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Abstract

Lipreading or Visual speech recognition is the process of decoding speech

from speakers mouth movements. It is used for people with hearing impair-

ment, to understand patients attained with laryngeal cancer, people with

vocal cord paralysis and in noisy environment. In this paper we aim to

develop a visual-only speech recognition system based only on video. Our

main targeted application is in the medical field for the assistance to la-

ryngectomized persons. To that end, we propose Hahn Convolutional Neu-

ral Network (HCNN), a novel architecture based on Hahn moments as first

layer in the Convolutional neural network (CNN) architecture. We show

that HCNN helps in reducing the dimensionality of video images, in gaining

training time. HCNN model is trained to classify letters, digits or words

given as video images. We evaluated the proposed method on three datasets,

AVLetters, OuluVS2 and BBC LRW, and we show that it achieves significant

results in comparison with other works in the literature.

Keywords: Visual speech recognition, Lipreading, Laryngectomy, Hahn
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moments, Convolutional Neural Networks

1. Introduction

The visual speech recognition also known by lip reading is a vital task

in communication for people with difficulties to interact with society. It has

gained a lot of attention lately due to the need of the application of this

process in many domains, especially in the medical field which is our moti-

vation for this work. In case of laryngeal cancer, the persons affected by this

disease face the loss of their natural voice after the laryngectomy surgery.

Similarly, vocal cord paralysis is another disease that causes the same prob-

lems. By assuming that voice therapy can take long to recover the voice, the

lipreading is an inevitable task to reconstruct the communication process

and save the interaction with society. To concretize that, the advances in

computer vision and image processing made this process possible to decode

speech from lips movements and offer to these patients a hope to recuperate

their communication functions.

Lipreading is a challenging process for humans especially when the con-

text is absent. It requires special qualities for experts to follow lips move-

ments, tongue articulations and teeth. Another confusing issue is the simi-

larity between phonemes explained by Fisher in 1968 [1]. Additionally, the

differences between each speakers mouth shape, mustache, or the effect of

makeup can make the task of lipreading more complicated. To face these is-

sues a robust lipreading system is needed to differentiate all these variations.

In the comparison between human and machine lipreading performance con-

ducted by Hilder et al. in 2009 [2], the experiments showed that machine
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lipreading has outperformed the human lipreading and therefore an auto-

mated lipreading system is indispensable to solve the issue.

Toward building an automated lipreading system, several approaches were

proposed and tested on several datasets, especially on AVLetters dataset

[5], for example an approach using Active Shape Models (ASM) [4] and Ac-

tive Appearance Models (AAM) [3] was conducted by Matthews et al. in

2002 [5] to extract features from lips images, and train a model using Hidden

Markov model (HMM) classifier, this method obtained 44.6% accuracy. Zhao

et al. in 2009 [6] proposed a lip-reading method using local spatiotemporal

descriptors, in which they represented the isolated phrase sequences by ex-

tracting the spatiotemporal local binary patterns (LBP) from mouth region.

The best performance attained was 58.85% using Support Vector Machine

(SVM) classifier. A method based on Deep bottleneck features extraction

directly from pixels was introduced by Petridis and Pantic, 2016 [7], where

the authors trained a model using Long-Short Term Memory (LSTM), this

method achieved 58.1% accuracy. Bakry and Elgammal in 2016 [9], con-

ducted a comparison between manifold kernels in Manifold Kernel Partial

Least Squares(MKPLS). Their approach consists of using distances such Eu-

clid distance between images and LBP to extract features. Another method

proposed by Tian and Weijun [10], in which they introduced an auxiliary

multimodal LSTM (am-LSTM) that aims to combine audio-visual data at

the same time. It learns from both audio and video modalities and uses a

pre-trained VGG-16 model to extract features and PCA to reduce dimension-

ality. On cross modality protocol, which means the audio and video are used

for training and only the video is used for testing, the performance obtained
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was 88.83%.

As for the OuluVS2 dataset, it was first proposed by Annie et al. in 2015 [23]

to address the problem of non-rigid mouth motion analysis. The provided

baseline performance was 41% accuracy on the frontal view. On the same

dataset Joon Son Chung and Andrew Zisserman conducted in [22] a method

called SyncNet to synchronize mouth motion and speech in a video. The

proposed model is a mixture of LSTM and CNN, where the LSTM model

ingests the visual features produced by the CNN image by image until the

end of the sequence. The model was 92.8% accurate on OuluVS2 fixed digits.

