David Delmas 
email: david.delmas@airbus.com
  
Antoine Miné 
email: antoine.mine@lip6.fr
  
  
  
  
Analysis of Program Differences with Numerical Abstract Interpretation

  L'archive ouverte pluridisciplinaire

INTRODUCTION

We present work in progress 1 on the static analysis of software patches. Given two syntactically close versions of a program, our analysis can infer a semantic difference, and prove that both programs compute the same outputs when run on the same inputs. Our method is based on abstract interpretation [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF], and parametric in the choice of an abstract domain. At the moment, we focus on numeric properties only, on a toy language. Our method is able to deal with infinite-state programs and unbounded executions, but it is limited to comparing terminating executions, ignoring non terminating ones.

We first present a novel concrete collecting semantics, expressing the behaviors of both programs at the same time. We then show how to leverage classic numeric abstract domains, such as polyhedra [START_REF] Cousot | Automatic discovery of linear restraints among variables of a program[END_REF] or octagons [START_REF] Miné | The octagon abstract domain[END_REF], to build an effective static analysis. We also introduce a novel numeric domain to bound differences between the values of the variables in the two programs, which has linear cost, and the right amount of relationality to express useful properties of software patches. We implemented a prototype and experimented on a few small examples from the literature.

In future work, we will consider extensions to non purely numeric programs, towards the analysis of realistic patches.

The paper is organised as follows. Section 2 presents a running example, introducing our syntax and semantics for program patches informally. Section 3 formalises the concrete collecting semantics, and illustrates it on the example. Section 4 describes the abstract semantics, and discusses the choice of numerical abstract domains with respect to the example. Section 5 presents experimental results with a prototype implementation. Section 6 stresses current limitations of the approach. Section 7 discusses related work. Section 8 concludes.

RUNNING EXAMPLE

In the following, we sketch our approach to the analysis of semantic differences between two syntactically similar programs P1 and P2. We are interested in proving that P1 and P2 compute equal outputs when run on equal inputs. P1 and P2 are represented together in the syntax of a socalled double program P . Simple programs P1 and P2 are 1 : a ← input(-1000, 1000); 2 : b ← input(-1000, 1000); 3 : c ← 1 0; 4 : i ← 0; 5 : while (i < a) { 6 :

c ← c + b; 7 :

i ← i + 1; 8 : } 9 : r ← c c + 1; 10 : assert sync(r); Figure 1: Unchloop example referred to as the left and right components of P . Fig. 1 shows the Unchloop example, taken from [START_REF] Trostanetski | Modular demand-driven analysis of semantic difference for program versions[END_REF], and translated into our syntax of double programs. The symbol is used to represent syntactic difference. It is available at expression, condition, and statement levels in our syntax for double programs. For instance at line 3, c ← 1 0 means c ← 1 for P1, and c ← 0 for P2. In contrast, line 4 means i ← 0 for both P1 and P2.

Let us describe the example program. Both versions P1 and P2 read inputs in the range [-1000, 1000] into a and b at lines 1 and 2. At ligne 3, the counter c is being initialised with value 1 for program P1, and value 0 for program P2. Then, both components add a times the value of b to c in a loop. Finally, they both store the result into r at line 9: c for P1, c+1 for P2. The assertion at line 10 expresses the property we would like to check: if both programs components reach it, then they should have computed equal values for r.

We assume here that both programs read the same input value in a, and the same input value in b. More generally, the semantics P of a program is parameterized by a (possibly infinite) sequence of input values s, and we wish to prove that, ∀s : ( P1 s)(r) = ( P2 s)(r), i.e. the programs have the same result in r given the same sequence of input values. The assertion at line 10 of our example is thus valid. Although not presented in the example, our language also supports true non-deterministic random values, that may differ between the executions of both variants.

The assertion at line 10 is, indeed, validated by our analysis.

CONCRETE SEMANTICS

Following the standard approach to abstract interpretation, we developed a concrete collecting semantics for a toy WHILE-like language for double programs. The operator may occur anywhere in the parse tree, to denote syntactic differences between the two components of a double program. This operator, however, is not recursive.

