
HAL Id: hal-02109517
https://hal.science/hal-02109517

Submitted on 24 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of Program Differences with Numerical
Abstract Interpretation

David Delmas, Antoine Miné

To cite this version:
David Delmas, Antoine Miné. Analysis of Program Differences with Numerical Abstract Interpre-
tation. PERR 2019 - 3rd Workshop on Program Equivalence and Relational Reasoning, Apr 2019,
Prague, Czech Republic. �hal-02109517�

https://hal.science/hal-02109517
https://hal.archives-ouvertes.fr

Analysis of Program Differences with Numerical Abstract
Interpretation

David Delmas
Airbus Operations S.A.S. and LIP6

316, route de Bayonne
31060 Toulouse Cedex 9, France
david.delmas@airbus.com

Antoine Miné
Institut universitaire de France
Sorbonne Université, CNRS

Laboratoire d’Informatique de Paris 6 (LIP6)
F-75005 Paris, France

antoine.mine@lip6.fr

1. INTRODUCTION
We present work in progress1 on the static analysis of

software patches. Given two syntactically close versions of
a program, our analysis can infer a semantic difference, and
prove that both programs compute the same outputs when
run on the same inputs. Our method is based on abstract in-
terpretation [1], and parametric in the choice of an abstract
domain. At the moment, we focus on numeric properties
only, on a toy language. Our method is able to deal with
infinite-state programs and unbounded executions, but it is
limited to comparing terminating executions, ignoring non
terminating ones.

We first present a novel concrete collecting semantics, ex-
pressing the behaviors of both programs at the same time.
We then show how to leverage classic numeric abstract do-
mains, such as polyhedra [2] or octagons [10], to build an
effective static analysis. We also introduce a novel numeric
domain to bound differences between the values of the vari-
ables in the two programs, which has linear cost, and the
right amount of relationality to express useful properties of
software patches. We implemented a prototype and experi-
mented on a few small examples from the literature.

In future work, we will consider extensions to non purely
numeric programs, towards the analysis of realistic patches.

The paper is organised as follows. Section 2 presents a
running example, introducing our syntax and semantics for
program patches informally. Section 3 formalises the con-
crete collecting semantics, and illustrates it on the example.
Section 4 describes the abstract semantics, and discusses
the choice of numerical abstract domains with respect to
the example. Section 5 presents experimental results with
a prototype implementation. Section 6 stresses current lim-
itations of the approach. Section 7 discusses related work.
Section 8 concludes.

2. RUNNING EXAMPLE
In the following, we sketch our approach to the analy-

sis of semantic differences between two syntactically similar
programs P1 and P2. We are interested in proving that P1

and P2 compute equal outputs when run on equal inputs.
P1 and P2 are represented together in the syntax of a so-
called double program P . Simple programs P1 and P2 are

1 This work is performed as part of a collaborative part-
nership between Sorbonnne Université / CNRS (LIP6) and
Airbus. This work is partially supported by the European
Research Council under the Consolidator Grant Agreement
681393 – MOPSA.

1 : a← input(−1000, 1000);
2 : b← input(−1000, 1000);
3 : c← 1 ‖ 0;
4 : i← 0;
5 : while (i < a) {
6 : c← c+ b;
7 : i← i+ 1;
8 : }
9 : r ← c ‖ c+ 1;
10 : assert sync(r);

Figure 1: Unchloop example

referred to as the left and right components of P . Fig. 1
shows the Unchloop example, taken from [14], and translated
into our syntax of double programs. The ‖ symbol is used to
represent syntactic difference. It is available at expression,
condition, and statement levels in our syntax for double pro-
grams. For instance at line 3, c ← 1 ‖ 0 means c ← 1 for
P1, and c ← 0 for P2. In contrast, line 4 means i ← 0 for
both P1 and P2.

Let us describe the example program. Both versions P1

and P2 read inputs in the range [−1000, 1000] into a and b

at lines 1 and 2. At ligne 3, the counter c is being initialised
with value 1 for program P1, and value 0 for program P2.
Then, both components add a times the value of b to c in
a loop. Finally, they both store the result into r at line 9:
c for P1, c+1 for P2. The assertion at line 10 expresses the
property we would like to check: if both programs compo-
nents reach it, then they should have computed equal values
for r.