Further, Saitoh et al. in [13] propose a method called CFI-based CNN to

represent the spatiotemporal aspect in the video for visual speech recogni-

tion. They evaluated the method on OuluVS2 dataset and the performances

achieved on the OuluVS2 digits (frontal view) were 61.7% using Netwotk

in Network (NiN) model with data augmentation (DA), and an accuracy of

89.4% with DA and using GoogLeNet model. Additionally, regarding the

Lip Reading in the Wild (LRW), it was first generated by Chung and Zisser-

man [25] in 2016, to recognize spoken words. Authors achieved an accuracy

of 61.1% using a multiple towers architecture, which uses a convolutional

tower for each frame and they concatenate after the first convolution then

apply a pretrained VGG-M model. Chung et. al. in [26] present a method

called watch, listen, attend and spell, that aims to convert mouth motion

videos to characters. They obtained on LRW an accuracy of 76.2% using

both CNN and LSTM to recognize the spoken words. Also, Stafylakis and

Tzimiropoulos in [28] and [27], obtained 82.97% and 88.08% respectively,

using a combination of a spatiotemporal 3D CNN, ResNet and Bidirectional
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LSTM.

The proposed methods above apply spatiotemporal modeling features and

visual features extraction before performing classification, which make them

computationally expensive and time consuming. In order to cut with these

limitations we propose in this paper a novel architecture called HCNN based

on Hahn moments and convolutional neural network (CNN). The new ar-

chitecture lies on the mixture of Hahn moments with its ability to hold and

extract the most useful information in images with effectiveness and less

redundancy, and the performance of the convolutional neural networks in

learning pattern and image classification. The Hahn moments are used as

the first layer of our architecture to extract the moments and feed them to

the CNN. To the best of our knowledge this is the first time, moments will

be used as a filter in a CNN architecture applied to lipreading. The Hahn

moments were chosen over other discrete orthogonal moments like chebyshev

and Krawtchouk moments, because Hahn moments cover all the properties

of both moments, and because of their great ability to represent image with

less redundancy in the amount of information. Furthermore, they can be

parameterized to retain the global or local characteristics of the image in the

lowest orders. In this work we propose a solution that encompasses several

issues. The main contributions of this paper are: 1) further improve the

performance of the CNN architecture and customize it for a better features

extraction and better patterns learning, 2) reduce significantly the dimen-

sionality of images by integrating the Hahn moments as first layer which

leads to decrease the computational cost, 3) present a cost-effective solution

to the Lip reading problem.
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This paper is structured as follows. In Section 2 we will introduce Hahn

moments concept and mathematical foundation. In Section 3 we will high-

light our proposed architecture HCNN. Our Experiments and Results on the

reported datasets are found in Section 4. And finally a conclusion to this

paper will be given in Section 5.

2. Two-dimensional Hahn moments

Hahn moments are a set of orthogonal moment based on the discrete Hahn

polynomials defined over the image coordinate space. Their implementation

does not involve any numerical approximation. In this section, we will give

brief formulation of 2D weighted Hahn moments including polynomials and

we will describe their capacity to capture significant features from image with

significant reduce of dimensionality.

2.1. Hahn polynomials

Hahn polynomials of one variable x, with the order n, defined in the

interval [0, N − 1] as given in [17], respect the following equation:

hn(α, β,N |x) = 3F2

 −n, n+ α + β,−x

α + 1,−N 1

 (1)

with n, x = 0, 1, · · · , N − 1

where α and β are free parameters, and 3F2 is the generalized hyper-geometric

function given by :

3F2

 a1, a2, a3

b1, b2 z

 =
∞∑
k=0

(a1)k(a2)k(a3)k
(b1)k(b2)kk!

zk (2)
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Hahn polynomials satisfy the orthogonal property:

N−1∑
x=0

hn

(
α, β,N x

)
hm

(
α, β,N x

)
ωh(x) = ρh(n)δmn (3)

where wh(x) is the weighting function given by

ωh(x) =
(α + 1)x(β + 1)N−x

(N − x)!x!
(4)

while ρh is the squared-norm expressed by

ρh(n) =
(−1)nn!(β + 1)n(α + β + n+ 1)N+1

(−N)n(2n+ α + β + 1)N !(α + 1)n
(5)