Given double program P with variables in V, consider its left (resp. right) component P1 = π1(P ) (resp. P2 = π2(P )), with variables in

V1 = { x1 | x ∈ V } (resp. V2 = { x2 | x ∈ V })
, where π1 (resp. π2) is a projection operator defined by induction on the syntax, keeping only the left (resp. right) side of symbols, and renaming variables x to their versions x1 (resp. x2) in P1 (resp. P2). For instance, π1(c ← 1 0) = c1 ← 1, and π2(c

← 1 0) = c2 ← 0, while π1(i ← 0) = i1 ← 0, and π2(i ← 0) = i2 ← 0.
P1 and P2 are simple programs, with concrete memory states in E1 style, for a subset of the language featuring double statements and expressions, but only simple conditions. It is defined by induction on the syntax, so as to allow for modular, joint analyses of double programs that maintain inputoutput relations on the variables. Note that D is parametric in (S1, S2).

The semantics for the empty program is the diagonal, identity relation ∆D. The semantics D s1 s2 for the comparison of two syntactically different statements reverts to the pairing of the simple program semantics of individual simple statements s1 and s2. The semantics for assignments of double expressions (different expressions to the same variable) is defined using this construct. The semantics for the sequential composition of statements boils down to the composition of the semantics of individual statements. Note that we use the symbol to denote the left composition of relations:

R1 R2 def = { (x, z) | ∃y : (x, y) ∈ R1 ∧ (y, z) ∈ R2 }.
The semantics for selection statements distinguish between cases where both components agree on the value of the controlling expression, and cases where they do not (a.k.a. unstable tests). In the latter cases, the semantics is defined by composing the semantics of the projections of the double program on its components. The semantics for (possibly unbounded) iteration statements is defined using the least fixpoint of a function defined similarly.

Coming back to our running example Unchloop on Fig. 1, the concrete semantics for the program from line 3 to 9 is displayed on Fig. 3. With the additional assumption that both program components start from equal memory states (a1 = a2 ∧ b1 = b2), ensured by our semantics for the input built-in, the two components can be proved to compute equal values for r. Unfortunately, our concrete collecting semantics D is not computable in general. A particular difficulty of the Unchloop example is that the input-ouptut relation is non linear:

D dstat ∈ P(D × D) D skip def = ∆D D s1 s2 def = { ((i1, i2), (o1, o2)) | ∀ k ∈ {1, 2} : (i k , o k ) ∈ S k s k } D V ← e1 e2 def = D V ← e1 V ← e2 D s1; s2 def = D s1 D s2 D if c then s1 else s2 def = F c D s1 ∪ F ¬c D s2 ∪ F c ¬c D1 s1 D2 s2 ∪ F ¬c c D1 s2 D2 s1 D while c do s def = (lfp H) F ¬c where F c1 c2 def = { ((ρ1, ρ2), (ρ1, ρ2)) | ∀ k ∈ {1, 2} : true ∈ C k c k ρ k } F c def = F c c D1 s def = D π1(s) skip D2 s def = D skip π2(s) H(R) def = ∆D ∪ R (F c D s ∪ F c ¬c D1 s ∪ F ¬c c D2 s )
(a ≤ 0 ⇒ r = 1) ∧ (a ≥ 0 ⇒ r = 1 + a × b).