We assume here that both programs read the same input
value in a, and the same input value in b. More generally,
the semantics JP K of a program is parameterized by a (pos-
sibly infinite) sequence of input values s, and we wish to
prove that, ∀s : (JP1 Ks)(r) = (JP2 Ks)(r), i.e. the programs
have the same result in r given the same sequence of input
values. The assertion at line 10 of our example is thus valid.
Although not presented in the example, our language also
supports true non-deterministic random values, that may
differ between the executions of both variants.

The assertion at line 10 is, indeed, validated by our anal-
ysis.

3. CONCRETE SEMANTICS
Following the standard approach to abstract interpreta-

tion, we developed a concrete collecting semantics for a toy

1

WHILE-like language for double programs. The ‖ operator
may occur anywhere in the parse tree, to denote syntactic
differences between the two components of a double pro-
gram. This operator, however, is not recursive.

Given double program P with variables in V, consider
its left (resp. right) component P1 = π1(P) (resp. P2 =
π2(P)), with variables in V1 = {x1 |x ∈ V } (resp. V2 =
{x2 |x ∈ V }), where π1 (resp. π2) is a projection operator
defined by induction on the syntax, keeping only the left
(resp. right) side of ‖ symbols, and renaming variables x to
their versions x1 (resp. x2) in P1 (resp. P2). For instance,
π1(c← 1 ‖ 0) = c1 ← 1, and π2(c← 1 ‖ 0) = c2 ← 0, while
π1(i← 0) = i1 ← 0, and π2(i← 0) = i2 ← 0.
P1 and P2 are simple programs, with concrete memory

states in E1
def
= V1 → R and E2

def
= V2 → R, respec-

tively. Let k ∈ {1; 2}. To define the semantics of simple
program Pk, we leverage standard, relational, input-output
semantics, defined by induction on the syntax, in denota-
tional style : EkJ e K ∈ Ek → P(R) for non-deterministic
expression e ∈ expr , CkJ c K ∈ Ek → P({true, false}) for
condition c ∈ cond , and SkJ s K ∈ P(Ek × Ek) for statement
s ∈ stat . SkJ s K describes the relation between input and
output states of statement s.

We then lift the semantics S1 and S2 to double programs.
As P1 and P2 have concrete memory states in E1 and E2, re-

spectively, P has concrete memory states in D def
= E1 × E2.

The semantics of a double statement s ∈ dstat , denoted
DJ s K ∈ P(D×D), describes the relation between input and
output states of s, which are pairs of states of simple pro-
grams. A subset of DJ s K is shown on Fig. 2, in relational
style, for a subset of the language featuring double state-
ments and expressions, but only simple conditions. It is
defined by induction on the syntax, so as to allow for modu-
lar, joint analyses of double programs that maintain input-
output relations on the variables. Note that D is parametric
in (S1,S2).

The semantics for the empty program is the diagonal,
identity relation ∆D. The semantics DJ s1 ‖ s2 K for the
comparison of two syntactically different statements reverts
to the pairing of the simple program semantics of individual
simple statements s1 and s2. The semantics for assignments
of double expressions (different expressions to the same vari-
able) is defined using this construct. The semantics for the
sequential composition of statements boils down to the com-
position of the semantics of individual statements. Note that
we use the symbol # to denote the left composition of rela-

tions: R1 # R2
def
= { (x, z) | ∃y : (x, y) ∈ R1 ∧ (y, z) ∈ R2 }.

The semantics for selection statements distinguish between
cases where both components agree on the value of the con-
trolling expression, and cases where they do not (a.k.a. un-
stable tests). In the latter cases, the semantics is defined
by composing the semantics of the projections of the dou-
ble program on its components. The semantics for (possibly
unbounded) iteration statements is defined using the least
fixpoint of a function defined similarly.

Coming back to our running example Unchloop on Fig. 1,
the concrete semantics for the program from line 3 to 9 is
displayed on Fig. 3. With the additional assumption that
both program components start from equal memory states
(a1 = a2 ∧ b1 = b2), ensured by our semantics for the input

built-in, the two components can be proved to compute
equal values for r.