To assure the numerical stability, the set of the weighted Hahn polynomials

is defined as

h̃n

(
α, β,N x

)
= hn

(
α, β,N x

)√wh(x)

ρh(n)
(6)

The set of weighted Hahn polynomials obeys the three term recurrence rela-

tion defined as follow

h̃n

(
α, β,N x

)
=A

√
ρh(n− 1)

ρh(n)
h̃n−1

(
α, β,N x

)
−B

√
ρh(n− 2)

ρh(n)
h̃n−2

(
α, β,N x

)
(7)

n = 2, 3, · · · , N − 1

Where

A = 1 +B − x (2n+ α + β + 1)(2n+ α + β + 2)

(n+ α + β + 1)(α + n+ 1)(N − n)
(8)

B =
n(n+ β)(α + β + n+N + 1)(2n+ α + β + 2)

(2n+ α + β)(α + β + n+ 1)(α + n+ 1)(N − n)
(9)
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The initial values for the above recursion can be obtained from

h̃0

(
α, β,N x

)
=

√
ωh(x)

ρh(0)
(10)

h̃1

(
α, β,N x

)
=

(
1− x(α + β + 2)

(α + 1)N

)√
ωh(x)

ρh(1)
(11)

2.2. Weighted Hahn moments

The 2D weighted Hahn moments of order m × n of an image intensity

function f(x, y) are defined over the domain [0,M − 1]× [0, N − 1] as:

Hmn =
M−1∑
x=o

N−1∑
y=0

h̃m

(
α, β,M x

)
h̃n

(
α, β,N x

)
f(x, y) (12)

where M × N is the size of the image. Due to the orthogonality property

of separable Hahn polynomials allows us to reconstruct perfectly the image

f(x, y), if all moments are used, by utilizing the following inverse transform:

f̃(x, y) =
M̂−1∑
x=o

N̂−1∑
y=0

h̃m

(
α, β,M x

)
h̃n

(
α, β,N x

)
Hmn (13)

where 0 ≤ M̂ ≤ M , 0 ≤ N̂ ≤ N . The image moment set Hmn(0 ≤ m ≤

M − 1, 0 ≤ n ≤ N − 1), can be speedily extracted by using the following

matrix form [11]

H = QT
1AQ2 (14)
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(a) recon-

structed frame

up to 12th

(b) recon-

structed frame

up to 16th

(c) recon-

structed frame

up to 20ths

(d) recon-

structed frame

up to 32th

(e) original

frame 80×60

Figure 1: image reconstruction with Hahn moments

where H is an m× n matrix of moments H = Hij, by

0 ≤ i ≤ n, 0 ≤ j ≤ m

Q1 = h̃m(α, β,Mx), with 0 ≤ i ≤ m and 0 ≤ x ≤M − 1,

Q2 = h̃n(α, β,Ny), with 0 ≤ j ≤ n and 0 ≤ y ≤ N − 1,

and A = f(x, y), 0 ≤ x ≤M − 1, 0 ≤ y ≤ N − 1.

Similarly the image can be reconstructed by

f = Q1HQ
T
2 (15)

As illustrated in fig. 1, the image can be reconstructed using eq. 15, and

obviously despite the small orders Hahn moments preserve the information

in image.

3. Proposed Architecture HCNN

The novel architecture HCNN as shown in fig. 2 aims to solve the prob-

lem of Lip reading by processing and recognizing lips images rapidly and

efficiently. It is a combination of the method of discrete orthogonal moments

and the convolutional neural network.
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The HCNN architecture comes to surmounts the high computational costs

and the sophisticated hardware resources required by the CNN. Furthermore,

HCNN enhance the quality of features extraction and the assimilation of pat-

terns incorporated in the image. Indeed, the Hahn moments as a powerful

descriptors to retrieve the most useful information in the image, with the

property of covering global, local and both features at the same time with

efficiency. This advantage can be achieved by tuning the suitable values of

α and β parameters as detailed in the Hahn moments section above. Based

on the study conducted in [24] we have set these parameters to α = β = 5,

so the moments retrieved can encompass the whole image with the potential

to apprehend its global features. The architecture is divided on two main

phases, the Hahn moments layer and the convolutional neural network.