ABSTRACT SEMANTICS

We therefore tailor an abstract semantics D , suitable for the analysis of program differences. As D ≈ R |V 1 ∪V 2 | , any numeric abstract domain on pairs of environments may be used. As D is defined by induction the syntax, the definition for D is straightforward: the abstract semantics need only be defined for the s1 s2 construct. We define it as

D s1 s2 def = D 1 s1 D 2 s2 . This definition is sound, as D s1 s2 = D1 s1 D2 s2 holds in the con- crete semantics. For instance, D c ← 1 0 = D c1 ← 1 D c2 ← 0 .
Note that the relation between c and i is non linear in the Unchloop example: c1 = i1 × b1 + 1 and c2 = i2 × b2 from line 4 to 9. Thus, a separate analysis of programs P1 and P2 would require a non linear abstract domain to compare r1 and r2. In contrast, our joint analysis of P1 and P2 will be sufficiently precise, even when using linear numeric domains, because the difference between the values of the variables in P1 and in P2 remains linear. For instance, the polyhedra domain is able to infer that the invariant -c1 + c2 + 1 = 0 holds from line 3 to 9, hence r1 = r2 at line 9, although it is not able to discover any interval for r1 or r2. The octagon domain is also able to express these invariants, but its transfer function for assignment is not precise enough to infer them. Indeed, x ← a -b cannot be exactly abstracted by the domain, and currently proposed transfer functions fall back to plain interval arithmetics in that case, so that the domain cannot exploit the bound it infers on a -b to bound D U nchloop3..9 = { s0, ((a1, b1, 1, 0, 1), (a2, b2, 0, 0, 1)) x, for efficiency reasons. The interval domain is not able to express the invariants, hence it cannot be used directly for a conclusive analysis.

| a1 ≤ 0 ∧ a2 ≤ 0 ∧ H0 } ∪ { s0, ((a1, b1, 1 + a1 × b1, a1, 1 + a1 × b1), (a2, b2, 0, 0, 1)) | a1 > 0 ∧ a2 ≤ 0 ∧ H0 } ∪ { s0, ((a1, b1, 1, 0, 1), (a2, b2, a2 × b2, a2, 1 + a2 × b2)) | a1 ≤ 0 ∧ a2 > 0 ∧ H0 } ∪ { s0, ((a1, b1, 1 + a1 × b1, a1, 1 + a1 × b1), (a2, b2, a2 × b2, a2, 1 + a2 × b2)) | a1 > 0 ∧ a2 > 0 ∧ H0 } where s0 def = ((a1, b1, c1, i1, r1), (a2, b2, c2, i2, r2)) H0 def = ∀k ∈ {1, 2} : (b k , c k , i k , r k ) ∈ R 4
However, we remark that it is sufficient to bound the differences x2 -x1 for any variable x to express the necessary invariants. Thus, we now design an abstract domain that is specialized to infer these bounds. We therefore introduce the Galois automorphism (P Like for D, any numeric domain can be used to abstract , so that the definition for is straightforward, by induction on the syntax of double programs. We also define the semantics for the s1 s2 construct as s1 s2 def = 1 s1 2 s2 , where 1 s def = π1(s) skip , and 2 s def = skip π2(s) .

(D × D), ⊆) ---→ -→ ← ←---- α γ (P(D × D), ⊆) defined by α(R) def = { ((i1, i2 -i1), (o1, o2 - o1)) | ((i1, i2), (o1, o2)) ∈ R }, and γ(∆) def = { ((ρ, ρ+δ), (ρ , ρ + δ )) | ((ρ, δ), (ρ , δ )) ∈ ∆ },
Nonetheless, we add a particular case for the simple assignment V ← e, to gain both precision and efficiency through simple symbolic simplifications. That particular case is displayed on Fig. 5. Under some conditions on the expression e, we say e is "differentiable", and update the δV component of variable V in the abstract from the δx components of all program variables x, independently of their x1 components. We call an expression differentiable if it is an affine expression of the form µ + x∈V λxx, or a deterministic expression where all variables x are such that δx = 0, or a so-called "synchronised" input expression.

We say an input expression is synchronised when P1 and P2 have called input equal numbers of times. For instance, after statement a ← input(-1000, 1000) at line 1 of the Unchloop example, we have a ∈ [-1000, 1000], but δa = 0. This last property stems from the fact that both programs evaluate the same input value stream at the same index. To infer this property of inputs, we developed a very simple dedicated domain. The domain associates a counter to each input instruction, that counts the number of times the instruction has been called in each program since the start of the executions. If the domain can proove that these counts are equal when reaching some statement x ← input(m, M ), for some variable x and some constants m and M, then it adds the contraint δx = 0. Otherwise, δx ∈ [m -M, M -m]. As the counters are numeric quantities, the analysis can dele-gate infering their equality to numeric abstract domains.