DJ dstat K ∈ P(D ×D)

DJ skip K def
= ∆D

DJ s1 ‖ s2 K def
= { ((i1, i2), (o1, o2)) |
∀ k ∈ {1, 2} : (ik, ok) ∈ SkJ sk K }

DJV ← e1 ‖ e2 K def
= DJV ← e1 ‖ V ← e2 K

DJ s1; s2 K def
= DJ s1 K #DJ s2 K

DJ if c then s1 else s2 K def
= FJ c K #DJ s1 K ∪ FJ¬c K #DJ s2 K
∪ FJ c ‖ ¬c K #D1J s1 K #D2J s2 K
∪ FJ¬c ‖ c K #D1J s2 K #D2J s1 K

DJ while c do s K def
= (lfp H) # FJ¬c K

where

FJ c1 ‖ c2 K def
= { ((ρ1, ρ2), (ρ1, ρ2)) |
∀ k ∈ {1, 2} : true ∈ CkJ ck K ρk }

FJ c K def
= FJ c ‖ c K

D1J s K def
= DJπ1(s) ‖ skip K

D2J s K def
= DJ skip ‖ π2(s) K

H(R)
def
= ∆D ∪R # (FJ c K #DJ s K
∪ FJ c ‖ ¬c K #D1J s K
∪ FJ¬c ‖ c K #D2J s K)

Figure 2: Denotational concrete semantics of double
programs

Unfortunately, our concrete collecting semantics D is not
computable in general. A particular difficulty of the Unchloop

example is that the input-ouptut relation is non linear:
(a ≤ 0⇒ r = 1) ∧ (a ≥ 0⇒ r = 1 + a× b).

4. ABSTRACT SEMANTICS
We therefore tailor an abstract semantics D], suitable for

the analysis of program differences. As D ≈ R
|V1∪V2|, any

numeric abstract domain on pairs of environments may be
used. As D is defined by induction the syntax, the defini-
tion for D] is straightforward: the abstract semantics need
only be defined for the s1 ‖ s2 construct. We define it as

D
]J s1 ‖ s2 K def

= D
]
1J s1 K #] D]2J s2 K . This definition is

sound, as DJ s1 ‖ s2 K = D1J s1 K #D2J s2 K holds in the con-
crete semantics. For instance, D]J c ← 1 ‖ 0 K = D

]J c1 ←
1 K #] D]J c2 ← 0 K.

Note that the relation between c and i is non linear in the
Unchloop example: c1 = i1 × b1 + 1 and c2 = i2 × b2 from
line 4 to 9. Thus, a separate analysis of programs P1 and P2

would require a non linear abstract domain to compare r1
and r2. In contrast, our joint analysis of P1 and P2 will be
sufficiently precise, even when using linear numeric domains,
because the difference between the values of the variables in
P1 and in P2 remains linear. For instance, the polyhedra
domain is able to infer that the invariant −c1 + c2 + 1 = 0
holds from line 3 to 9, hence r1 = r2 at line 9, although
it is not able to discover any interval for r1 or r2. The
octagon domain is also able to express these invariants, but
its transfer function for assignment is not precise enough to
infer them. Indeed, x← a− b cannot be exactly abstracted
by the domain, and currently proposed transfer functions fall
back to plain interval arithmetics in that case, so that the
domain cannot exploit the bound it infers on a− b to bound

2

DJUnchloop3..9 K = { s0, ((a1, b1, 1, 0, 1), (a2, b2, 0, 0, 1)) | a1 ≤ 0 ∧ a2 ≤ 0 ∧H0 }
∪ { s0, ((a1, b1, 1 + a1 × b1, a1, 1 + a1 × b1), (a2, b2, 0, 0, 1)) | a1 > 0 ∧ a2 ≤ 0 ∧H0 }
∪ { s0, ((a1, b1, 1, 0, 1), (a2, b2, a2 × b2, a2, 1 + a2 × b2)) | a1 ≤ 0 ∧ a2 > 0 ∧H0 }
∪ { s0, ((a1, b1, 1 + a1 × b1, a1, 1 + a1 × b1), (a2, b2, a2 × b2, a2, 1 + a2 × b2)) | a1 > 0 ∧ a2 > 0 ∧H0 }

where

s0
def
= ((a1, b1, c1, i1, r1), (a2, b2, c2, i2, r2))

H0
def
= ∀k ∈ {1, 2} : (bk, ck, ik, rk) ∈ R4

Figure 3: Concrete semantics of the Unchloop example

x, for efficiency reasons. The interval domain is not able to
express the invariants, hence it cannot be used directly for
a conclusive analysis.