• Hahn Moments layer: the discrete orthogonal Hahn moments as the

first layer of HCNN to calculate the moments of the input image and yields

a matrix of moments with a size depending on the moments order value.

Therefore, this layer gives an optimized representation of the image and re-

duce significantly the dimensionality of processing.

• Convolutional Neural Network: comes to further learn pattern in the

data and to provide a robust classification. The CNN takes the moments

matrix as input instead of the image and apply the various convolutional

filters and optimization functions. The first layers of convolution, activation

functions, normalization and max pooling, process the input and learn more

complex patterns and structures in the data. While the classification is per-

formed in the fully connected layers in which we apply several operations as

the normalization, the activation functions and the dropout.
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Figure 2: HCNN: the proposed architecture for lip reading which takes an input image

and compute its correspond Hahn moments, then the returned representation is passed

through several convolutions, normalization, max pooling, and fully connected layers

Figure 3: HCNN model parameters: Hahn moments until the given order, first convolution

(kernel 3x3 and 100 filters), second convolution (kernel 3x3 and 60 filters), first max pooling

(pool size 3x3). Third convolution (kernel 3x3 and 40 filters). Second max pooling (pool

size 3x3). First fully connected layer (300 neurons), and a second layer (240 neurons), and

finally an output layer (26 classes)
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4. Experiments & Results

In this section, simulation results are carried out through a set of appro-

priate experiments in order to evaluate the classification performance of the

proposed architecture (HCNN). Three datasets have been selected from the

literature : AVLetters, OuluVS2 and BBC LRW.

4.1. datasets

• AVLetters: a dataset that contains 780 videos for 10 speakers, every

speaker utters the 26 alphabet letters three times, which results in 78 videos

for each speaker. The speaker start and finish with a closed mouth, and

every video has a variable number of frames. The frames as shown in figure4

, are an example of images in AVLetters dataset for the mouth region with

a dimension of 80x60.

• OuluVS2: a dataset that contains 52 speakers uttering 10 digits se-

quences with a repetition of 3 times each. The digits series are as follow : ”1

7 3 5 1 6 2 6 6 7”, ”4 0 2 9 1 8 5 9 0 4”, ”1 9 0 7 8 8 0 3 2 8”, ”4 9 1 2 1 1 8

5 5 1”, ”8 6 3 5 4 0 2 1 1 2”, ”2 3 9 0 0 1 6 7 6 4”, ”5 2 7 1 6 1 3 6 7 0”, ”9 7

4 4 4 3 5 5 8 7”, ”6 3 8 5 3 9 8 5 6 5”, ”7 3 2 4 0 1 9 9 5 0”. The dataset as

shown in figure 6 is provided with cropped mouth region and with multiple

views, with an angle of rotation of the speaker. In our experiments we use

the frontal view, with resizing the extracted images to the size of 50×50.

• Lip Reading in the Wild: The BBC Lip Reading in the Wild (LRW)

dataset contains 500 unique words with up to 1000 utterances per word spo-

ken by different speakers. The dataset as given provide the train, validation

and test sets, as well as the metadata indicating the time where the word
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appear. It is a very challenging dataset with a high number of classes and

with words close in spelling which increase the chances of confusion between

words.

4.2. Data Augmentation and Preprocessing

4.2.1. Data Augmentation

In order to conduct a fair comparison with other works in the literature,

especially those who worked on OuluVS2 dataset, we performed a data aug-

mentation (DA) by applying rotations with angle degrees [-15, -10, 10, 15], on

each frame of each video. As for the Lip Reading in the Wild dataset, we aug-

ment by flipping horizontally each frame in the dataset. Consequently, the

size of the dataset is doubled, and since the dataset is very large, augment-

ing it by applying other operations makes the processing and the training

expensive.

4.2.2. Preprocessing

In order to prepare the datasets, we first proceed to retrieve frames from

the given videos in both AVLetters and OuluVS2 digits datasets. The ex-

tracted frames appear in various numbers depending on video length, which

make their manipulation unfitting. To correct this situation we supplement

the last frame in each video at the end to unify the numbers of frames in all

videos. We choose to add the last frame from each video because we believe

that it will not affect the content of the video, since the last frame is just

repetition and does not add any information. For the AVLetters we have set

the number of frames to 40 frames in each video, so for each video which

the number of frames is under 40 we repeat the last frame until we get 40
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frames. In the case of OuluVS2 dataset the number of frames is relatively

high (the sequence length ranges from 130 to 220), so we proceed differently.