If the expression e is differentiable, we update the δV component of variable V in the abstract with the result of our differentiation function on e. This function operates like mathematical differentiation on affine expressions. Otherwise, if e is differentiable but not affine, then our differentiation function returns 0, as e is guaranteed to evaluate to equal values in P1 and P2.

To further enhance precision on some examples, we generalize slightly this particular case to double assignments V ← e1 e2, when expressions e1 and e2 are found syntactically equal, modulo some semantics preserving transformations, such as associativity, commutativity, and distributivity.

EVALUATION

We implemented a prototype abstract interpreter for the semantics D and of the toy language introduced with the Unchloop example of Fig. 1. It is about 2,000 lines of OCaml source code, and uses the Apron [START_REF] Jeannet | Apron: A library of numerical abstract domains for static analysis[END_REF] library to experiment with the polyhedra and octagon abstract domains. We compare results on small examples selected from other authors' benchmarks [START_REF] Trostanetski | Modular demand-driven analysis of semantic difference for program versions[END_REF][START_REF] Partush | Abstract semantic differencing for numerical programs[END_REF][START_REF] Partush | Abstract semantic differencing via speculative correlation[END_REF]. These references deal with C programs directly, while we encode their benchmarks in our toy language. In addition, these references not only prove equivalences, but also characterise differences, while we focus on equivalence for now. We therefore selected benchmarks relevant to equivalence only, except for the so-called "Fig. 2" example of [START_REF] Trostanetski | Modular demand-driven analysis of semantic difference for program versions[END_REF], which we modified slightly to restore equivalence of terminating executions: see Fig. 6.

Table 7 summarises the results of our analysis. Our results are comparable with those of the original authors, with significant speedups -several orders of magnitude with respect to [START_REF] Trostanetski | Modular demand-driven analysis of semantic difference for program versions[END_REF]. All experiments were conducted on a Intel R Core-i7 TM processor.

LIMITATIONS

Our analysis is based on abstractions of the concrete collecting semantics D, which relates pairs of terminating executions of components of a double program. It is suitable to prove a number of properties, including that two terminating programs starting from equal initial states will produce equal outputs, a notion called partial equivalence in [START_REF] Godlin | Regression verification[END_REF]. In contrast, an analysis based on this collecting semantics will fail to report differences between pairs of executions where at least one of the component does not terminate. For instance, in the example on Fig. 6. our analysis does not report any difference between P1 and P2, although P1 terminates on input x = 2, and P2 does not.

As opposed to [START_REF] Partush | Abstract semantic differencing for numerical programs[END_REF][START_REF] Partush | Abstract semantic differencing via speculative correlation[END_REF], who develop algorithms to automate the construction of a correlating program P1 P2, 
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 3 Figure 3: Concrete semantics of the Unchloop example

  and let def = α • D. This amounts to changing the representation of states of double program P : variable x is represented by its left and right projections (x1, x2) in semantics D, and by (x1, δx) in semantics , where δx def = x2 -x1. The semantics of statements 6 and 9 of the UnchLoop example are shown for instance on Fig. 4, before and after simple symbolic simplifications of affine expressions.