However, we remark that it is sufficient to bound the
differences x2 − x1 for any variable x to express the nec-
essary invariants. Thus, we now design an abstract do-
main that is specialized to infer these bounds. We therefore

introduce the Galois automorphism (P(D × D),⊆) −−−→−→←←−−−−
α

γ

(P(D ×D),⊆) defined by α(R)
def
= { ((i1, i2 − i1), (o1, o2 −

o1)) | ((i1, i2), (o1, o2)) ∈ R }, and γ(∆)
def
= { ((ρ, ρ+δ), (ρ′, ρ′+

δ′)) | ((ρ, δ), (ρ′, δ′)) ∈ ∆ }, and let �
def
= α ◦ D. This

amounts to changing the representation of states of double
program P : variable x is represented by its left and right
projections (x1, x2) in semantics D, and by (x1, δx) in se-

mantics �, where δx
def
= x2 − x1. The � semantics of

statements 6 and 9 of the UnchLoop example are shown for
instance on Fig. 4, before and after simple symbolic simpli-
fications of affine expressions.

Like for D, any numeric domain can be used to abstract
�, so that the definition for �] is straightforward, by in-
duction on the syntax of double programs. We also define

the semantics for the s1 ‖ s2 construct as �]J s1 ‖ s2K
def
=

�
]
1J s1K #] �]2J s2K , where �1J sK

def
= �Jπ1(s) ‖ skipK , and

�2J sK
def
= �J skip ‖ π2(s)K .

Nonetheless, we add a particular case for the simple as-
signment V ← e, to gain both precision and efficiency through
simple symbolic simplifications. That particular case is dis-
played on Fig. 5. Under some conditions on the expression
e, we say e is “differentiable”, and update the δV compo-
nent of variable V in the abstract from the δx components
of all program variables x, independently of their x1 compo-
nents. We call an expression differentiable if it is an affine
expression of the form µ+

∑
x∈V λxx, or a deterministic ex-

pression where all variables x are such that δx = 0, or a
so-called “synchronised” input expression.

We say an input expression is synchronised when P1 and
P2 have called input equal numbers of times. For instance,
after statement a ← input(−1000, 1000) at line 1 of the
Unchloop example, we have a ∈ [−1000, 1000], but δa = 0.
This last property stems from the fact that both programs
evaluate the same input value stream at the same index. To
infer this property of inputs, we developed a very simple
dedicated domain. The domain associates a counter to each
input instruction, that counts the number of times the in-
struction has been called in each program since the start of
the executions. If the domain can proove that these counts
are equal when reaching some statement x← input(m,M),
for some variable x and some constants m and M, then it adds
the contraint δx = 0. Otherwise, δx ∈ [m−M,M −m]. As
the counters are numeric quantities, the analysis can dele-

gate infering their equality to numeric abstract domains.
If the expression e is differentiable, we update the δV com-

ponent of variable V in the abstract with the result of our
differentiation function on e. This function operates like
mathematical differentiation on affine expressions. Other-
wise, if e is differentiable but not affine, then our differen-
tiation function returns 0, as e is guaranteed to evaluate to
equal values in P1 and P2.

To further enhance precision on some examples, we gen-
eralize slightly this particular case to double assignments
V ← e1 ‖ e2, when expressions e1 and e2 are found syntacti-
cally equal, modulo some semantics preserving transforma-
tions, such as associativity, commutativity, and distributiv-
ity.

5. EVALUATION
We implemented a prototype abstract interpreter for the

semantics D] and�] of the toy language introduced with the
Unchloop example of Fig. 1. It is about 2,000 lines of OCaml
source code, and uses the Apron [7] library to experiment
with the polyhedra and octagon abstract domains. We com-
pare results on small examples selected from other authors’
benchmarks [14, 11, 12]. These references deal with C pro-
grams directly, while we encode their benchmarks in our toy
language. In addition, these references not only prove equiv-
alences, but also characterise differences, while we focus on
equivalence for now. We therefore selected benchmarks rel-
evant to equivalence only, except for the so-called “Fig. 2”
example of [14], which we modified slightly to restore equiv-
alence of terminating executions: see Fig.6.