We process each video separately depending on its sequence length and we

repeat the last frame until we get a perfect square number of frames, and to

determine that number we use the following manner:

let nf be the number of frames in a video, the number c of images to be

concatenated as given as follow :

c = (d√nfe)2 by dxe = min{n ∈ Z |n ≥ x}

A further issue to tackle is the modeling of spatiotemporal aspect in the video.

For this matter we use the method of concatenated frame image (CFI) pro-

posed by Saitoh et al. in [13] to represent all frames in one concatenated

image. The concatenated image is constructed in a way to conserve the

chronological order of appearance of frames in the video. For the AVLetters

we arrange the 40 frames as one image with 8 frame in each row as illustrated

in fig. 7 and fig. 8. In the case of OuluVS2 digits we constructed a square

shape image with the size of
√
c frames in rows and

√
c in columns.

Consequently, we have augmented the OuluVS2 digits dataset to 7650 im-

ages.

As for the Lip Reading in the Wild dataset, we start by retrieving the

frames from the given videos, then we use the provided meta data to cut the

video and keep only the frames corresponding to the spoken word. finally we

crop the region of each speaker’s mouth (ROI).
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Figure 4: AVLatters Frames

Figure 5: OuluVS2 Digits frames

Figure 6: Lip Reading in the Wild frames sample
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Figure 7: Example of CFI for the AVLetters dataset

Figure 8: Concatenated Frame Image with rotation
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Figure 9: Concatenated Frame Image for OuluVS2 dataset

4.3. Model training parameters

In this section, we highlight the different parameters we used to train

our model. After the preprocessing discussed in data augmentation and

preprocessing section above, we split our dataset into train and test. For

the AVLetters dataset we followed the split given in [5] by taking the two

utterances of each speaker for the training and the remaining utterance for

the test, which results in 520 images for training and 260 for test, and we

train our model for 5000 epochs using a batch size of 520. The OuluVS2

dataset we used the speaker-independent protocol where the twelve speakers

(s06, s08, s09, s15, s26, s30, s34, s43, s44, s49, s51, and s52, 10 males and 2

females) were used for testing and the remaining speakers for the training.

After the split we had 1800 images for test and 5850 for train, used to train

the model for 1000 iterations with a batch size of 1070. As for the Lip
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Reading in the Wild dataset we respect the split provided by default, and

we train a model for 105 epochs with a batch size of 300.

To train our model we first apply the moments filter on each CFI to

generate its moments matrix at different orders, where the choice of orders is

based on the concatenated image size, as for the images of AVLetters dataset

we have calculated moments up to the 16th, 32th, 52th and 60th, 64th and 72th

order. In the OuluVS2 as the generated concatenated images are large we

have computed the moments up to the 12th, 16th, 32th, 44th, 56th and 60th. The

choice of moments order is based on the performance obtained on the test

set. We change the order incrementally and we report the results obtained

using several orders to show how the performance changes. In addition, We

perform an ablation study by removing the Hahn filter and use the same

architecture parameters reported in table 1. For AVLetters we resize the

CFI to (150× 320), and for OuluVS2 we set the CFI size to (225× 225).

In the case of LRW dataset, we use the same model as above (2D for the

image dimensions and the third dimension for the sequence length). As we

used moments up to the 22th order, the input has a size of (sequence length×

22 × 22). We feed then the moments matrix to the CNN with parameters

illustrated in table 1, with a slight change in the fully connected layers.

We augment the two layers with 300 and 240 neurons to 2048 and 1000

respectively because of the large number of classes (500 words).