  LOC Origin D (polyhedra) D (octagon) (interval)

				time	time	time
				(ms)	(ms)	(ms)
	Comp	13	[14]	14	18	2
	Const	9	[14]	7	17	1
	Fig. 2	14	[14]	4	5	1
	LoopMult	14	[14]	20	56	1
	LoopSub	15	[14]	19	53	2
	UnchLoop	13	[14]	15	36	2
	copy	37	[11]	102	60	2
	remove	19	[11]	6	18	2
	seq	41 [11, 12]	75	500	2
	sign	12	[11]	6	8	2
	sum	14	[11]	13	19	2
					Figure 7: Benchmarks

 [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF]This work is performed as part of a collaborative partnership between Sorbonnne Université / CNRS (LIP6) and Airbus. This work is partially supported by the European Research Council under the Consolidator Grant Agreement 681393 -MOPSA.

c ← c + b = { (s1, (((a1, b1, c1 + b1, i1, r1), ((a1 + δa) -a1, (b1 + δb) -b1, ((c1 + δc) + (b1 + δb)) -(c1 + b1), (i1 + δi) -i1, (r1 + δr) -r1))) | H1 } = { (s1, ((a1, b1, c1 + b1, i1, r1), (δa, δb, δc + δb, δi, δr))) | H1 } r ← c c + 1 = { (s1, ((a1, b1, c1, i1, c1), ((a1 + δa) -a1, (b1 + δb) -b1, ((c1 + δc) -c1, (i1 + δi) -i1, (c1 + δc + 1) -c1))) | H1 } = { (s1, ((a1, b1, c1, i1, c1), (δa, δb, δc, δi, δc + 1))) | H1 } where s1 def = ((a1, b1, c1, i1, r1), (δa, δb, δc, δi, δr)) H1 def = ((a1, b1, c1, i1, r1), (δa, δb, δc, δi, δr)) ∈ R 10 

else { 6 :

while (i = 2) x ← 2; 7 :

x ← 3; 8 : } 9 : } 10 : assert sync(x); // x = 2 ignored Figure 6: Modified Fig. 2 example (from [START_REF] Trostanetski | Modular demand-driven analysis of semantic difference for program versions[END_REF]) on which to run the static analysis, we assume for now the joint representation of P1 and P2 given, as part of a double program in our toy language.

7. RELATED WORK [START_REF] Jackson | Semantic diff: A tool for summarizing the effects of modifications[END_REF] pioneered the field of semantic differencing between two versions of a procedure by comparing dependencies between input and output variables. Symbolic execution methods [START_REF] Person | Differential symbolic execution[END_REF][START_REF] Trostanetski | Modular demand-driven analysis of semantic difference for program versions[END_REF] have proposed analysis techniques for programs with small state space and bounded loops, which may support modular regression verification. The RVT [START_REF] Godlin | Regression verification[END_REF] and SymDiff [START_REF] Lahiri | Symdiff: A language-agnostic semantic diff tool for imperative programs[END_REF] combine two versions of the same program, with equality constraints on their inputs, and compile equivalence properties into verification conditions to be checked by SMT solvers.

The DIZY [START_REF] Partush | Abstract semantic differencing for numerical programs[END_REF][START_REF] Partush | Abstract semantic differencing via speculative correlation[END_REF] tool leverages numerical abstract interpretation to establish equivalence under abstraction. Our work is thus similar. Our main contribution so far is a novel concrete collecting semantics by induction on the syntax, and a novel numeric domain to bound differences between the values of the variables in the two programs.

The Fluctuat [START_REF] Martel | Propagation of roundoff errors in finite precision computations: A semantics approach[END_REF][START_REF] Goubault | Static analysis of finite precision computations[END_REF] static analyser compares the real and floating-point semantics of numeric programs to bound errors in floating-point computations. The authors use the zonotope abstract domain to bound the difference between real and floating-point values, which is similar to our abstraction. Like in our concrete semantics D , they also address unstable test analysis [START_REF] Goubault | Robustness analysis of finite precision implementations[END_REF].

CONCLUSION

We presented work in progress on the static analysis of software patches. Our method is based on abstract interpretation, and parametric in the choice of an abstract domain. We presented a novel concrete collecting semantics, expressing the behaviors of two syntactically close versions of a program at the same time. We also introduced a novel numeric domain to bound differences between the values of the variables in the two programs, which has linear cost. We implemented a prototype and experimented on a few small examples from the literature. In future work, we will consider extensions to non purely numeric programs, towards the analysis of realistic patches. We will also consider other abstract domains, such as zonotopes.