏
pAp, and

each Ap is Γ-stable since Γ = Gal(C/R) acts on A by group involution. Thus
H1(Γ, A) =

∏
pH

1(Γ, Ap). But each H1(Γ, Ap) is itself an abelian p-group (by
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definition of the Galois cohomology), and since every element of H1(Γ, A) is 2-
torsion (Rk. 3.3), we see that H1(Γ, Ap) = {1} if p 6= 2. Therefore

H1(Γ, A) ' H1(Γ, A2) ' (Z/2Z)n for some n ≥ 0.

(ii): In order to calculate n (or, more precisely, 2n), we consider certain subgroups

of A2. Let us note that Z := Z1(Γ, A2) = AΓ′

2 is a subgroup of A2, and H1(Γ, A) =
H1(Γ, A2) = Z/B, where B is the subgroup of Z defined by B = {a ·γa−1; a ∈ A2}.
The map ϕ : A2 → B given by ϕ(a) = a · γa−1 is a surjective group homomorphism
(since A2 is abelian). The kernel is exactly AΓ

2 . Thus, the cardinality of H1(Γ, A2)

is given by |AΓ′

2 |/|B|, and |B| = |A2|/|AΓ
2 |. This proves the result. �

Remark 3.5. It is easy to give an upper-bound for n. Suppose that A2 is a product
of r cyclic groups. Then Z = Z1(Γ, A2) is a subgroup of A2, and therefore a product
of r′ cyclic groups, where r′ ≤ r. In particular, H1(Γ, A2) is a quotient of the group

Z/Z2 ' (Z/2Z)r
′
. This shows that n ≤ r′ ≤ r.

Corollary 3.6. Let G be a semisimple group with a real group structure σ, and
let X = G/H be a symmetric space with Gθ ⊆ H ⊆ G. Suppose that X has a
(G, σ)-equivariant real structure and that A = NG(H)/H is cyclic of order m. If m
is odd, then the real structure is unique up to equivalence, and if m is even, there
are exactly 2 inequivalent real structures on X.

Proof. If m is odd, then A2 is trivial, and the result holds. If m is even, then A2

is cyclic of order at least two. There are two possible Γ-actions on A2. Either the
action is trivial, or γa = a−1 for all a ∈ A, in which case the Γ′-action is trivial. In
both cases, since A2 has a unique element of order two, the result holds. �

Example 3.7. We pursue Example 2.13. We saw thatG/H has a (G, σs)-equivariant
real structure if and only if s is even or t is odd. Moreover, the group NG(H)/H is
cyclic, so Corollary 3.6 applies. We find that the the number of equivalence classes
of (G, σs)-equivariant real structures on G/H is given by

|AΓ′

2 | · |AΓ
2 |/|A2| = |AΓ′

2 | = |{a ∈ A|a2 = 1}| =
{

1 if t is odd;
2 if s and t are even.
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[ACF14] Dmitri Akhiezer and Stéphanie Cupit-Foutou. On the canonical real structure on won-

derful varieties. J. Reine Angew. Math., 693:231–244, 2014.

[Akh15] Dmitri Akhiezer. Satake diagrams and real structures on spherical varieties. Internat.
J. Math., 26(12):1550103, 13, 2015.

[Avd13] R. S. Avdeev. Normalizers of solvable spherical subgroups. Math. Notes, 94(1-2):20–31,

2013. Translation of Mat. Zametki 94 (2013), no. 1, 22–35.
[Avd15] Roman Avdeev. Strongly solvable spherical subgroups and their combinatorial invari-

ants. Selecta Math. (N.S.), 21(3):931–993, 2015.

[BG] Mikhail Borovoi and Giuliano Gagliardi. Existence of equivariant models of spherical
homogeneous spaces and other G-varieties. arXiv:1810.08960v1.

[BJ06] Armand Borel and Lizhen Ji. Compactifications of symmetric and locally symmetric
spaces. Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston, MA,
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9 avenue Alain Savary, BP 47870 - 21078 Dijon Cedex, France

Email address: lucy.moser-jauslin@u-bourgogne.fr
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