Table 7 summarises the results of our analysis. Our results
are comparable with those of the original authors, with sig-
nificant speedups – several orders of magnitude with respect
to [14]. All experiments were conducted on a Intel R© Core-
i7TM processor.

6. LIMITATIONS
Our analysis is based on abstractions of the concrete col-

lecting semantics D, which relates pairs of terminating exe-
cutions of components of a double program. It is suitable to
prove a number of properties, including that two terminat-
ing programs starting from equal initial states will produce
equal outputs, a notion called partial equivalence in [3]. In
contrast, an analysis based on this collecting semantics will
fail to report differences between pairs of executions where
at least one of the component does not terminate. For in-
stance, in the example on Fig.6. our analysis does not report
any difference between P1 and P2, although P1 terminates
on input x = 2, and P2 does not.

As opposed to [11, 12], who develop algorithms to auto-
mate the construction of a correlating program P1 ./ P2,

3

�J c← c+ bK = { (s1, (((a1, b1, c1 + b1, i1, r1), ((a1 + δa)− a1, (b1 + δb)− b1,
((c1 + δc) + (b1 + δb))− (c1 + b1), (i1 + δi)− i1, (r1 + δr)− r1))) |H1 }

= { (s1, ((a1, b1, c1 + b1, i1, r1), (δa, δb, δc+ δb, δi, δr))) |H1 }

�J r ← c ‖ c+ 1K = { (s1, ((a1, b1, c1, i1, c1), ((a1 + δa)− a1, (b1 + δb)− b1, ((c1 + δc)− c1, (i1 + δi)− i1, (c1 + δc+ 1)− c1))) |H1 }
= { (s1, ((a1, b1, c1, i1, c1), (δa, δb, δc, δi, δc+ 1))) |H1 }

where

s1
def
= ((a1, b1, c1, i1, r1), (δa, δb, δc, δi, δr))

H1
def
= ((a1, b1, c1, i1, r1), (δa, δb, δc, δi, δr)) ∈ R10

Figure 4: Examples of � semantics

�
]JV ← eK def

= �
]
1JV ← eK #]

(
�
]J δV ← 0K if

(
(∃a, b : e = input(a, b) ∧ input is sync())

))
∨ (is deterministic(e) ∧ ∀x ∈ Vars(e) : δx = 0)

�
]J δV ←

∑
x∈V λxδxK if ∃(µ, (λx)x∈V) ∈ R|V|+1 : e = µ+

∑
x∈V λxx

�
]
2JV ← eK otherwise

Figure 5: Symbolic simplifications in �
]

1 : x← input(−100, 100);
2 : if (x < 0) x← −1;
3 : else {
4 : if (x ≥ 2 ‖ x ≥ 4) {} // x > 4 in [14]
5 : else {
6 : while (i = 2) x← 2;
7 : x← 3;
8 : }
9 : }
10 : assert sync(x); // x = 2 ignored

Figure 6: Modified Fig.2 example (from [14])

on which to run the static analysis, we assume for now the
joint representation of P1 and P2 given, as part of a double
program in our toy language.

7. RELATED WORK
[6] pioneered the field of semantic differencing between

two versions of a procedure by comparing dependencies be-
tween input and output variables. Symbolic execution meth-
ods [13, 14] have proposed analysis techniques for programs
with small state space and bounded loops, which may sup-
port modular regression verification. The RVT [3] and SymD-
iff [8] combine two versions of the same program, with equal-
ity constraints on their inputs, and compile equivalence prop-
erties into verification conditions to be checked by SMT
solvers.

The DIZY [11, 12] tool leverages numerical abstract in-
terpretation to establish equivalence under abstraction. Our
work is thus similar. Our main contribution so far is a novel
concrete collecting semantics by induction on the syntax,
and a novel numeric domain to bound differences between
the values of the variables in the two programs.

The Fluctuat [9, 4] static analyser compares the real and
floating-point semantics of numeric programs to bound er-
rors in floating-point computations. The authors use the
zonotope abstract domain to bound the difference between
real and floating-point values, which is similar to our �]

abstraction. Like in our concrete semantics D], they also
address unstable test analysis [5].