4.4. Results and Discussion

The recognition rate of our model in comparison with the previous works

on AVLetters dataset are shown in table 4. Our method clearly perform

better than the methods compared to, which shows the effectiveness of using
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Hahn moments to capture the global features although we use a simple CFI

to represent a whole sequence. Indeed, using Hahn moments we achieve 20%

absolute improvement over CNN. As for the OuluVS2 fixed digits dataset

we report in table 3 two works for comparison, SyncNet [22] and CFI-based

CNN [13], where the first employ both CNN and LSTM for recognition

in a speaker independent (SI) manner, while the CFI-based CNN lies on

a frames concatenation method for modeling the sequences and uses very

deep pre-defined CNN architecture such as GoogleNet, AlexNet and Net-

work in Network (NIN) for the recognition task. It can be clearly seen that

our shallow HCNN model outperforms the two related works in terms of

classification accuracy and reduces enormously the complexity. Similarly to

AVLetters dataset, adding Hahn moments filter achieves over than 50% im-

provement over CNN. Furthermore, in our experiments with only rotation

data augmentation we can achieve better than CFI-based CNN and SyncNet,

in which, extensive data augmentation like translation, rotation, flipping and

color shift were used.

Moreover, the results obtained on LRW dataset are listed in table 6. Our

method achieves 56.44% top@1% accuracy with data augmentation, with

an improvement of about 9% over HCNN without any data augmentation.

Therefore, the augmentation enhances clearly the performance of the model.

In comparison to other works, We perform worse, however, conducting any

comparison is not fair, because our model is shallow against the proposed

in [25, 26, 28, 27]. Also, because the data augmentation they applied is

extensive against only flipping in our experiments, which allows the model

to learn more patterns in the sequences.
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In the light of the above, the combination of Hahn moments and CNN

proved its effectiveness on a complex problem such as the Lip reading prob-

lem. HCNN by the component of Hahn moments extract only the significant

information by capturing the global features in the image. Further, we signif-

icantly reduce the dimensionality and the complexity of the model compared

to using the standard CNN architecture. Furthermore, with a small archi-

tecture such the ours we can achieve results better than other works that

used large architecture such as GoogleNet in the case of OuluVS2, or large

pre-trained models like VGG-M.

Table 2: Obtained results on AVLetters with different Hahn moments orders

Order 16 32 52 56 60 64 72

Accuracy 49.61% 53.41% 59.23% 55.76% 56.63% 57.69% 56.15%

Table 3: Obtained results on OuluVS2 fixed digits with different Hahn moments orders

using SI protocol with DA

Order 12 16 32 44 56 60

Accuracy 74.33% 80.05% 88.72% 91.94% 93.72% 92.66%

Table 4: Obtained results on AVLetters in comparison with other methods

Method HMM [5] LBP-SVM [6] LSTM [7] HCNN CNN Without Hahn

Accuracy 44.6% 58.85% 58.1% 59.23% 39.23%
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Table 5: Obtained results on OuluVS2 Digits (frontal view) in comparison with other

methods

Method Accuracy

CFI-based CNN (GoogLeNet) +DA [13] 89.4%

SyncNet (CNN+LSTM) +DA [22] 92.8%

HCNN +DA (SI) 93.72%

CNN Without Hahn +DA (SI) 42.27%

Table 6: Obtained results on BBC LRW words dataset whole 500 classes in comparison

with other methods

Method Top@1Acc Top@5Acc Top@10Acc

VGG-M [25] 61.1% - 90.4%

Watch-Attend-Spell [26] 76.2% - -

ResNet-LSTM [28] 82.97% 96.3% 98.3%

Bi-LSTM & ResNet [27] 88.08% 96.28% -

HCNN (without DA) 55.86% 82.93% 89.95%

HCNN (+ flip DA ) 58.02% 84.54% 90.86%

5. Conclusion

In this paper we introduced HCNN, a novel architecture based on Hahn

moments and Convolutional Neural Networks. The proposed method pro-

vides a powerful solution to overcome the highly computation requirements

of CNN and deep learning, and to extract the main and useful characteristics

of the image to perform the classification with effectiveness. With a small ar-
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chitecture such the HCNN, we have demonstrated the effectiveness of HCNN

on three datasets, AVLetters, OuluVS2 digits and the LRW against deep

architectures, despite the shortfalls of some results. These findings would

assist researchers to tackle the problem of lipreading and could be a useful

aid for the laryngectomized persons to decode their speech from their lips

movements. Nevertheless, we believe our work could be a starting point to

apply this method on real-time basis, experiment it on real patients, and also

to recognize speech independently of the language.
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