Accuracy of using natural language processing methods for identifying healthcare-associated infections - Archive ouverte HAL
Article Dans Une Revue International Journal of Medical Informatics Année : 2018

Accuracy of using natural language processing methods for identifying healthcare-associated infections

Résumé

There is a growing interest in using natural language processing (NLP) for healthcare-associated infections (HAIs) monitoring. A French project consortium, SYNODOS, developed a NLP solution for detecting medical events in electronic medical records for epidemiological purposes. The objective of this study was to evaluate the performance of the SYNODOS data processing chain for detecting HAIs in clinical documents.
Fichier non déposé

Dates et versions

hal-02109408 , version 1 (24-04-2019)

Identifiants

Citer

Nastassia Tvardik, Ivan Kergourlay, Frederique Segond, Stefan J. Darmoni, Marie-Hélène Metzger. Accuracy of using natural language processing methods for identifying healthcare-associated infections. International Journal of Medical Informatics, 2018, 117, pp.96-102. ⟨10.1016/j.ijmedinf.2018.06.002⟩. ⟨hal-02109408⟩
73 Consultations
0 Téléchargements

Altmetric

Partager

More