8. CONCLUSION
We presented work in progress on the static analysis of

software patches. Our method is based on abstract inter-
pretation, and parametric in the choice of an abstract do-
main. We presented a novel concrete collecting semantics,
expressing the behaviors of two syntactically close versions
of a program at the same time. We also introduced a novel
numeric domain to bound differences between the values of
the variables in the two programs, which has linear cost. We
implemented a prototype and experimented on a few small
examples from the literature. In future work, we will con-
sider extensions to non purely numeric programs, towards
the analysis of realistic patches. We will also consider other
abstract domains, such as zonotopes.

9. REFERENCES
[1] P. Cousot and R. Cousot. Abstract interpretation: A

unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In
POPL’77, pages 238–252. ACM, Jan. 1977.

[2] P. Cousot and N. Halbwachs. Automatic discovery of
linear restraints among variables of a program. In
POPL’78, pages 84–97. ACM, 1978.

[3] B. Godlin and O. Strichman. Regression verification.
In Proceedings of the 46th Annual Design Automation
Conference, DAC ’09, pages 466–471, New York, NY,
USA, 2009. ACM.

[4] E. Goubault and S. Putot. Static analysis of finite
precision computations. In R. Jhala and D. Schmidt,
editors, Verification, Model Checking, and Abstract
Interpretation, pages 232–247, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[5] E. Goubault and S. Putot. Robustness analysis of
finite precision implementations. In C.-c. Shan, editor,
Programming Languages and Systems, pages 50–57,
Cham, 2013. Springer International Publishing.

[6] D. Jackson and D. A. Ladd. Semantic diff: A tool for
summarizing the effects of modifications. In
Proceedings of the International Conference on
Software Maintenance, ICSM ’94, pages 243–252,
Washington, DC, USA, 1994. IEEE Computer Society.

[7] B. Jeannet and A. Miné. Apron: A library of

4

Benchmark LOC Origin D
](polyhedra) D

](octagon) �
](interval)

time time time
(ms) (ms) (ms)

Comp 13 [14] 14 3 18 7 2 7
Const 9 [14] 7 3 17 3 1 3
Fig. 2 14 [14] 4 3 5 3 1 3
LoopMult 14 [14] 20 3 56 7 1 7
LoopSub 15 [14] 19 3 53 7 2 7
UnchLoop 13 [14] 15 3 36 7 2 3

copy 37 [11] 102 3 60 3 2 7
remove 19 [11] 6 3 18 3 2 7
seq 41 [11, 12] 75 3 500 7 2 7
sign 12 [11] 6 3 8 7 2 7
sum 14 [11] 13 3 19 3 2 3

Figure 7: Benchmarks

numerical abstract domains for static analysis. In
Proc. of the 21th Int. Conf. on Computer Aided
Verification (CAV’09), volume 5643 of LNCS, pages
661–667. Springer, June 2009.

[8] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and
H. Rebêlo. Symdiff: A language-agnostic semantic diff
tool for imperative programs. In P. Madhusudan and
S. A. Seshia, editors, Computer Aided Verification,
pages 712–717, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[9] M. Martel. Propagation of roundoff errors in finite
precision computations: A semantics approach. In
D. Le Métayer, editor, Programming Languages and
Systems, pages 194–208, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

[10] A. Miné. The octagon abstract domain. Higher-Order
and Symbolic Computation, 19(1):31–100, 2006.

[11] N. Partush and E. Yahav. Abstract semantic
differencing for numerical programs. In F. Logozzo and
M. Fähndrich, editors, Static Analysis, pages 238–258,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[12] N. Partush and E. Yahav. Abstract semantic
differencing via speculative correlation. In Proceedings
of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages &
Applications, OOPSLA ’14, pages 811–828, New York,
NY, USA, 2014. ACM.

[13] S. Person, M. B. Dwyer, S. Elbaum, and C. S.
Pǎsǎreanu. Differential symbolic execution. In
Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
SIGSOFT ’08/FSE-16, pages 226–237, New York, NY,
USA, 2008. ACM.

[14] A. Trostanetski, O. Grumberg, and D. Kroening.
Modular demand-driven analysis of semantic
difference for program versions. In F. Ranzato, editor,
Static Analysis - 24th International Symposium, SAS
2017, New York, NY, USA, August 30 - September 1,
2017, Proceedings, volume 10422 of Lecture Notes in
Computer Science, pages 405–427. Springer, 2017.

5

	Introduction
	Running example
	Concrete semantics
	Abstract semantics
	Evaluation
	Limitations
	Related work
	Conclusion
	References

